
Math 2400: Midterm 2 Review

1. Let p0 = (1, 0, 2). In 3-dimensional space, identify the range of each of the following as either
a line, a plane, or neither:

(a) ~r1(t) = p0 + t < −2, 0, 1 >
Answer: This is a line.

(b) ~r2(t) = p0 + t2 < −2, 0, 1 >
Answer: This is neither a line nor a plane. As t ranges over all real numbers t2 ranges
over [0,∞) so that ~r2(t) traces out the ray starting at p0 and going off to infinity in the
direction < −2, 0, 1 >.

(c) ~r3(t) = p0 + t3 < −2, 0, 1 >
Answer: This is a line. As t ranges over all real numbers t3 will also range over all real
numbers so that the range of ~r3(t) will trace out a line.

(d) ~r4(t) =< 1− 2t+ t2, t,−2t >
Answer: This is neither a line nor a plane. Because the x-coordinate has the equation of
a parabola (i.e. 1 − 2t + t2), the x-coordinate will trace out a parabola while the y and
z-coordinates will trace out lines. If the t2 was not there then it would trace out a line.

(e) ~r5(s, t) = p0 + s < 1,−1, 2 > +t < −2, 0, 1 >
Answer: This will trace out a plane.

(f) ~r6(s, t) = p0 + s < −2, 0, 1 > +t < −2, 0, 1 >
Answer: This will trace out a line. Note that ~r6(s, t) = p0 + s < −2, 0, 1 > +t <
−2, 0, 1 >= p0 + (s + t) < −2, 0, 1 > always lies on the line ~r1(t) so it can’t be a plane.
As s and t both vary (independently) over all real numbers, s + t will vary over all real
numbers so the range of ~r6(t) is a line.

(g) ~r7(s, t) = p0 + s < 0, 0, 0 > +t < −2, 0, 1 >
Answer: This will trace out a line. Note that ~r7(s, t) = p0 +s < 0, 0, 0 > +t < −2, 0, 1 >=
p0 + t < −2, 0, 1 > so that s doesn’t affect the range.

(h) ~r8(s, t) =< 1− 2s2 + t, t, 2 + s+ 2t2 >
Answer: This is neither a line nor a plane.

2. Let x(t) = 1 + t, y(t) = −t, and z(t) = 2 + 2t. Write this symmetric equations of this line and
write the vector equation of this line.
Answer: To write the symmetric equations of this line, we first solve each of the above equations
for t: t = x− 1, t = −y, and t = z−2

2 . Then the symmetric equations are x− 1 = −y = z−2
2 .

The vector equation is ~r(t) =< x(t), y(t), z(t) >=< 1 + t,−t, 2 + 2t >=< 1, 0, 2 > + <
t,−t, 2t >=< 1, 0, 2 > +t < 1,−1, 2 >.

3. Find the domain and derivative/partial derivatives of each of the following:

(a) ~r1(t) = 〈
√

9− t2, ln(t− 1), et
2〉

Answer: We need 9 − t2 ≥ 0 for
√

9− t2 to be defined, which implies that 9 ≥ t2, which
happens exactly when |t| < 3 i.e. when −3 ≤ t ≤ 3. For ln(t− 1) to be defined, we need
to have t− 1 > 0 so that t > 1. Since et

2
is always defined so it places no restrictions on

the domain of ~r1(t). So the domain is (1, 3].



Note that et
2

means e(t
2) and not (et)2 (since (et)2 = etet = e2t so we would write

e2t instead of (et)2). So the derivative is ~r1
′(t) =

〈
d
dt

(√
9− t2

)
, ddt ln(t− 1), ddte

t2
〉

=〈
1
2(9− t2)−1/2(−2t), 1

t−1 , 2te
t2
〉

=
〈
−t√
9−t2 ,

1
t−1 , 2te

t2
〉

.

