RETURN THIS COVER SHEET WITH YOUR EXAM AND SOLUTIONS!

Algebra

Ph.D. Preliminary Examination Department of Mathematics University of Colorado

August, 2023

- Answer each of the six questions on a separate page. Turn in a page for each problem even if you cannot do the problem.
- Label each answer sheet with the problem number.
- Put your number, not your name, in the upper right hand corner of each page. If you have not received a number, please choose one (1234 for instance) and notify the Graduate Program Assistant (Kellie Geldreich) as to which number you have chosen.

Problem	1	2	3	4	5	6	Total
Points	17	17	17	17	17	17	102
Score							

Problem 1. Suppose that *G* is a group of order 504 $(= 2^3 \cdot 3^2 \cdot 7)$. Show that if *G* has an element of order 21, then *G* has a subgroup of index 8. Hint: Explore the possible numbers of Sylow 7-subgroups.

Problem 2. Let *G* be a finite group and assume that *G* acts transitively on each of the sets *Y* and *Z*. Denote by $G_y = \text{Stab}(y)$ for some $y \in Y$ and $G_z = \text{Stab}(z)$ for some $z \in Z$ some stabilizer subgroups for these actions. Show that the coordinatewise action of *G* on the product $Y \times Z$ is transitive if and only if $[G : G_y \cap G_z] = [G : G_y][G : G_z]$.

Problem 3. Show that the ideal (x, y) of the polynomial ring $\mathbb{Q}[x, y]$ is not equal to a principal ideal of this ring.

Problem 4. Let *V* be a finite dimensional vector space over an algebraically closed field. Let $T: V \to V$ be a linear transformation, and let $T^*: V^* \to V^*$ be the dual transformation. Show that the Jordan Canonical Form of *T* is also the Jordan Canonical Form of T^* .

Problem 5. Let \mathbb{K} be a field and let *L* be its lattice of subfields. Denote the bottom element of *L* by \mathbb{P} (the prime subfield of \mathbb{K}). Show that the following properties of $\mathbb{E} \in L$ are equivalent

- The interval [ℙ, E] := {F ∈ L | ℙ ≤ F ≤ E} consisting of the subfields of E is finite.
- (2) *L* has a finite chain $\mathbb{P} = \mathbb{F}_0 \leq \mathbb{F}_1 \leq \cdots \leq \mathbb{F}_k = \mathbb{E}$ where, for each *i*, there are no intermediate subfields $\mathbb{F}_i \leq \mathbb{G} \leq \mathbb{F}_{i+1}$.
- (3) \mathbb{E}/\mathbb{P} is a field extension of finite degree.

Problem 6. Let \mathbb{K} be a (finite) Galois extension of \mathbb{F} . Show that

 $\mathcal{A} = \{ \alpha \in \mathbb{K} \mid \mathbb{F}[\alpha] \text{ is Galois over } \mathbb{F} \text{ with } \operatorname{Gal}(\mathbb{F}[\alpha]/\mathbb{F}) \text{ abelian} \}$

is the underlying set of a subfield of \mathbb{K} .