1. (10 points) Evaluate the following limit. Show your work.

$$\lim_{x \to 2} \frac{-x + 2}{3x^2 + 9x - 30}$$

2. (10 points) Evaluate the following limit. Show your work.

$$\lim_{x \to 0} \frac{\sqrt{x^3 + 49} - 7}{x^3}$$

3. (12 points) Evaluate the following limit. Show your work and name any theorems you use.

$$\lim_{x \to 0} x^2 \cos\left(\frac{1}{x}\right)$$

- 4. Multiple Choice: Evaluate the following limits. Circle the correct answer. You do **not** need to show work.
 - (a) (3 points) $\lim_{x\to 0} x + e^{2x}$
 - I) 1
- II) 0
- III) ∞
- IV) Does not exist

- (b) (3 points) $\lim_{x\to\infty} \frac{-6x^3 + 2x^2 5}{3x^3 x + 7}$

 - I) -1 II) -6
- III) -2
- IV) ∞

- (c) (3 points) $\lim_{x \to -\infty} \frac{x^2 + x 6}{x^4 2x^3 + 7x 14}$
 - I) 0
- II) -1 III) $-\infty$
- IV) ∞

- (d) (3 points) $\lim_{x\to 3^+} \frac{4-x}{9-x^2}$
 - I) 0
- II) ∞
- III) $-\infty$
- IV) Does not exist

5. (a) (5 points) Complete the formal definition of continuity:

A function f(x) is continuous at x = a if _____

(b) (5 points) Let
$$f(x) = \begin{cases} \frac{(x-3)(x+1)}{2x(x-3)} & \text{if } x \neq 3\\ 1 & \text{if } x = 3. \end{cases}$$

Is f(x) continuous at x = 3? Explain using the definition of continuity.

6. A soccer player kicks a ball down the field. The function s(t) gives the distance in feet the ball has rolled after t seconds.

t in seconds	0	1	2	3	4	5	6
s(t) in feet	0	20	30	38	44	46	47

(a) (5 points) What is the average velocity of the soccer ball between t=1 and t=5 seconds? Include units.

(b) (4 points) Write an equation for the secant line between the points at t = 1 and t = 5.

(c) (3 points) Given that s'(3) = 7.5, what does the value 7.5 represent in the context of the problem? Include units.

7. (a) (8 points) Let $f(x) = \frac{1}{x^2}$. Using the limit definition of the derivative, compute f'(-3). Show your work.

(b) (4 points) Write an equation for the tangent line of f(x) at x = -3.

8. Use the following graphs to compute the limits below. Write ∞ or $-\infty$ when appropriate, or DNE if the limit does not exist. You do **not** need to show your work.

(a) (3 points) $\lim_{x\to 2} f(x)$

(b) (3 points) $\lim_{x\to 1} g(x)$

(c) (3 points) $\lim_{x \to -2^+} g(x)$

(d) (3 points) $\lim_{x\to 1} (f(x) + g(x))^2$

(20 pts) **5.** Consider the function f whose graph appears below, and answer the following questions. **You must justify all answers**.

- (a) (i) Is f(1) defined? If so, what is it?
 - (ii) Does $\lim_{x\to 1} f(x)$ exist? If so, what is it?
 - (iii) Is f continuous at 1?
- (b) (i) Is f(2) defined? If so, what is it?
 - (ii) Does $\lim_{x\to 2} f(x)$ exist? If so, what is it?
 - (iii) Is f continuous at 2?
- (c) (i) Is f(4) defined? If so, what is it?
 - (ii) Does $\lim_{x\to 4} f(x)$ exist? If so, what is it?
 - (iii) Is f continuous at 4?
- (d) (i) Is f(6) defined? If so, what is it?
 - (ii) Does $\lim_{x\to 6} f(x)$ exist? If so, what is it?
 - (iii) Is f continuous at 6?