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Problem 1. Suppose that p : X — Y is a map between topological spaces that satisfies

(a) p(F) is closed in Y whenever F is closed in X and

(b) p~!(y) is compact for each y € Y.

Prove that if Y is compact, then X is also compact.
(Hint: Start by proving that if U is an open set in X containing p~!(y), then there is an

open set W in Y containing y such that p~}(W) C U).

Problem 2. Let T = S! x S! be the torus. The topology on T is the standard one, which
is given by the product topology (where we take the standard topology on each copy of
SY). Let (bo, by) € T (where by € S') be the base point. Consider the following,

(a) Prove that if p; : X3 — Y7 and p : X, — X) are covering maps, then p; X py :
X1 x Xp — Y7 X Yp is a covering.

(b) Show that 7t1(T, (bo, by)) = Z x Z.

I

(c) Find a covering space of T corresponding to the trivial subgroup of 711 (T, (bo, b))
7 X 7.
(d) Find a covering space of T corresponding to the subgroup of 71(T, (b, b)) =

7. x 7. generated by (m,0) where m is a positive integer.

I

(e) Find a covering space of T corresponding to the subgroup of 71 (T, (bo, bo))

Z x 7 generated by (m,0) and (0, n) where m and n are positive integers.

Note: Any time you are asked to find a covering space, you must find the space X and
the covering map p : X — T. Use well-known covering maps of S! and the first part of

the question to justify that the maps you have picked are covering maps.

Problem 3. Recall the following definition: Suppose that X is a topology space and A a
topological subspace of X. We say that r : X — A is a retraction of X onto A if r is a

continuous map such that r| 4 is the identity map of A. In this case, we call A a retract of

X.



(a) Prove that if A is a retract of X and j : A — X denotes the inclusion of A into X,
then j. : (A, a) = m1(X, j(a)) is injective (Where a € A).

(b) Let D? be the two dimensional disk (with its standard topology). The boundary
of D? is S' (where S! has its standard topology). Does there exist a retraction from
S! x D? to S! x S$1? (Justify your answer with the construction of a retraction or a
proof that one cannot exist).

(c) Does there exist a retraction from X = {(x,y) € R? | (x,y) # (0,0)} to S' =
{(x,y) € R? | x¥* +y*> = 1}? (Justify your answer with the construction of a

retraction or a proof that one cannot exist).

Problem 4. On RR? with the standard coordinates (x,v,z) consider a differential form

w = 2zxdy Adz + (1 — z2)dx A dy.

(a) Determine if w is closed. Is it exact?
(b) Let S be a surface in R3 given by the equation x> + y? + z* = 1 oriented by the

outward normal, and let N C S be the set of points in S where z > 0. Evaluate

[y w.

Problem 5. On IR? with the standard coordinates (x, v, z) consider vector fields
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(a) Compute [X,Y].
(b) Show that there is no surface S in IR3 such that both X and Y are tangent to S.

Problem 6. The set of My,>(IR) of 2 x 2 real matrices is naturally a vector space and

hence a smooth manifold.

(a) Prove that the set SL,(IR) of matrices with determinant 1 is an embedded subman-

ifold of M2X2 (]R) .



10
(b) By the previous part, the tangent space T,SL,(IR) at the identity matrix e = { ]
0 1

can be naturally regarded as a subspace of T,Mx2(R) = Mp«2(R). Give an ex-
plicit description of this subspace.

(c) Compute differential at e of the map F: SLy(R) — SLy(R) given by
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