(b) ~r2(t) = 〈 1
π2−4t2 , tan t, arcsin t〉

Answer: 1
π2−4t2 is undefined exactly when 0 = π2−4t2 = π2−(2t)2 which happens exactly

when 2t = ±π so that 1
π2−4t2 is defined exactly when t 6= ±π

2 . tan t is defined exactly
when t 6= π

2 + nπ for any integer n. Note that since n = 0 and n = −1 give us t 6= π
2 and

t 6= −π
2 , the restriction on the domain that tan t gives subsumes the restriction that 1

π2−4t2
gave us. For arcsin t to be defined, we need to have −1 ≤ t ≤ 1. Since all π

2 + nπ (for
integers n) are not in this interval we have that the requirement −1 ≤ t ≤ 1 is stronger
than the requirement on the domain that is given by arctan t. Thus the domain of ~r2(t)
is [−1, 1].

The derivative is ~r2
′(t) =

〈
d
dt

(
1

π2−4t2

)
, ddt tan t, ddt arcsin t

〉
=
〈

8t
(π2−4t2)2 , sec2 t, 1√

1−t2

〉
.

(c) ~r3(s, t) = 〈 1
π2−4s2 , tan s, arcsin t〉

Answer: By using the reason from ~r2(t) we see that we ~r3(s, t) is defined exactly when
s 6= π

2 + nπ for any integer n and −1 ≤ t ≤ 1. The partial derivatives with respect to s
and t are
∂ ~r3
∂s (s, t) =

〈
∂
∂s

(
1

π2−4s2

)
, ∂∂s tan s, ∂∂s arcsin t

〉
=
〈

8s
(π2−4s2)2 , sec2 s, 0

〉
and

∂ ~r3
∂t (s, t) =

〈
∂
∂t

(
1

π2−4s2

)
, ∂∂t tan s, ∂∂t arcsin t

〉
=
〈

0, 0, 1√
1−t2

〉
.

(d) ~r4(t) = 〈sin t, cos t, et〉
Answer: If we plug any real number into ~r4(t) then we will be able to compute resulting
vector so this means exactly that the domain consists of all real numbers. The derivative
with respect to t is ~r4

′(t) =
〈
d
dt sin t, ddt cos t, ddte

t
〉

= 〈cos t,− sin t, et〉.

4. Let r(t) = 〈et cos t, et sin t, et〉. Compute T (t), N(t), B(t), the curvature κ(t), and the length
of r(t) from a to b.
Answer: r′(t) = 〈et cos t− et sin t, et sin t+ et cos t, et〉 = et〈cos t− sin t, sin t+ cos t, 1〉.
Note that (cos t − sin t)2 + (cos t + sin t)2 = (cos2−2 sin t cos t + sin2 t) + (cos2 +2 sin t cos t +
sin2 t) = 2 so |r′(t)| = et|〈cos t−sin t, sin t+cos t, 1〉| = et

√
(cos t− sin t)2 + (cos t+ sin t)2 + 12 =

et
√

2 + 1 =
√

3et.

So T (t) = r′(t)
|r′(t)| = et〈cos t−sin t,sin t+cos t,1〉√

3et
= 1√

3
〈cos t− sin t, sin t+ cos t, 1〉.

Now, T ′(t) = 1√
3
〈− sin t−cos t, cos t−sin t, 0〉 and so |T ′(t)| = 1√

3

√
(− sin t− cos t)2 + (cos t− sin t)2 + 02 =

1√
3

√
(sin t+ cos t)2 + (cos t− sin t)2 = 1√

3

√
2 =

√
2
3 .

So N(t) = T ′(t)
|T ′(t)| =

1√
3
〈− sin t−cos t,cos t−sin t,0〉√

2
3

= 1√
2
〈− sin t− cos t, cos t− sin t, 0〉 and

B(t) = T (t)×N(t) =~i[− 1√
6
(cos t−sin t)]−~j[− 1√

6
(− cos t−sin t)]+~k 1√

6
[(cos t−sin t)2+(cos t+

sin t)2] = 1√
6
〈sin t− cos t,− sin t− cos t,

√
2〉.

