Number:_____

Topology Prelim — January 2023 All problems carry the same weight. Justify your claims.

ADDITIONAL INSTRUCTIONS:

- 1. Answer each of the six questions on a separate page. Turn in a page for each problem even if you cannot do the problem.
- 2. Label each answer sheet with the problem number.
- 3. Put your number, not your name, in the upper right hand corner of each page. If you have not received a number, please choose one (1234 for instance) and notify the graduate secretary as to which number you have chosen.

-

- 1. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function. Define an equivalence relation on \mathbb{R}^n by $x \sim y$ if and only if f(x) = f(y). Let X be the quotient space with the quotient topology.
 - (a) Show that X is always Hausdorff.
 - (b) Must X be path-connected? Prove by using known theorems or provide a counterexample.
 - (c) Must X be compact? Prove by using known theorems or provide a counterexample.
 - (d) Is (a) true if f is not continuous? Prove or provide a counterexample.
- 2. Let $B^2 \subseteq \mathbb{R}^2$ be the set of vectors of length less than or equal to one, and $S^1 \subseteq B^2$ be those vectors of length exactly one. In this problem, you may assume without proof that the map $\pi : S^1 \times [0, 1] \to B^2$ given by $\pi(x, t) = (1 - t)x$ is a quotient map.
 - (a) Prove that if $h: S^1 \to S^1$ is a continuous map which is nulhomotopic, then there exists a continuous map $f: B^2 \to S^1$ such that f(x) = h(x) for all $x \in S^1$.
 - (b) Prove that a continuous nulhomotopic map $h: S^1 \to S^1$ has a fixed point.
- 3. Let V be the real vector space of infinite tuples $(x_0, x_1, x_2, ...)$ such that all but finitely many of the x_i are 0. Let

$$S^{\infty} = \{(x_0, x_1, x_2, \ldots) \in V \mid \sum x_i^2 = 1\}$$

Include the *n*-dimensional sphere S^n in S^∞ as the subspace where $x_{n+1} = x_{n+2} = \cdots = 0$. Call a subset U of S^∞ open if $U \cap S^n$ is open in S^n for all integers $n \ge 0$.

- (a) Show that the complement of the point p = (1, 0, 0, ...) in S^{∞} is contractible.
- (b) Let $f: S^{\infty} \to S^{\infty}$ be the function $f(x_0, x_1, x_2, \ldots) = (0, x_0, x_1, x_2, \ldots)$. Show that f is homotopic to the identity map.
- (c) Conclude that S^{∞} is contractible.
- (d) For every positive integer m, construct a topological space with contractible universal cover and fundamental group $\mathbb{Z}/m\mathbb{Z}$. (Hint: make use of the unit sphere in the complex version of V.)
- 4. Suppose that G is a connected Lie group with identity g. Let H be its universal cover and let h be a point of H such that $\pi(h) = g$. Show that there is a unique Lie group structure on H such that the identity element is h and the projection $\pi : H \to G$ is a homomorphism of Lie groups. Remember to describe the manifold structure of H.
- 5. Let S be the sphere in \mathbb{R}^{n+1} defined by the equations $x_0^2 + \cdots + x_n^2 = 1$ and let ω be the following *n*-form on \mathbb{R}^{n+1} :

$$\omega = \sum_{k=0}^{n} (-1)^{k} x_{k} dx_{0} \wedge \cdots \widehat{dx_{k}} \cdots \wedge dx_{n}$$

The hat means the factor is omitted.

(a) Compute $d\omega$.

- (b) Show that the restriction $\omega|_S$ of ω to S is closed.
- (c) Show that $\int_{S} \omega \neq 0$.
- (d) Conclude that the restriction of ω to S is not exact.
- 6. Let $M \simeq \mathbb{R}^{n^2}$ be the space of $n \times n$ matrices with real entries. Let $S \simeq \mathbb{R}^{n(n+1)/2}$ be the space of symmetric $n \times n$ matrices. (Recall that a matrix A is symmetric if $A^t = A$, where $(-)^t$ denotes the transpose.)
 - (a) Show that the function $F: M \to S$ given by $F(A) = AA^t$ (where A^t is the transpose of A) is a submersion near the identity matrix, I.
 - (b) Deduce (or prove directly) that F is submersive near all points of $F^{-1}(I)$.
 - (c) Conclude that the group O_n of $n \times n$ orthogonal matrices is a submanifold of M. (Recall that a matrix A is orthogonal if $A^t = A^{-1}$.)
 - (d) Characterize the tangent space to O_n at the origin as a subspace of the tangent space of M.