RETURN THIS COVER SHEET WITH YOUR EXAM AND SOLUTIONS!

Topology-Geometry Ph.D. Preliminary Examination Department of Mathematics University of Colorado

August, 2023

- Answer each of the six questions on a separate page. Turn in a page for each problem even if you cannot solve the problem.
- Label each answer sheet with the problem number.
- Put your number, not your name, in the upper right hand corner of each page. If you have not received a number, please choose one (1234 for instance) and notify the Graduate Program Assistant (Kellie Geldreich) as to which number you have chosen.

Problem	1	2	3	4	5	6	Total
Points	17	17	17	17	17	17	102
Score							

Problem 1.

- (a) Suppose that X is compact and Hausdorff. Prove that X is regular.
- (b) Suppose that *Y* is locally compact and Hausdorff. Prove that *Y* is regular.

Problem 2.

- (a) Let Y be a path connected topological space and view Y as a subspace of ℝ² ∨ Y via inclusion. Prove that Y is deformation retract of ℝ² ∨ Y.
 (Here we form the wedge sum over a point y₀ ∈ Y and the origin in ℝ². Therefore, by definition, ℝ² ∨ Y is the disjoint union of ℝ² and Y modulo the relation y₀ ∈ Y ~ (0,0) ∈ ℝ²).
- (b) With *Y* and y_0 as in the previous question, compute $\pi_1(\mathbb{R}^2 \vee Y, y_0)$ in terms of $\pi_1(Y, y_0)$.
- (c) Recall that a surface, *X*, is a second countable, Hausdorff space with the property that for each $x \in X$ there exists an open neighborhood of *x*, *U*, and a homeomorphism $h : U \to \mathbb{R}^2$. You can in addition assume that $h(x) = (0,0) \in \mathbb{R}^2$. Prove the following: if *N* and *M* are path connected surfaces, then

 $\pi_1(N \lor M, y_0) \cong \pi_1(N, y_0) * \pi_1(M, y_0)$

where y_0 is the point the wedge product is over.

Problem 3.

- (a) Suppose $p : E \to B$ is a covering map with *E* path connected and *B* simply connected. Prove that *p* is a homeomorphism.
- (b) Show that if the universal cover of a space exists, then it is unique (up to homeomorphism).
- (c) For which $n \in \mathbb{N}$, does there exists a covering map from \mathbb{R}^n to $\mathbb{R}P^n$ (here $\mathbb{R}P^n$ denotes real projective space)? You must justify your answer.

Problem 4. Let $f : \mathbb{R}^3 \to \mathbb{R}^2$, f(x, y, z) = (x, y), be the projection onto the first two factors, and consider the following two vector fields on \mathbb{R}^3 :

$$\chi = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} - 2(y+1)^2 z\frac{\partial}{\partial z} \qquad \psi = y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y} + 4(y+1)^2 z\frac{\partial}{\partial z}$$

- (a) At what points $p \in \mathbb{R}^3$ do $(T_p f)(\chi(p))$ and $(T_p f)(\psi(p))$ span $T_{f(p)}\mathbb{R}^2$, where $T_p f$ denotes the differential of f at p.
- (b) Consider the path $\gamma : [0,1] \to \mathbb{R}^2$, $\gamma(t) = (t+2,t)$. Find all lifts $\tilde{\gamma}$ of γ to \mathbb{R}^3 (i.e., $\tilde{\gamma} : [0,1] \to \mathbb{R}^3$ is a C^{∞} map and $f \circ \tilde{\gamma} = \gamma$) such that $\tilde{\gamma}(0) = (2,0,1)$ and $\tilde{\gamma}'(t)$ is in the span of $\chi(\tilde{\gamma}(t))$ and $\psi(\tilde{\gamma}(t))$ for all $t \in [0,1]$.

Problem 5. Let ω be a closed *n*-form on $\mathbb{R}^{n+1} - \{(0, ..., 0)\}$, let $S^n \subseteq \mathbb{R}^{n+1}$ be the unit *n*-sphere, and let $X^{\circ} = \{(x, y, z) \in \mathbb{R}^3 - \{(0, 0, 0)\} \mid x^2 + y^2 - z^2 = 0\}.$

- (a) Show that if ω is exact, then $\int_{C_n} \omega = 0$.
- (b) Show the converse of (a) for n = 1. [*Hint:* integrate ω along paths.]
- (c) Show that X° is an embedded submanifold of \mathbb{R}^{3} , and find an explicit basis for the vector space of closed 1-forms on X° modulo the vector space of exact 1-forms on X° . [*Hint*: consider $\omega = -\frac{y}{x^{2}+y^{2}}dx + \frac{x}{x^{2}+y^{2}}dy$ on $\mathbb{R}^{2} \{(0,0)\}$.]

Problem 6. Let $f : X \to Y$ be a C^{∞} map of smooth connected manifolds of the same dimension n, and let $U \subseteq X$ be a dense open subset. Suppose there exist a Lie group G of $n \times n$ matrices, as well as local coordinate charts for X and Y so that with respect to these coordinate charts the differential of f at each point $p \in U$ lies in G.

- (a) Show that *f* is a local diffeomorphism at every point *p* ∈ *U* (i.e., for every point *p* ∈ *U* there is an open neighborhood *V* ⊆ *X* of *p* such that *f*|_V : *V* → *f*(*V*) is a diffeomorphism).
- (b) Show by example that *f* need not be a local diffeomorphism at all points $p \in X$.
- (c) Show that if G = O(n), the orthogonal group, then f is locally a diffeomorphism at all points $p \in X$ (recall that a square matrix A is orthogonal if $AA^T = A^TA = I$, where I is the identity matrix).