Since we’ve already computed |T ′(t)| and |r′(t)| to compute the curvature we will use κ(t) =

|T ′(t)|
|r′(t)| =

√
2
3√

3et
=
√

2e−t.

The length of r(t) from a to b is
∫ b
a |r
′(t)|dt =

∫ b
a

√
3etdt =

√
3et|ba =

√
3[eb − ea].
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5. True or False (and justify your answer): Let f(t) be a real-valued function and let ~u(t), ~v(t),
and ~r(t) be vector valued functions.

(a) d
dt (f(t)~u(t)) = f ′(t)~u(t) + f(t)~u′(t)
True.

(b) d
dt (~u(t) · ~v(t)) = ~u′(t) · ~v′(t)
False: The correct formula is d

dt (~u(t) · ~v(t)) = ~u′(t) · ~v(t) + ~u(t) · ~v′(t).
(c) d

dt (~u(t)× ~v(t)) = ~u′(t)× ~v′(t)
False: The correct formula is d

dt (~u(t)× ~v(t)) = ~u′(t)× ~v(t) + ~u(t)× ~v′(t).
(d) If ~r(t) 6= 0 then d

dt |r(t)| =
d
dt

√
r(t) · r(t) = 1

|r(t)|r(t) · r
′(t).

True. Recall that |r(t)|2 = r(t) · r(t) so that the first equality is true. Since r(t) 6= 0,
r(t) is a point at which the magnitude function (i.e. the function that assigns to a vector
~v = 〈x, y, z〉 its length |~v| =

√
x2 + y2 + z2) is differentiable so that by the chain rule

d
dt

(
|r(t)|2

)
= 2|r(t)| ddt (|r(t)|). But also, d

dt

(
|r(t)|2

)
= d

dt (r(t) · r(t)) = r′(t) · r(t) + r(t) ·
r′(t) = 2~r(t) · ~r′(t). So we have 2|r(t)| ddt (|r(t)|) = d

dt

(
|r(t)|2

)
= 2~r(t) · ~r′(t). Dividing by

2|r(t)| gives us the second equality.

(e) If ~r(t) = 〈t, f(t)〉 then the length of f(t) from t = a to t = b is the same as the length of
r(t) from a to b.

True. Recall that the length of f(t) from a to b is
∫ b
a

√
1 + f ′(t)dt while the length of r(t)

from a to b is
∫ b
a |r
′(t)|dt =

∫ b
a

∣∣〈 d
dt t,

d
dtf(t)

〉∣∣ dt =
∫ b
a |〈1, f

′(t)〉| dt.
(f) Let T (t) be the unit tangent vector of r(t) and let N(t) be the unit normal vector of r(t).

Then the unit tangent vector of T (t) is N(t).

True. The unit tangent vector of T (t) is T ′(t)
|T ′(t)| , which is the same as the the unit normal

vector of r(t).

(g) Fix a point p0 in space that r(t) goes through. Then the curvature of the curve r(t) at p0
depends on the paramterization of r(t).
False. One reason that curvature, κ =

∣∣dT
ds

∣∣, uses the derivative with respect to the
arclength of the curve (as opposed to using the derivative with respect to the parameter
t) is so that it will not be dependent on how the curve is parameterized.

(h) The curvature of r(t) is κ(t) = |T ′(t)|
|r′(t)| = |r′(t)×r′′(t)|

|r′(t)|3 .

True. Note that although this equation makes it seem as though the curvature depends
on the paramterization of the curve, it is in fact independent of the paramterization of
r(t).

(i) It is possible for T (t) to point in the opposite direction of r′(t).

False. Since T (t) = r′(t)
|r′(t)| and |r′(t)| is never negative, T (t) and r′(t) will always point in

the same direction.

(j) T (t) and N(t) are perpendicular.
True.

(k) If s(t) is the arclength function of ~r(t) (starting at some arbitrary t = a) then ds
dt = |r′(t)|.

