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Q.1 a) LetA be a measurable subset of [0, 1]. Define the function f : [0, 1] →
R by setting f(x) = µ(A∩[0, x]); here µ is the Lebesgue measure. Show
that f is absolutely continuous.

b) Does there exist a measurable set A ⊂ [0, 1] such that one has

µ(A ∩ [a, b]) =
1

2
(b− a)

for every interval [a, b] ⊂ [0, 1]?

Q.2 Let f ∈ Lp(R), 1 ≤ p < ∞ Set fn(x) = f(x + 1
n). Show that the

sequence fn converges to f in Lp. Is this true for p = ∞?

Q.3 Let fn be a sequence of continuous functions on [0, 1] such that |fn(x)| ≤
1 for all n ∈ N, x ∈ [0, 1]. Let K be a continuous function on
[0, 1]× [0, 1]. Define a sequence of functions gn on [0, 1] by

gn(x) :=

∫ 1

0
K(x, y)fn(y) dy.

Show that the sequence gn contains a uniformly convergent subse-
quence.

Q.4 Let {fn} be a sequence of measurable functions on a [0, 1], and suppose

that for every a > 0 the infinite series
∞∑
n=1

µ ({x ∈ [0, 1] | |fn(x)| > a})

converges; here µ is the Lebesgue measure. Prove that lim fn(x) = 0
for almost every x ∈ [0, 1].

Q.5 Let A ⊂ R be a set of zero Lebesgue measure. Prove that it can be
‘translated completely into the set of irrationals,’ that is, there exists
a c ∈ R such that A+ c ⊂ R \Q, where A+ c := {x+ c | x ∈ A}.

Q.6 Let µ be the Lebesgue measure on the interval [a, b]. Let An, n ≥ 1
be measurable subsets of [a, b], and f(x) the number of sets containing
x, for x ∈ [a, b], that is f(x) = #({n ≥ 1 | x ∈ An}). Prove that
f : [a, b] → N ∪ {+∞} is measurable and that

(b− a)

∫
R
f2(x) dx ≥

[ ∞∑
i=1

µ(Ai)

]2

.


