RETURN THIS COVER SHEET WITH YOUR EXAM AND SOLUTIONS!

Algebra

Ph.D. Preliminary Examination Department of Mathematics University of Colorado

January, 2024

- Answer each of the six questions on a separate page. Turn in a page for each problem even if you cannot solve the problem.
- Label each answer sheet with the problem number.
- Put your number, not your name, in the upper right hand corner of each page. If you have not received a number, please choose one (1234 for instance) and notify the Graduate Program Assistant (Kellie Geldreich) as to which number you have chosen.

Problem	1	2	3	4	5	6	Total
Points	17	17	17	17	17	17	102
Score							

Problem 1. Let $GL_2(F_5)$ be the general linear group of invertible 2 × 2-matrices over the field F_5 of size 5.

- (a) What is the size of a Sylow 5-subgroup of $GL_2(F_5)$? Determine one Sylow 5subgroup explicitly by parametrizing its elements. What is its isomorphism type?
- (b) How many Sylow 5-subgroups of $GL_2(F_5)$ are there?

Problem 2.

- (a) Let *G* be a group. Show that *G* × *G* is isomorphic to *G* ⋊ *G*, where *G* acts on itself by conjugation.
- (b) Give an example of a group *G* and a semidirect product $G \rtimes G$ that is not isomorphic to $G \times G$.

Problem 3. Let *p* be a prime number and let

$$A = \left\{ \frac{a}{b} \in \mathbb{Q} : a, b \in \mathbb{Z} \text{ and } p \text{ does not divide } b \right\}.$$

- (a) Find all (multiplicative) units of the subring *A* of Q.
- (b) Use (a) to directly find all prime ideals of *A* without resorting to any general structure theorems on prime ideals of *A*.

Problem 4. Let *R* be a principal ideal domain, let *M*, *N* be free *R*-modules of finite rank, and let $\varphi \colon M \to N$ be an *R*-module homomorphism.

- (a) Show that ker φ is a direct summand in *M*.
 [Hint: Recall that every submodule of a free module *M* over a PID is free (of rank at most the rank of *M*).]
- (b) Give an example to show that $\varphi(M)$ is not necessarily a direct summand in *N*.

Problem 5. Let *K* be a field of characteristic 0 with algebraic closure \overline{K} and let $f(x) \in K[x] \setminus K$. Let g(x) = gcd(f(x), f'(x)) in K[x] and let $F(x) = \frac{f(x)}{g(x)}$. Then show that f(x) and F(x) have the same zeros in \overline{K} and that all the zeros of *F* in \overline{K} are simple (= of multiplicity 1).

Problem 6.

- Let $\omega = e^{\frac{2\pi i}{3}}$ and let $K = \mathbb{Q}(\omega, \sqrt[3]{2})$.
- (a) Show that $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not Galois.
- (b) Show that $f(x) = x^3 2$ is irreducible over $\mathbb{Q}(\omega)$.
- (c) Show that $K/\mathbb{Q}(\omega)$ is Galois.
- (d) Find the Galois group Gal(K/Q(ω)) with an explicit enumeration of all its elements.