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Problem 1. Determine if the following statement is true or false: If f : R — IR satisfies
|f(x) — f(y)| < |x—y|forall x,y € R, then f is absolutely continuous. If the statement

is true, prove it; if it is false, give a counterexample.

Problem 2. Find a sequence {f,} of continuous functions on R so that the sequence is
uniformly bounded and equicontinuous but does not have a subsequence that converges

uniformly on IR.

Problem 3. Let m denote the Lebesgue measure on IR, and let ;2 be a measure on the Borel

o-algebra Br on R. If y(R) = 1, show that

[ #((xx -+ al) dm(x) = o
for any a > 0. [Hint: Use the Fubini-Tonelli theorem.]

Problem 4.
(a) Let hy,, g, be measurable real-valued functions such that b, — ha.e., and |h,| < g
for some g, satisfying g, — g a.e., for g € L*. Show [ h, — [ h.
[Hint: Use Fatou’s lemma and rework the proof of the dominated convergence

theorem.]

(b) Suppose fu, f € L', and f, — f a.e. Prove [ |f, — f| — 0if and only if [ |f,| —
JIf

Problem 5. Prove that the smallest constant ¢ > 0 for which the inequality

<c|flly

‘/01 xf(x)dx

holds for all f € L3(]0,1]) is c = (}1)% Recall, ||f|]% ={J |f|%}%



Problem 6. Let {g,} be a sequence of Lebesgue measurable functions defined on [0, 1]
so that for some M < oo and all n, m
e [gn(x)| < Mforallx € [0,1],
° fol en(X)gm(x)dx = 6pm, where 8, ,, is the Kronecker delta: é,,, = 1 for n = m,
and J,, ,; = 0 otherwise.

Show that for any f € L!(]0,1]),

lim /01 f(x)gn(x)dx = 0.

n—o00

[Hint: Start with f € L2.]
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