True. s(t) =
∫ t
a |r
′(t)|dt so by the fundamental theorem of calculus, ds

dt = |r′(t)|.

6. Let ~r(t) be a vector valued function. What is wrong with the following reasoning?

The length of r(t) from t = a to t = b is L =
∫ b
a |r
′(t)|dt = |

∫ b
a r
′(t)dt| = |r(t)|ba| = |r(b)− r(a)|.

Answer: The mistake is that the equality
∫ b
a |r
′(t)|dt = |

∫ b
a r
′(t)dt| is almost never true.
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7. Let ~r(t), ~v(t), and ~a(t) denote the position, velocity, and acceleration of a particle at time t.
Suppose that ~r(0) = 〈1, ln 4, 1〉 and ~v(0) = 〈1, 1, 0〉. For each of the below, find all three of ~r(t),
~v(t), and ~a(t).

(a) ~r(t) =
〈
esin t, ln((2 + t)2), cos t

〉
.

Answer: Note that ln((2 + t)2) = 2 ln(2 + t) so that ~v(t) =
〈
esin t cos t, 2

2+t ,− sin t
〉

and so

~a(t) = ~v′(t) =
〈
esin t(cos2 t− sin t), −2

(2+t)2
,− cos t

〉
.

(b) ~v(t) = 〈 1
1+t2

, 2et

1+et , sin t cos t〉.
Answer: Using the fact that sin(2t) = 2 sin t cos t, we have that ~r(t) =

∫
~v(t)dt =∫

〈 1
1+t2

, 2et

1+et ,
1
2 sin(2t)〉dt = 〈arctan t, 2 ln |1 + et|, −14 cos(2t)〉+ ~C, where ~C = 〈C1, C2, C3〉.

Since 〈1, ln 4, 1〉 = ~r(0) = 〈arctan 0, 2 ln |1 + e0|, −14 cos(20)〉 + ~C = 〈0, 2 ln 2, −14 〉 + ~C we

have ~C = 〈1, ln 4, 1〉 − 〈0, 2 ln 2, −14 〉 = 〈1, 0, 54〉.
Hence, ~r(t) = 〈arctan t+ 1, 2 ln |1 + et|, −14 cos(2t) + 5

4〉.
Now, ~a(t) = ~v′(t) =

〈
d
dt

1
1+t2

, ddt
2et

1+et ,
d
dt

1
2 sin(2t)

〉
=
〈
−2t

(1+t2)2
, 2e

t(1+et)−et(2et)
(1+et)2

, cos(2t)
〉

=〈
−2t

(1+t2)2
, 2et

(1+et)2
, cos(2t)

〉
.

(c) ~a(t) =
〈
et,− 1

(1+t)2
,− cos t

〉
.

Answer: We have that ~v(t) =
∫
~a(t)dt =

∫ 〈
et,− 1

(1+t)2
,− cos t

〉
dt =

〈
et, 1

1+t ,− sin t
〉

+ ~D,

where ~D = 〈D1, D2, D3〉. Since ~v(0) = 〈1, 1, 0〉 we get ~D = 〈0, 0, 0〉.
Looking ahead, noticing that

∫
1

1+tdt = ln |1 + t| and considering that we want ~r(0) =

〈1, ln 4, 1〉 we integrate 1
1+t = 4

4+4t to get that the position is ~r(t) =
∫
~v(t)dt =

∫ 〈
et, 4

4+4t ,− sin t
〉
dt =〈

et, ln |4 + 4t|, cos t
〉

+ ~C where we conclude that ~C = 〈0, 0, 0〉 (explain why our answer
would not have been different if we had integrated 1

1+t instead of 4
4+4t . How would your

work have changed?).

8. Parameterize the following surfaces:

(a) The sphere of radius R centered at the origin.
Answer: We can parameterize the sphere using spherical coordinates: x(φ, θ) = R sinφ cos θ,
y(φ, θ) = R sinφ sin θ, and z(φ, θ) = R cosφ with domain [0, π]× [0, 2π].

