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Answer each of the six questions on a separate page. Turn in a page for each
problem even if you cannot solve the problem.

Label each answer sheet with the problem number.
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Problem 1. Let GL,(F5) be the general linear group of invertible 2 X 2-matrices over the

field Fs of size 5.

(a) What is the size of a Sylow 5-subgroup of GL,(F5)? Determine one Sylow 5-
subgroup explicitly by parametrizing its elements. What is its isomorphism type?

(b) How many Sylow 5-subgroups of GL,(F5) are there?

Problem 2.

(a) Let G be a group. Show that G x G is isomorphic to G x G, where G acts on itself
by conjugation.
(b) Give an example of a group G and a semidirect product G x G that is not isomor-

phic to G x G.

Problem 3. Let p be a prime number and let
a .
A= {E € Q:a,b € Zand p does not divide b}.

(a) Find all (multiplicative) units of the subring A of Q.
(b) Use (a) to directly find all prime ideals of A without resorting to any general struc-

ture theorems on prime ideals of A.

Problem 4. Let R be a principal ideal domain, let M, N be free R-modules of finite rank,

and let ¢: M — N be an R-module homomorphism.

(a) Show that ker ¢ is a direct summand in M.
[Hint: Recall that every submodule of a free module M over a PID is free (of rank
at most the rank of M).]

(b) Give an example to show that ¢ (M) is not necessarily a direct summand in N.

Problem 5. Let K be a field of characteristic 0 with algebraic closure K and let f(x) €
K[x] ~ K. Let g(x) = gcd(f(x),f'(x)) in K[x] and let F(x) = Jg%. Then show that
f(x) and F(x) have the same zeros in K and that all the zeros of F in K are simple (= of

multiplicity 1).



Problem 6.
Letw = e3 and let K = Q(w, \3/5)
(a) Show that Q(+/2)/Q is not Galois.
(b) Show that f(x) = x> — 2 is irreducible over Q(w).

(c) Show that K/Q(w) is Galois.
(d) Find the Galois group Gal(K/Q(w)) with an explicit enumeration of all its ele-

ments.
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