The Subpower Membership Problem for 2-Nilpotent Mal'cev Algebras

Patrick Wynne

University of Colorado Boulder BLAST 2025

May 21, 2025

The Subpower Membership Problem

 $\mathbb{A} = (A, f_1, \dots, f_n)$ with |A| finite and $f_i \colon A^{k_i} \to A$ basic operations.

A term function of \mathbb{A} is a finitary function on A built from composition of basic operations of \mathbb{A} (and projections).

 $Clo(\mathbb{A})$ is the set of term functions of \mathbb{A} .

Problem: Given a partial function

$$p\colon A^k\to A,$$

determine if p can be interpolated by a k-ary term function of \mathbb{A} .

An equivalent formulation:

Problem: Given $a_1, \ldots, a_k \in A^n$ and $b \in A^n$ determine if

$$b \in \langle a_1, \ldots, a_k \rangle_{\mathbb{A}^n}.$$

The Subpower Membership Problem

 $\begin{aligned} & \mathsf{SMP}(\mathbb{A}): \\ & \mathsf{Input:} \quad a_1, \dots, a_k, b \in A^n. \\ & \mathsf{Problem:} \text{ Decide if } b \text{ is in the subalgebra of } \mathbb{A}^n \text{ generated by } a_1, \dots, a_k. \end{aligned}$

$$t\begin{pmatrix}a_{11}&\ldots&a_{k1}\\\vdots&\ddots&\vdots\\a_{1n}&\ldots&a_{kn}\end{pmatrix}=\begin{pmatrix}b_1\\\vdots\\b_n\end{pmatrix}$$

A solution: Enumerate all elements of $\langle a_1, \ldots, a_k \rangle_{\mathbb{A}^n}$ and determine if *b* is among them.

Theorem (Kozik)

There exists a finite algebra $\mathbb A$ of finite type such that $\mathsf{SMP}(\mathbb A)$ is EXPTIME-complete.

Patrick Wynne (CU Boulder)

Tractable SMP

Let p be a prime and let $\mathbb{A} = (\mathbb{Z}_p, +)$. On input $a_1, \ldots, a_k, b \in \mathbb{Z}_p^n$, the Subpower Membership Problem asks: Does there exist $(x_1, \ldots, x_k) \in \mathbb{Z}_p^k$ such that

$$\begin{pmatrix} a_{11} & \dots & a_{k1} \\ \vdots & \ddots & \vdots \\ a_{1n} & \dots & a_{kn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_k \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}?$$

So we can decide $SMP(\mathbb{A})$ via **Gaussian Elimination**. This can be done in polynomial time in the input size.

Theorem (Sims)

The subgroup membership problem is solvable in polynomial time.

Theorem (Willard)

If \mathbb{A} is a finite group, ring, module then $\mathsf{SMP}(\mathbb{A}) \in \mathsf{P}$.

Patrick Wynne (CU Boulder)

Subpower Membership Problem

Mal'cev Algebras

An algebra \mathbb{A} is called *Mal'cev* if there is a ternary term *m* of \mathbb{A} such that

$$m(x, x, y) = y = m(y, x, x)$$

for all $x, y \in A$. Ex: Groups (and their expansions) are Mal'cev algebras with Mal'cev term

$$m(x, y, z) = xy^{-1}z.$$

Question (Willard)

Is $SMP(\mathbb{A}) \in \mathsf{P}$ for every finite Mal'cev algebra \mathbb{A} ?

Theorem (Mayr)

 $\mathsf{SMP}(\mathbb{A}) \in \mathsf{NP}$ for every finite Mal'cev algebra \mathbb{A} .

Patrick Wynne (CU Boulder)

Subpower Membership Problem

For Mal'cev algebras we generalize the commutator from groups to a binary operator on the congruence lattice of \mathbb{A} .

$$[_,_]: \mathsf{Con}(\mathbb{A})^2 \to \mathsf{Con}(\mathbb{A})$$

We say that \mathbb{A} is abelian if $[1_{\mathbb{A}}, 1_{\mathbb{A}}] = 0_{\mathbb{A}}$ where $0_{\mathbb{A}}$ and $1_{\mathbb{A}}$ are the least and greatest congruences on \mathbb{A} , respectively.