(b) The sphere of radius R centered at ~p0 = 〈a, b, c〉.
Answer: x(φ, θ) = a + R sinφ cos θ, y(φ, θ) = b + R sinφ sin θ, and z(φ, θ) = c + R cosφ
with domain [0, π]× [0, 2π].

(c) The plane that contains the lines ~p0 + t~v and ~p0 + t~w, where ~p0 = 〈a, b, c〉, ~v = 〈v1, v2, v3〉,
~w = 〈w1, w2, w3〉, and where we assume that ~v and ~w are not parallel.
Answer: We will use the usual parameterization: ~r(s, t) = p0 + s~v + t~w or equivalently,
x(s, t) = a + sv1 + tw1, y(s, t) = b + sv2 + tw2, and z(s, t) = c + sv3 + tw3 with domain
(−∞,∞)× (−∞,∞).

(d) Suppose that P is a plane that goes through the origin and has normal vector ~n =
〈n1, n2, n3〉. Suppose we know that n3 6= 0. Find equations that parameterize P .
Answer: Since P goes through the origin, if we can find two non-zero and non-parallel
vector ~v and ~w that are contained in P then by using the parameterization of the plane
from above, we can parameterize P . Since we need any vectors ~v and ~w that are non-zero
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and non-parallel we can (after some thought) hope that we can pick ~v and ~w so that they
have the form ~v = 〈1, 0, c〉 and ~w = 〈0, 1, d〉 for some unknown constant c and d that we
now wish to find. Since P goes through the origin, for ~v to be contained in P we need
0 = ~n · ~v = 〈n1, n2, n3〉 · 〈1, 0, c〉 = n1 + cn3, which forces c = −n1

n3
(this is defined since

n3 6= 0). Similarly, d = −n2
n3

. And so we can use the parameterization ~r(s, t) = p0+s~v+t~w
as described above.

(e) Suppose that we have given a real-valued function f(y) with domain D, where D is a set of
real-numbers. Find a parameterization for the surface of revolution obtained by revolving
f(y) around the y-axis.
Answer: One possible parameterization is x(y, θ) = f(y) cos θ, y = y, and z(y, θ) =
f(y) sin θ with domain D × [0, 2π).

(f) What surface does ~r(r, θ) = 〈r cos θ, r, r sin θ〉 parameterize?
Answer: A right circular cone.

(g) Suppose that f(y, z) is a real-valued function. Find a parameterization for the graph of
f(y, z). Apply it to the specific case of f(y, z) = y2 + 2z2.
Answer: x = f(y, z), y = y, and z = z is a paramterization. For the case of f(y, z) =
y2 + 2z2, the paramterization is x = y2 + 2z2, y = y, and z = z.

9. Draw the level surfaces of f(x, y) =
√

(x− 2)2 + (y + 1)2 and then describe the graph of this
function.what is the domain of this function?
Answer: The level surfaces are of the form c = f(x, y) =

√
(x− 2)2 + (y + 1)2, which is only

valid if c ≥ 0 (since f(x, y) is a function, the square root only outputs the positive root).
And this equation becomes (x − 2)2 + (y + 1)2 = c2, which is a circle or radius c centered
around the point (2,−1). Since the radius is exactly c, we see that the graph of this function
is the upper half of a right circular cone centered at (2,−1). The domain of this function is
(−∞,∞)× (−∞,∞).

10. Draw a contour map of the function f(x, y) = ye−x showing several level curves.
Answer: The level curves are c = f(x, y) = ye−x which gives y = cex. Note that these level
curves are drawn in the x-y plane (not in 3-D). If c = 0 then it is just the line y = 0. Otherwise,
if c > 0 then it looks like a vertical scaling (with scaling factor c) of the graph of ex and if c < 0
then it looks like a vertical scaling (with scaling factor |c|) of the graph of ex followed by a flip
across the x-axis. When drawing a contour map, make sure to increase the value of c uniformly
by some constant step size (ex: maybe draw the level curves for c = −4, c = −2, c = 0, c = 2,
c = 4, where we happened to have picked a step size of 2). Also include any special case (ex:
in this problem it was important to draw the level curve of c = 0 since it is a special case).

