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1. (15 points)

(a) Let T be the triangle in the xy-plane with vertices (0, 0), (1, 2), and (2, 2). Find the area of the
surface z = 7 +

√
8x+ y2 above T .

Solution: The partial derivatives are

∂z

∂x
=
√

8,
∂z

∂y
= 2y

The triangle T is given by the inequalities

0 ≤ y ≤ 2

1

2
y ≤ x ≤ y

The surface area is given by

∫∫
T

[
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2
]1/2

dA =

∫ 2

0

∫ y

1
2y

[
9 + 4y2

]1/2
dx dy

=
49

12

(b) Find the area of the surface with parametrization

~r(u, v) =

〈
1√
2
u2, uv,

1√
2
v2
〉
, 0 ≤ u ≤ 1, 0 ≤ v ≤ 2.

Solution: We calculate
~ru = 〈

√
2u, v, 0〉, ~rv = 〈

√
2v, 0, u〉

~ru × ~rv = 〈
√

2v2,−2uv,
√

2u2〉

|~ru × ~rv|2 = 2v4 + 4u2v2 + 2v4

|~ru × ~rv| =
√

2(u2 + v2)

The surface area is given by∫∫
|~ru × ~rv| du dv =

∫ 2

0

∫ 1

0

√
2(u2 + v2) du dv

=
10
√

2

3
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2. (20 points)

(a) Let S be the solid in the first octant of 3-space bounded by the surfaces z =
√
x2 + y2 and

x2 + y2 + z2 = 1 and the coordinate planes xz and yz. Find and evaluate a triple integral in
spherical coordinates that gives the volume of S.

Solution: The surface z =
√
x2 + y2 is a cone that makes an angle of π/4 with the positive z-axis.

The first octant is given by 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ π/2. Hence the volume is given by∫∫∫
S

dV =

∫ π
2

0

∫ π
4

0

∫ 1

0

ρ2 sinφdρ dφ dθ

=
(2−

√
2)π

12

(b) Let R be the region in the first quadrant of the xy-plane bounded by the curves

y = ex, y = e2x, x = 1.

Evaluate the integral ∫∫
R

(ln y)2

x2y
dA

by a change of variables given by

x =
v

u
, y = ev.

Solution: Under the given change of variables, the integrand becomes

v2

v2

u2 ev
= u2e−v

The partial derivatives are

∂x

∂u
= − v

u2
,

∂x

∂v
=

1

u
,

∂y

∂u
= 0,

∂y

∂v
= ev

so the Jacobian determinant is
∂(x, y)

∂(u, v)
= −ve

v

u2

Finally, the new bounds of integration are

1 ≤ u ≤ 2

0 ≤ v ≤ u

and we calculate ∫∫
R

(ln y)2

x2y
dA =

∫ 2

1

∫ u

0

u2e−v · ve
v

u2
dv du

=

∫ 2

1

∫ u

0

v dv du

=
7

6
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3. (15 points) Let B denote the disc of radius R > 0 around the origin and suppose that it has density

ρ(x, y) = 1
x2+y2 e

−x2−y2 .

(a) Find the polar moment of inertia around the origin.

Solution: In polar coordinates, the given density ρ = r−2e−r
2

. The polar moment of inertia is∫∫
B

r2ρ dA =

∫ 2π

0

∫ R

0

e−r
2

r dr dθ

= (1− e−R
2

)π

(b) What happens to this polar moment of inertia as R goes to infinity?

Solution: As R→∞, e−R
2 → 0, so the polar moment of inertia tends to π.
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4. (20 points) (a) Interpret the following iterated integral as the volume of a solid from geometry and use
a formula from geometry to evaluate it.∫ 2

0

∫ √4−x2

−
√
4−x2

∫ √4−x2−y2

−
√

4−x2−y2
dz dy dx

Solution: The region of integration is half of a solid ball of radius 2, so the integral is

1

2
· 4

3
π(2)3 =

16π

3

(b) Find the volume of the solid bounded by the parabolic cylinders y = x2 and x = y2 and the planes
z = 0 and z = 2x+ y.

Solution: The region R described in the xy-plane is given by the inequalities

0 ≤ x ≤ 1

x2 ≤ y ≤
√
x

The volume is given by ∫∫
R

(2x+ y) dA =

∫ 1

0

∫ √x
x2

(2x+ y) dy dx

=
9

20
.
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(c) Evaluate the following iterated integral by first changing the order of integration.∫ 2

0

∫ 3

0

∫ 1−z/2

0

e2x−x
2

dx dy dz

Solution: ∫ 2

0

∫ 3

0

∫ 1−z/2

0

e2x−x
2

dx dy dz =

∫ 1

0

∫ 3

0

∫ 2−2x

0

e2x−x
2

dz dy dx

=

∫ 1

0

3(2− 2x)e2x−x
2

dx

Letting u = 2x− x2, we find ∫ 1

0

3(2− 2x)e2x−x
2

dx =

∫ u=1

u=0

3eu du

= 3(e− 1)
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5. (15 points) (a) Evaluate the following double integral:∫ π
2

0

∫ π
2

x

sin2(y)

y
dy dx

Solution: By changing the order of integration, we find∫ π
2

0

∫ π
2

x

sin2(y)

y
dy dx =

∫ π
2

0

∫ y

0

sin2(y)

y
dx dy

=

∫ π
2

0

sin2 y dy

=
π

4

(b) Evaluate the double integral of the function f(x, y) = 2y
x+1 over the region in the xy-plane bounded

by y =
√
x, x = 0, x = 1, and the x-axis.

Solution: The desired integral is∫ 1

0

∫ √x
0

2y

x+ 1
dy dx =

∫ 1

0

[
y2

x+ 1

∣∣√x
y=0

]
dx

=

∫ 1

0

x

x+ 1
dx

Letting u = x+ 1, we find ∫ 1

0

x

x+ 1
dx =

∫ 2

u=1

u− 1

u
du

= 1− ln 2
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6. (15 points) (a) Use polar coordinates to evaluate the following integral in the region between x2+y2 = 1
and x2 + y2 = 2 ∫∫

R

1

x2 + y2
dA

Solution: In polar coordinates, x2 + y2 = r2, so∫∫
R

1

x2 + y2
dA =

∫ 2π

0

∫ √2

1

1

r2
r dr dθ

= π ln 2.

(b) Find the mass of the planar lamina in region R with density ρ(x, y) =
√
x2 + y2 where R is the

region created by the trace of the x2 + y2 + (z − 4)2 = 20 in the xy plane.

Solution: R is the region inside the circle x2 + y2 = 4. In polar coordinates, the given density
ρ = r, so the mass is ∫∫

R

ρ dA =

∫ 2π

0

∫ 2

0

r · r dr dθ

=
16π

3
.
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