Theorem (Herrmann)

An algebra \mathbb{A} in a congruence modular variety is abelian if and only if \mathbb{A} is *polynomially equivalent* to a module over a ring.

Nilpotent Mal'cev Algebras

A Mal'cev algebra is 2-step nilpotent if

```
[\mathbf{1}_{\mathbb{A}}, [\mathbf{1}_{\mathbb{A}}, \mathbf{1}_{\mathbb{A}}]] = \mathbf{0}_{\mathbb{A}}
```

and k-step nilpotent if

$$[\mathbf{1}_{\mathbb{A}}, [\mathbf{1}_{\mathbb{A}}, \dots, [\mathbf{1}_{\mathbb{A}}, \mathbf{1}_{\mathbb{A}}] \dots]] = \mathbf{0}_{\mathbb{A}}$$

where $0_{\mathbb{A}}$ and $1_{\mathbb{A}}$ are the least and greatest congruences on $\mathbb{A},$ respectively.

Theorem (Freese & McKenzie)

A Mal'cev algebra \mathbb{A} is 2-nilpotent if and only if $\mathbb{A} \cong \mathbb{L} \otimes \mathbb{U}$ for abelian Mal'cev algebras \mathbb{L} and \mathbb{U} .

Patrick Wynne (CU Boulder)

Theorem (Freese & McKenzie)

A Mal'cev algebra \mathbb{A} is 2-nilpotent if and only if $\mathbb{A} \cong \mathbb{L} \otimes \mathbb{U}$ for abelian Mal'cev algebras \mathbb{L} and \mathbb{U} .

 $\mathbb{L}\otimes\mathbb{U}$ is an algebra with universe $L\times U$ and basic operations

$$f^{\mathbb{L}\otimes\mathbb{U}}((\ell_1, u_1), \ldots, (\ell_k, u_k))$$

= $(f^{\mathbb{L}}(\ell_1, \ldots, \ell_k) + \hat{f}(u_1, \ldots, u_k), f^{\mathbb{U}}(u_1, \ldots, u_k))$

where $\hat{f}: U^k \to L$.

We call $\mathbb{L} \otimes \mathbb{U}$ a central extension of \mathbb{L} by \mathbb{U} .

Theorem (Mayr)

If A is a finite nilpotent Mal'cev algebra **and** A factors into the product of nilpotent algebras of prime power order then $SMP(A) \in P$.

Unlike for finite nilpotent groups, some finite nilpotent Mal'cev algebras do not factor into the product of nilpotent algebras of prime power order.

Patrick Wynne (CU Boulder)

Subpower Membership Problem

Clonoids

Clonoid

For $C \subseteq \bigcup_{n \in \mathbb{N}} L^{U^n}$ we say that C is a **clonoid** from \mathbb{U} to \mathbb{L} if $C \circ \operatorname{Clo}(\mathbb{U}) \subseteq C$ & $\operatorname{Clo}(\mathbb{L}) \circ C \subseteq C$ • C is closed under precomposition with term functions of \mathbb{U} , and • C is closed under postcomposition with term functions of \mathbb{L} .

Example:
$$\mathbb{U} = (\mathbb{Z}_3, +, -, 0), \mathbb{L} = (\{0, 1\}, \wedge, \vee), C$$
 clonoid from \mathbb{U} to \mathbb{L} .

If $f: U^2 \to L$ is in C then

$$f(x_1 + x_2, 0) \in C$$
 and $f(2x_1, x_1 - x_2 + x_3) \in C$,

and so $g(x_1, x_2, x_3) = f(x_1 + x_2, 0) \wedge f(2x_1, x_1 - x_2 + x_3) \in C.$

Generation of Clonoids

Theorem (Mayr, W.)

Let $\mathbb U$ and $\mathbb L$ be finite abelian Mal'cev algebras of coprime order. Suppose $\mathbb U$ is the direct product of pairwise non-isomorphic simple abelian Mal'cev algebras.

Every clonoid from $\mathbb U$ to $\mathbb L$ is uniformly generated by its binary functions.