11. State Clairaut’s Theorem.
Answer: See Stewart p. 763. Suppose that f is defined on a disk D that contains the point
(a, b). If the functions fxy and fyx both exist and are continuous on D then fxy(a, b) = fyx(a, b).

12. True or False (and justify your answer): Let f(x, y) be a real-valued function.

(a) If fx(x, y) and fy(x, y) exist for all x and y, then f(x, y) is continuous.
Answer: False. If f(x, y) = xy

x2+y2
for (x, y) 6= (0, 0) and f(0, 0) = 0 then fx(x, y) and

fy(x, y) exist for all x and y but f(x, y) is not continuous.

(b) If fx(x, y) and fy(x, y) exist for all x and y and both are continuous functions then f(x, y)
is continuous.
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Answer: True. This is a special case of Stewart p. 773 Theorem 8. Note that for the
counter-example above, although the partial derivatives exist everywhere they are not
continuous so this theorem does not apply in that situation.

(c) lim
(x,y)→(0,0)

xy2

x2 + y4
exists.

Answer: False. This limit does not exist. Along the line x = 0, we have lim
(x,y)→(0,0)

xy2

x2 + y4
=

lim
y→0

0y2

02 + y4
= 0 while along x = y2 we have lim

(x,y)→(0,0)

xy2

x2 + y4
= lim

y→0

y2y2

(y2)2 + y4
=

lim
y→0

1

2
=

1

2
.

(d) lim
(x,y)→(0,0)

xy4

x2 + y4
exists.

Answer: True. Note that
∣∣∣ xy4

x2+y4

∣∣∣ = |x|
∣∣∣ y4

x2+y4

∣∣∣ ≤ |x|1 = |x| so that by the squeeze

theorem, as (x, y) → (0, 0), we have lim
(x,y)→(0,0)

∣∣∣∣ xy4

x2 + y4
− 0

∣∣∣∣ ≤ lim
(x,y)→(0,0)

|x| = lim
x→0
|x| = 0

so lim
(x,y)→(0,0)

xy4

x2 + y4
= 0.

(e) Suppose that f is defined on an open disk D. If all of f ’s partial derivatives exist and are
continuous on D then fxyy = fyyx at every point of D.
Answer: True. By Clairaut’s Theorem, fxy = fyx at every point of D so that that by
taking this functions partial derivative with respect to y we get fxyy = fyxy. By Clairaut’s
Theorem applied to fy this time, we have that fyxy = (fy)xy = (fy)yx = fyyx at every
point of D. Hence, at every point of D we have fxyy = fyxy = fyyx.

13. Find the total differential of z = f(x, y) = x2 + 3xy − y2 and use it to estimate f(2.05, 2.96).
Answer: We have ∂f

∂x = ∂
∂x(x2 +3xy−y2) = ∂

∂x(x2)+3y ∂
∂x(x)− ∂

∂x(y2) = 2x+3y+0 = 2x+3y.

Similarly, ∂f
∂y = −2y + 3x. So the total differential is dz = (2x+ 3y)dx+ (−2y + 3x)dy. Since

f(2.05, 2.96) is difficult to compute while f(2, 3) is easy to compute and since (2, 3) is close to
(2.05, 2.96) we let (x, y) = (2, 3) and (∆x,∆y) = (2.05, 2.96) − (2, 3) = (0.05,−0.04) we have
that ∆z ≈ (2(2) + 3(3))(0.05) + (−2(3) + 3(2))(−0.04) = 13(0.05) + 0 = 13 5

100 = 65
100 = 0.65

or we could equivalently express this number as the fraction ∆z ≈ 13 1
20 = 13

20 . Note that no
calculator was necessary to compute this approximation of f(2.05, 2.96).

