Analysis

Ph.D. Preliminary Exam

August 12, 2009

INSTRUCTIONS:

- 1. Put your number, not your name, in the upper right corner of each page. If you have not received a number, please choose one (1234 for instance) and notify the graduate secretary as to which number you have chosen.
- 2. There are six problems. Each problem is worth the same number of points.
- 3. Answer each question on a separate page. Label each answer sheet with the problem number.
- 4. Turn in a page for each problem even if you cannot do the problem.
- 5. Turn in any scratch paper used.

Problem 1. Show that the real-valued function defined by $f(x) = \frac{\sin(x)}{x}$ is not Lebesgue integrable on $[1, \infty)$; however, show that the improper Riemann integral of f is convergent.

Problem 2. A map $T: R^n \to R^n$ is said be a Lipschitz function if there exists a constant c such that $||T(x) - T(y)|| \le c ||x - y||$ for all vectors x and y in R^n . Prove that Lipschitz maps take Lebesgue measurable sets to Lebesgue measurable sets. Provide an example (for n=1) to show that continuity is not enough to insure this property. Hint: Let f_1 be the Cantor ternary function and let $f(x) = f_1(x) + x$.

Problem 3. Suppose that f is a real-valued C^{∞} function on R with $|f'(x)| \le 1$ for all real x. Suppose in addition that $\int_{0}^{\infty} |f(x)| dx < \infty$. Prove that $\lim_{x \to \infty} f(x) = 0$. Hint: Let $U(\varepsilon) = \left\{x : |f(x)| > \varepsilon\right\}$. What do you know about $U(\varepsilon)$? How large can f be on this set?

Problem 4. Let f be a real-valued Lebesgue integrable function on $[0, \infty)$. Define $F(x) = \int_0^\infty f(t)\cos(xt)dt$. Show that F is defined on R and is continuous on R. Show that $\lim_{x\to\infty} F(x) = 0$.

Problem 5. Given a real-valued measurable function f defined on a measure space $f(x,M,\mu)$, define the distribution function $f(t) = \mu \{x: |f(x)| > t \}$ for all real f(t) = 0. Suppose that $f(t) < \infty$ for all real f(t) = 0. Let f(t) = 0 be a nonnegative Borel function defined on f(t) = 0. Show that f(t) = 0 has a unique extension to the f(t) = 0 has a unique extension to the Borel subsets of f(t) = 0.

Problem 6. A Lebesgue measurable function $f: R^n \to R$ is said to belong to weak L^p if $\mu \left\{ x \in R^n : \left| f(x) \right| > t \right\} \le Ct^{-p}$ for all t > 0 and some constant C. Here μ is Lebesgue measure. Let $1 \le p < r < q < \infty$ and assume that f belongs to both weak L^p and weak L^q . Prove that $f \in L^r$. Hint: This problem is related to Problem 5.