 $\mathbb U$ is (polynomially equivalent to) an $R\mbox{-module}.$ $\mathbb L$ is (polynomially equivalent to) an $S\mbox{-module}.$

There exists $s \colon R^{k \times k} \to S$ such that for all $f \colon U^k \to L$

$$f(x) = \sum_{r \in R^{k \times k}, \operatorname{rank}(r) \le 2} s(r) f(rx).$$

Let
$$\Delta := \{(z, \dots, z) \in U^k \ : \ z \in U\}$$
 and $V := \{N \leq \mathbb{U}^k \ : \ \Delta \leq N, \ N \cong \mathbb{U}^2\}.$

Then for each $N \in V$ and for each $f: U^k \to L$ the functions

$$f'(x_1, ..., x_k) := f(x_1, ..., x_k) - f(x_k, ..., x_k)$$

$$f'_N(x_1, ..., x_k) := \begin{cases} f'(x_1, ..., x_k) & \text{if } (x_1, ..., x_k) \in N \\ 0 & \text{else}, \end{cases}$$

are \mathbb{U}, \mathbb{L} -minors of f, and

$$f(x_1,\ldots,x_k)=f(x_k,\ldots,x_k)+\sum_{N\in V}f'_N(x_1,\ldots,x_k).$$

Compact Representations

Let \mathbb{A} be a finite Mal'cev algebra and $R \subseteq \mathbb{A}^n$.

Define Sig(R) as the set of triples $(i, a, b) \in \{1, 2, ..., n\} \times A^2$ such that

• there exist $t_a, t_b \in R$ with $t_a(j) = t_b(j)$ for all j < i,

• and
$$t_a(i) = a, t_b(i) = b.$$

If $S \subset R$ and Sig(S) = Sig(R) we say S is a representation of R. If moreover $|S| \le 2|Sig(R)|$ we say S is a compact representation of R.

Note: Every $R \subset \mathbb{A}^n$ has a compact representation S. For each $(i, a, b) \in Sig(R)$ include in S two tuples t_a and t_b witnessing this.

Theorem (Bulatov & Dalmau)

For \mathbb{A} Mal'cev, SMP(\mathbb{A}) is polynomial time reducible to CompRep(\mathbb{A}).

Difference Clonoid

We decompose the term functions of $\mathbb{A} = \mathbb{L} \otimes \mathbb{U}$ using a clonoid.

Difference Clonoid

$$D(\mathbb{L} \otimes \mathbb{U}) := \{ e \colon U^k \to L \ : \ e = s^{\mathbb{L} \otimes \mathbb{U}} - t^{\mathbb{L} \otimes \mathbb{U}} \text{ for } s^{\mathbb{L} imes \mathbb{U}} = t^{\mathbb{L} imes \mathbb{U}} \}$$

• $D(\mathbb{L}\otimes\mathbb{U})$ is a clonoid from \mathbb{U} to (L,+,-,0).

•
$$t + e = (t^{\mathbb{L}} + \hat{t} + e, t^{\mathbb{U}}) \in \mathsf{Clo}(\mathbb{L} \otimes \mathbb{U})$$

for all $t \in \mathsf{Clo}(\mathbb{L} \otimes \mathbb{U})$ and $e \in D(\mathbb{L} \otimes \mathbb{U})$.

Understand $\mathbb{L} \otimes \mathbb{U}$ by understanding \mathbb{L} , \mathbb{U} , and $D(\mathbb{L} \otimes \mathbb{U})$.

Compact Representations for Clonoids

Let $\mathbb U$ and $\mathbb L$ be finite Mal'cev algebras and ${\it C}$ a clonoid from $\mathbb U$ to $\mathbb L.$

CompRep(C) : Input: $a_1, \ldots, a_k \in U^n$. Output: A compact representation of

$$C(a_1,...,a_k) := \{f(a_1,...,a_k) : f \in C^{(k)}\} \le \mathbb{L}^n.$$

Theorem (Kompatscher)

Let $\mathbb{A} = \mathbb{L} \otimes \mathbb{U}$ be a finite Mal'cev algebra such that \mathbb{U} is supernilpotent. Then SMP(\mathbb{A}) reduces in polynomial time to CompRep($D(\mathbb{L} \otimes \mathbb{U})$).