14. Find the tangent plane to f(x, y) = x2 + 3xy − y2 at (x, y) = (2, 3).
Answer: Using the computations from the problem above, we have that ∂f

∂x (2, 3) = 13 and
∂f
∂y (2, 3) = 0. Since f(2, 3) = 22 + 3(2)(3)− 32 = 4 + 18− 9 = 13, the equation of the tangent
plane is z = f(2, 3) + fx(2, 3)(x− 2) + fy(2, 3)(y − 3) = 13 + 13(x− 2) + 0(y − 3) = 13(x− 1).

15. Find an equation for the tangent plane to the surface given by

xy + yz2 + z = 0

at the point (−2, 1, 1).
Answer: Let f(x, y, z) = xy+yz2+z. Then the surface described is the level surface f(x, y, z) =
0. We calculate that

∇f = y~i+ (x+ z2)~j + (2yz + 1)~k,
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meaning that the vector
(∇f)(−2, 1, 1) =~i−~j + 3~k

is normal to the tangent plane at (−2, 1, 1). Using the equation for a plane given a point on
the plane and a normal vector to the plane, an equation for the tangent plane is

(x+ 2)− (y − 1) + 3(z − 1) = 0

16. Suppose that xyz = cos(x+ y + z). Use implicit differentiation to find ∂y
∂x and ∂y

∂z .

Answer: Differentiating both sides with respect to x gives us ∂
∂x(xyz) = ∂

∂x(cos(x + y + z)),

which becomes by the product rule and the chain rule yz + xz ∂y∂x + xy ∂z∂x = − sin(x + y +

z)
(

1 + ∂y
∂x + ∂z

∂x

)
. Since we’re considering y as a function of the independent variables x and

z we have ∂z
∂x = 0 so that yz + xz ∂y∂x = − sin(x + y + z)

(
1 + ∂y

∂x

)
. This becomes yz + sin(x +

y + z) = − sin(x + y + z) ∂y∂x − xz ∂y∂x = − ∂y
∂x (sin(x+ y + z) + xz). Dividing, we get ∂y

∂x =
sin(x+y+z)+yz
− sin(x+y+z)−xz . Similarly, yz ∂x∂z + xz ∂y∂z + xy = ∂

∂z (xyz) = ∂
∂z (cos(x + y + z)) = − sin(x + y +

z)
(
∂x
∂z + ∂y

∂z + 1
)

which becomes xz ∂y∂z + xy = − sin(x + y + z)
(
∂y
∂z + 1

)
. Solving for ∂y

∂z gives

us ∂y
∂z = − sin(x+y+z)−xy

sin(x+y+z)+xz .

17. Let w = f(t)g(t)h(t). Use the chain rule applied to p(x, y, z) = f(x)g(y)h(z) to calculate dw
dt .

Answer: Note that w = p(t, t, t), which is the same as saying that w = p(x(t), y(t), z(t)), where
x(t) = y(t) = z(t) = t. The chain rule tells us that

dw

dt
=
dp

dt

=
∂p

∂x

dx

dt
+
∂p

∂y

dy

dt
+
∂p

∂x

dz

dt

=
∂p

∂x
+
∂p

∂y
+
∂p

∂x

= f ′(x(t))g(y(t))h(z(t)) + f(x(t))g′(y(t))h(z(t)) + f(x(t))g(y(t))h′(z(t))

= f ′(t)g(t)h(t) + f(t)g′(t)h(t) + f(t)g(t)h′(t).

18. True or False (and justify your answer): Let f be a real-valued function of 2 or of 3 variables.

(a) For any vector u, Duf = ∇f · u.
Answer: False. This is only true if the vector u has unit length (i.e. ||u|| = 1).

(b) At any point p in the domain of f , ∇f(p) is the direction of greatest change in f , although
this change in f in this direction could be a positive change or a negative change (we’d
have to check to see which).
Answer: False. ∇f(p) is the direction of greatest change in f at p and furthermore f ’s
change in the direction ∇f(p) is always positive (assuming that f is not constant around
p).

