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Problem 1. Let n > 1 be an integer. Recall that a n x n real matrix is orthogonal if multi-
plication by the matrix preserves length of vectors in R". Let O(n) be the group of n x n
orthogonal matrices. Give O(n) the topology from the space of n x n real matrices (which

is homemorphic to RR"). Show that O(n) has exactly 2 connected components.

Problem 2.

Let X and Y be locally compact, Hausdorff topological spaces. A continuous function
f : X — Y is called proper if f~1K is compact whenever K C Y is compact. It is called
closed if f(Z) is closed in Y whenever Z is closed in X. Show that if f is proper then f is

closed.

Problem 3. Let X and Y be connected semilocally simply connected topological spaces
and let X V Y be the topological space obtianed by gluing X and Y at a point e. Let E be
the universal cover of X VY. Assume that the restriction of E to X is connected. Prove

that Y is simply connected.

Problem 4.
Let M be a smooth 2-dimensional manifold, and let (U, ¢), (U, ¢) be two smooth charts
on M with the same domain. Assume that the change of coordinates ¢ o ¢! is given by

the formula
(x,y) = (Yoo 1) (u,0) = (ucosv,usinv),

and that ¢ o ¢~ maps the region
{(u,9) eR* |u>0,0<0< 7}

onto the upper half plane
{(xy) eR* [y >0}

(a) If a 1I-form 1 on M has the local coordinate expression

n=ydx
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in the chart (U, ), find the local coordinate expression for 7 in the chart (U, ¢).

(b) If a vector field X on M has the local coordinate expression

0
X=3

in the chart (U, ¢), find the local coordinate expression for X in the chart (U, ¢).

Problem 5. Let M, (R) be the space of 2 x 2 matrices with real entries, let S»(R) be

the space of symmetric 2 x 2 matrices with real entries, and let | = { . Define a

0 -1
mapf : M2><2(]R) — SZXZ(]R) by

f(A) = ATJA.

(a) Compute f and the tangent map Df explicitly in terms of coordinates. (Use the
standard identifications M2 (IR) = R* and S>42(IR) = RR? to define coordinates
on each space, so that f can be regarded as a map from R* to R3.)

(b) Show that if A is invertible, then the tangent map

Df| , : Ta(Maxa(R)) = Tf(4)(Sax2(R))

has maximum rank.
(c) Show that the set
{Ac My o(R) | ATTA =}

is a smooth submanifold of M, .»(RR).

Problem 6.
Define a 1-form w on R?\ {(0,0)} by

_ y o
“ <x2+y2> e <x2+y2> W
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(a) Let C be the circle of radius r > 0 centered at the origin, oriented counterclockwise.
Evaluate the integral |- w by direct computation.

(b) Calculate dw.

(c) Let C’ be the curve defined implicitly by the equation x* + y? = 1, oriented coun-
terclockwise. Compute the integral [, w. (Hint: This should not require any ex-

plicit computation!)



