RETURN THIS COVER SHEET WITH YOUR EXAM AND SOLUTIONS!

Topology-Geometry Ph.D. Preliminary Examination Department of Mathematics University of Colorado

January, 2025

- Answer each of the six questions on a separate page. Turn in a page for each problem even if you cannot solve the problem.
- Label each answer sheet with the problem number.
- Put your number, not your name, in the upper right hand corner of each page. If you have not received a number, please choose one (1234 for instance) and notify the Graduate Program Assistant (Kellie Geldreich) as to which number you have chosen.

Problem	1	2	3	4	5	6	Total
Points	17	17	17	17	17	17	102
Score							

Problem 1. Suppose that $p : X \to Y$ is a map between topological spaces that satisfies

- (a) p(F) is closed in Y whenever F is closed in X and
- (b) $p^{-1}(y)$ is compact for each $y \in Y$.

Prove that if *Y* is compact, then *X* is also compact.

(Hint: Start by proving that if *U* is an open set in *X* containing $p^{-1}(y)$, then there is an open set *W* in *Y* containing *y* such that $p^{-1}(W) \subseteq U$).

Problem 2. Let $T = S^1 \times S^1$ be the torus. The topology on *T* is the standard one, which is given by the product topology (where we take the standard topology on each copy of S^1). Let $(b_0, b_0) \in T$ (where $b_0 \in S^1$) be the base point. Consider the following,

- (a) Prove that if $p_1 : X_1 \to Y_1$ and $p_2 : X_2 \to X_2$ are covering maps, then $p_1 \times p_2 : X_1 \times X_2 \to Y_1 \times Y_2$ is a covering.
- (b) Show that $\pi_1(T, (b_0, b_0)) \cong \mathbb{Z} \times \mathbb{Z}$.
- (c) Find a covering space of *T* corresponding to the trivial subgroup of $\pi_1(T, (b_0, b_0)) \cong \mathbb{Z} \times \mathbb{Z}$.
- (d) Find a covering space of *T* corresponding to the subgroup of $\pi_1(T, (b_0, b_0)) \cong \mathbb{Z} \times \mathbb{Z}$ generated by (m, 0) where *m* is a positive integer.
- (e) Find a covering space of *T* corresponding to the subgroup of $\pi_1(T, (b_0, b_0)) \cong \mathbb{Z} \times \mathbb{Z}$ generated by (m, 0) and (0, n) where *m* and *n* are positive integers.

Note: Any time you are asked to find a covering space, you must find the space *X* and the covering map $p : X \to T$. Use well-known covering maps of S^1 and the first part of the question to justify that the maps you have picked are covering maps.

Problem 3. Recall the following definition: Suppose that *X* is a topology space and *A* a topological subspace of *X*. We say that $r : X \to A$ is a retraction of *X* onto *A* if *r* is a continuous map such that $r|_A$ is the identity map of *A*. In this case, we call *A* a retract of *X*.

- (a) Prove that if *A* is a retract of *X* and $j : A \to X$ denotes the inclusion of *A* into *X*, then $j_* : \pi_1(A, a) \to \pi_1(X, j(a))$ is injective (where $a \in A$).
- (b) Let D^2 be the two dimensional disk (with its standard topology). The boundary of D^2 is S^1 (where S^1 has its standard topology). Does there exist a retraction from $S^1 \times D^2$ to $S^1 \times S^1$? (Justify your answer with the construction of a retraction or a proof that one cannot exist).
- (c) Does there exist a retraction from $X = \{(x,y) \in \mathbb{R}^2 \mid (x,y) \neq (0,0)\}$ to $S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$? (Justify your answer with the construction of a retraction or a proof that one cannot exist).

Problem 4. On \mathbb{R}^3 with the standard coordinates (x, y, z) consider a differential form $\omega = 2zx \, dy \wedge dz + (1 - z^2) dx \wedge dy$.

- (a) Determine if ω is closed. Is it exact?
- (b) Let *S* be a surface in \mathbb{R}^3 given by the equation $x^2 + y^2 + z^4 = 1$ oriented by the outward normal, and let $N \subset S$ be the set of points in *S* where $z \ge 0$. Evaluate $\int_N \omega$.

Problem 5. On \mathbb{R}^3 with the standard coordinates (x, y, z) consider vector fields

$$X = \frac{\partial}{\partial x} - \frac{1}{2}y\frac{\partial}{\partial z}, \qquad Y = \frac{\partial}{\partial y} + \frac{1}{2}x\frac{\partial}{\partial z}$$

- (a) Compute [*X*, *Y*].
- (b) Show that there is no surface *S* in \mathbb{R}^3 such that both *X* and *Y* are tangent to *S*.

Problem 6. The set of $M_{2\times 2}(\mathbb{R})$ of 2×2 real matrices is naturally a vector space and hence a smooth manifold.

 (a) Prove that the set SL₂(ℝ) of matrices with determinant 1 is an embedded submanifold of M_{2×2}(ℝ).

- (b) By the previous part, the tangent space $T_eSL_2(\mathbb{R})$ at the identity matrix $e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ can be naturally regarded as a subspace of $T_eM_{2\times 2}(\mathbb{R}) = M_{2\times 2}(\mathbb{R})$. Give an explicit description of this subspace.
- (c) Compute differential at *e* of the map $F: SL_2(\mathbb{R}) \to SL_2(\mathbb{R})$ given by

$$F(A) := A \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} A^{-1}$$