(c) At any point p in the domain of f , |∇f(p)| is the maximum value of Duf(p) as u is allowed
to vary over all unit vectors.
Answer: True. See Stewart p. 795.
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(d) If the domain of f is closed and bounded then there is a number M > 0 (independent of
x and y) for which f is everywhere < M .
Answer: True. See Stewart p. 807.

(e) If the domain of f is closed and bounded then f has a maximum and minimum value and
furthermore f attains these values.
Answer: True. See Stewart p. 807.

(f) Suppose that g(x) and h(y) are both real-valued functions of real-variables so that g(x)h(y)
is real-valued function of 2 real-variables. If both g(x) and h(y) are continuous then so is
g(x)h(y).
Answer: True. Let m(x, y) = xy so that m is everywhere continuous. Also note that
(x, y) 7→ (g(x), h(x)) is a continuous function since both of its coordinates (i.e. g and h) are
continuous functions of (x, y). Since g(x)h(y) = m(g(x), h(y)) and since the composition
of continuous functions is continuous, it follows that g(x)h(y) is continuous.

19. You are standing above the point (x, y) = (1, 3) on the surface z = 20− (2x2 + y2).

(a) In which direction should you walk to descent fastest?

(b) If you start to move in this direction, what is the slope of your path when you first start
to move?
Answer: The gradient is

∇z = −4x~i− 2y~j,

therefore ∇z(1, 3) = −4~i − 6~j. This vector tells us the direction in which the directional
derivative is the greatest, so you should go in the direction of 4~i+ 6~j.
The slope will be −||4~i+ 6~j|| = −

√
52.

20. Suppose that f is any differentiable function of one variable. Define V , a function of two
variables, by V (x, t) = f(x+ ct), where c is a constant. Show that

∂V

∂t
= c

∂V

∂x

Solution: Define g(x, t) = x+ ct. Then V = f ◦ g, and the chain rule tells us that

∂

∂t
(f ◦ g) =

df

dg

∂g

∂t
= c

df

dg

At the same time,
∂

∂x
(f ◦ g) =

df

dg

∂g

∂x
=
df

dg

21. Let f(x, y) = x4 + y4 − 4xy + 1. Find all (if any) local maximum and minimum values and all
saddle points of f(x, y) by doing the following:

(a) Compute fx and fy and then find the critical points of f(x, y).

(b) Compute fxx, fyy, fxy, and fyx. Did you need to do two computations to find fxy and fyx?
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(c) Compute D = fxxfyy − [fxy]
2 and classify all critical points.

Solution: Note that fx(x, y) = 4x3 − 4y and fy(x, y) = 4y3 − 4x. Also, fxx(x, y) = 12x2,
fyy(x, y) = 12y2, and fxy(x, y) = fyx(x, y) = −4, where the last equality is guaranteed by
Clairaut’s Theorem (since f is smooth) so that we only needed to compute one of fxy and
fyx to get both. This gives us that D(x, y) = (12xy)2 − 16.
The critical points are all (x, y) where fx(x, y) = 0 and fy(x, y) = 0. These equations
imply that 0 = 4x3 − 4y and 0 = 4y3 − 4x, which become 0 = x3 − y and 0 = y3 − x.
So x = y3 = (x3)3 = x9, which becomes 0 = x9 − x = x(x8 − 1) = x(x4 − 1)(x+1) =
x(x2 − 1)(x2 + 1)(x4 + 1) = x(x − 1)(x + 1)(x2 + 1)(x4 + 1). Since x2 + 1 and x4 + 1 are
never 0, this implies that x = 0, x = 1, or x = −1. Using y = x3 gives us the following
critical points: (−1,−1), (0, 0), (1, 1).
At (0, 0), the value of D is D = 0− 16 = −16 < 0 so that this is a saddle point.
At both (−1,−1) and (1, 1), the value of D is D = 122−16 > 0 and fxx = 12(±1)2 = 12 > 0
so that there is a local minimum at both (−1,−1) and (1, 1).
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