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Q.1 Suppose that {Xi}i∈I is a collection of topological spaces.

(a) Prove that for each j ∈ I, the projection map pj :
∏

i∈I Xi → Xj

defined via (xi)i∈I 7→ xj is continuous with respect to both the
product and the box topology. (Recall that the box topology on∏

i∈I Xi is the topology generated by the basis

βbox =

{∏
i∈I

Ui | Ui is open in Xi for each i ∈ I

}
.)

(b) Suppose that Y is a topological space and f : Y →
∏

i∈I Xi

is a function. Prove that f is continuous with respect to the
product topology if and only if for each j ∈ I, pj ◦ f : Y → Xj is
continuous.

(c) Suppose that I = N and Xi = R for each i ∈ N. Prove that the
function f : R→

∏
i∈I Xi defined via t 7→ (t, t, t, . . .) is continuous

with respect to the product topology.

(d) Prove that the function f : R→
∏

i∈I Xi defined in the previous
part is not continuous with respect to the box topology.

Q.2 Recall that Sn denotes the n-sphere and Bn denotes the closed n-ball.
Suppose that to every continuous map h : Sn → Sn we have assigned
an integer called its degree (denoted by deg(h)) and that the degree
has the following properties:

(i) Homotopic maps have the same degree.

(ii) deg(h ◦ k) = deg(h) · deg(k)

(iii) The identity map has degree one, any constant map has degree
zero and the reflection map h(x1, . . . , xn, xn+1) = (x1, . . . , xn,−xn+1)
has degree minus one.

Note: You do not need to prove the degree exists, rather you
can assume it exists and has the three properties (i)-(iii).

Prove the following:

(a) There is no retraction f : Bn+1 → Sn.

(b) If h : Sn → Sn has degree different than (−1)n+1 then h has a
fixed point.

(c) If h : Sn → Sn has degree different than one, then there exists
x0 ∈ Sn such that h(x0) = −x0.

Q.3 Recall that a topological group, G, is a topological space that is also
a group with the property that the maps G×G→ G defined by mul-
tiplication and G→ G defined via g 7→ g−1 are continuous functions.

Prove the following theorem:

Suppose that G̃ and G are connected topological groups and the map
ρ : G̃→ G is both a covering map and a group homomorphism. Then
G̃ is abelian if and only if G is abelian.



Q.4 Let M = R2, and consider the vector fields

X = (x+ 1)
∂

∂x
− (y + 1)

∂

∂y
, Y = (x+ 1)

∂

∂x
+ (y + 1)

∂

∂y

on M .

(a) Show that there exist local coordinates (s, t) in some neighbor-
hood U of the point (1, 0) such that the restrictions of X and Y
to U are given by X = ∂

∂s and Y = ∂
∂t .

(b) Find such coordinates explicitly, and verify directly that they
satisfy the conditions X = ∂

∂s and Y = ∂
∂t .

Q.5 Let a, b ∈ R, and consider the subset S of R3 defined by the equations

x2 − z2 = a2, x2 + y2 + z2 = b2.

(a) Show that if a, b 6= 0 and a2 6= b2, then S is a regular submanifold
of R3.

(b) Describe the set S when a = b = 1. Is it a regular submanifold
of R3?

Q.6 Let M be a compact, oriented n-dimensional manifold without bound-
ary. A volume form on M is a nowhere vanishing n-form Ω on M with

the property that

∫
M

Ω > 0.

(a) Show that every volume form Ω on M is closed.

(b) Show that a volume form Ω on M cannot be exact.


