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1. Answer each question on a separate page. Turn in a page for cach problem even if you
cannot do the problem.

2. Label each answer sheet with the problem number.
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have not received a number, please choose one (1234 for instance) and notify the graduate
secretary as to which number you have chosen.
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1. Prove that in a group of order 12, any two elements of order 6 must commute.

2. Show that any group of order 105 has an element of order 35.

3. Let R be an integral domain in which every nonzero element factors into a product of
finitely many irreducible elements up to a unit. For any a,b € R — {0}, define the ideal

Iy :={zx € R:ax e (b)},

where (b) is the ideal of R generated by the element b.
Then show that R is a UFD ¢ I, is principal for any a,b € R — {0}.

4. Let R be an associative ring with 1 #£ 0 and let N C M be left R-modules.
Suppose that N and M /N are Noetherian. Then show that A is Noetherian.

5. Let o be a binary operation on the field R of real numbers. Show that R has a countable
subfield F with the following properties:

(i) Every positive element of F' has a square root.

(i1) Every polynomial of odd degree over F' has a root.

(iii) F is closed under o.

6. Determine the splitting field of the polynomial z° + 2% + 5z° + = + 4 over F1; and its
Galois group.