So to solve SMP($\mathbb{L} \otimes \mathbb{U}$) efficiently it suffices to efficiently compute a compact representation for the difference clonoid.

Lemma

Let $\mathbb U$ and $\mathbb L$ be finite abelian Mal'cev algebras of coprime order such that $\mathbb U$ is a product of simple abelian Mal'cev algebras.

Let *C* be a clonoid from \mathbb{U} to \mathbb{L} .

Given $a_1, \ldots, a_k \in U^n$, we can compute a set of generators for

$${\cal C}^{(k)}(a_1,\ldots,a_k):=\{f(a_1,\ldots,a_k) \; : \; f\in {\cal C}^{(k)}\}\leq {\mathbb L}^n$$

in time polynomial in n and k.

Proof idea: Let
$$\mathbb{U} = (\mathbb{Z}_p, +)$$
.
For each $f \in C^{(k)}$ we need to compute $f\begin{pmatrix}a_{11} & \dots & a_{k1}\\ \vdots & \ddots & \vdots\\ a_{1n} & \dots & a_{kn}\end{pmatrix}$.
Each $f \in C^{(k)}$ can be decomposed as
 $f(x_1, \dots, x_k) = f(x_k, \dots, x_k) + \sum_{\Delta \leq N \leq \mathbb{A}^k, N \cong \mathbb{A}^2} f'_N(x_1, \dots, x_k)$.

Each f'_{M} has support N (a dimension 2 subspace of \mathbb{A}^{n}). Patrick Wynne (CU Boulder) Subpower Membership Problem $q_N \colon A^2 \to N$ parameterizes N by \mathbb{A}^2 via term functions. $g_N := f' \circ q_N \in C^{(2)}$ and $g_N \circ q_N^{-1} = f'_N|_N$. So instead of computing $f'_N(a_{1j}, \ldots, a_{kj})$ we can compute $gq_N^{-1}(a_{1j}, \ldots, a_{kj})$ for $g \in C^{(2)}$.

Each non-constant (a_{1j}, \ldots, a_{kj}) is contained in exactly one N so we need only compute (at most) n many q_N^{-1} .

 $|C^{(2)}| \leq |B|^{|A|^2}$ is independent of *n* and *k* (the input size).

So generators for $C^{(k)}(a_1,\ldots,a_k)$ can be computed in polynomial time. \Box

From this generating set we can compute a compact representation of $C^{(k)}(a_1, \ldots, a_k)$ in polynomial time.

Hence . . .

Tractable Subpower Membership Problem

Theorem (W.)

If \mathbb{A} is a 2-nilpotent Mal'cev algebra of squarefree order then $\mathsf{SMP}(\mathbb{A}) \in \mathsf{P}$.

Proof: $\mathbb{A} = \mathbb{L} \otimes \mathbb{U}$ for abelian Mal'cev algebras \mathbb{L} and \mathbb{U} . |A| squarefree implies |L| and |U| are squarefree and coprime. \mathbb{U} abelian implies \mathbb{U} is a product of abelian algebras of prime order. CompRep $(D(\mathbb{L} \otimes \mathbb{U}))$ has a polynomial time algorithm. By Kompatscher's reduction, SMP (\mathbb{A}) has a polynomial time algorithm. More generallly,

Theorem (W.)

Let $\mathbb{A} = \mathbb{L} \otimes \mathbb{U}$ be a finite 2-nilpotent Mal'cev algebra of finite type such that |L| and |U| are relatively prime. Further assume that \mathbb{U} is the direct product of pairwise non-isomorphic simple abelian Mal'cev algebras. Then SMP(\mathbb{A}) \in P. Q: Does every finite 2-nilpotent Mal'cev algebra have tractable SMP?

What if $\mathbb{A} = \mathbb{L} \otimes \mathbb{U}$ and $D(\mathbb{L} \otimes \mathbb{U})$ is uniformly generated?

Q: Does every finite Mal'cev algebra have tractable SMP?

Thank you!

- Clonoid results \rightarrow Mayr & Wynne: "Clonoids between modules"
- \bullet SMP results \rightarrow Wynne: "Clonoids and Nilpotent Mal'cev Algebras"