Algebra

Ph.D. Preliminary Exam

August, 2007

INSTRUCTIONS:

- 1. Answer each question on a separate page. Turn in a page for each problem even if you cannot do the problem.
- 2. Label each answer sheet with the problem number.
- 3. Put your number, not your name, in the upper right hand corner of each page. If you have not received a number, please choose one (1234 for instance) and notify the graduate secretary as to which number you have chosen.

- 1. Prove that in a group of order 12, any two elements of order 6 must commute.
- 2. Show that any group of order 105 has an element of order 35.
- 3. Let R be an integral domain in which every nonzero element factors into a product of finitely many irreducible elements up to a unit. For any $a, b \in R \{0\}$, define the ideal

$$I_{a,b} := \{ x \in R : ax \in (b) \},$$

where (b) is the ideal of R generated by the element b.

Then show that R is a UFD $\Leftrightarrow I_{a,b}$ is principal for any $a,b \in R - \{0\}$.

- 4. Let R be an associative ring with $1 \neq 0$ and let $N \subseteq M$ be left R-modules. Suppose that N and M/N are Noetherian. Then show that M is Noetherian.
- 5. Let \circ be a binary operation on the field $\mathbb R$ of real numbers. Show that $\mathbb R$ has a countable subfield F with the following properties:
 - (i) Every positive element of F has a square root.
 - (ii) Every polynomial of odd degree over F has a root.
 - (iii) F is closed under \circ .
- 6. Determine the splitting field of the polynomial $x^5 + 2x^4 + 5x^2 + x + 4$ over F_{11} and its Galois group.