1. (10) Let

$$f(x,y) = x^2 + 2y^2.$$

(i) Compute the directional derivative of f at $(1, \frac{1}{2})$ in the direction of the vector $\langle 3, 4 \rangle$.

(ii) Find the unit vector ${\bf u}$ where $D_{\bf u} f(1, \frac{1}{2})$ attains its maximum value.

Math 2400 page 2 of 8

2. (20) Find the minimum distance on the surface xyz = 8 from the point (0,0,0).

Hint: You may use the method of Lagrange multipliers; it is easier if you minimize the square of the distance to (0,0,0).

Math 2400 page 3 of 8

3. (20) Let R be the region in the xy-plane bounded by the curves $y=x^2+1$ and $y=9-x^2$.

(i) Set up (but do not evaluate) an integral to compute the volume of the solid region bounded by the surfaces $z = x^2 + y^2$ and z = 10 over the region R.

(ii) Use double integration to find the area A of R.

Editorial note: Do we really mean "use double integration", or "using double integration, or otherwise"? What if they use Calc 1 techniques instead?

- 4. (15) Set up (but do not evaluate) integrals to compute the following volumes:
- (i) The solid bounded by the surfaces $z=x,\,x=y^2,\,x=4,$ and z=0;

(ii) The region bounded by the paraboloid $y=x^2+2z^2$ and the parabolic cylinder $y=2-x^2$;

(iii) The solid bounded by the surfaces $x=z^2,\,x=8-z^2,\,x+y=1$ and y=0.

- 5. (15) Editorial note: obviously this question is far too long, and we need to discuss what to cut out. Also, what does "graph" mean in part (iv)?
 - (i) Find the volume of the solid bounded above by the sphere $x^2 + y^2 + z^2 = 2$ and bounded below by the cone $z = \sqrt{x^2 + y^2}$ in both cylindrical and spherical coordinates.

(ii) Find the volume of the solid bounded above by the sphere, $x^2 + y^2 + z^2 = 2$ and bounded below by the paraboloid $z = x^2 + y^2$.

(iii) Find the volume of the region that lies inside both the sphere, $x^2 + y^2 + z^2 = 4$ and the cylinder, $x^2 + y^2 - 2y = 0$.

(iv) Graph the surface $\rho = 2 + \cos \phi$ and compute the volume it holds.

page 7 of 8
page 7 of

- 6. (20)
- (i) What is the graph of $r = 2\cos\theta$ on the xy-plane ?

(ii) Find a polar coordinate equation for the vertical line passing through the point (1,0) on the xy-plane.

Math 2400 page 8 of 8

(iii) Find the volume of the solid under the surface of $z=\frac{1}{\sqrt{x^2+y^2}}$ and above the region on the xy-plane bounded by the right-hand half of the circle $x^2+y^2=2x$ and the vertical line passing through the point (1,0) on the xy-plane. **Hint:** $\int \sec\theta d\theta = \ln|\sec\theta + \tan\theta|$.

Name: _		
Section:		<u>.</u>

University of Colorado

Mathematics 2400: Third Midterm Exam

November 9, 2005

Problem	Points	Score
1	10	
2	20	
3	20	
4	15	
5	15	
6	20	
Total	100	