Abelian congruences in locally finite Taylor varieties Tutorial – Lecture 3

Ross Willard

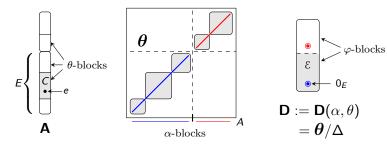
Waterloo (Canada)

BLAST 2025 - Boulder, USA 22 May 2025

Recap

Suppose $\mathbf{A} \in \mathcal{V}$ with a WDT, $\theta \leq \alpha$ in Con \mathbf{A} , $[\alpha, \theta] = 0$, and $\Delta := \Delta_{\theta, \alpha}$ the smallest witness.

Let $\mathbf{D} = \mathbf{D}(\alpha, \theta) := \boldsymbol{\theta}/\Delta$ and $\varphi := \overline{\alpha}/\Delta$.



 θ -blocks and φ -blocks support abelian groups: $Grp(\theta, e)$, $Grp(\varphi, 0_E)$.

If E is an α -block and \mathcal{E} is the corresponding φ -block, then we have embeddings $\chi_e: \mathsf{Grp}(\theta,e) \longrightarrow \mathsf{Grp}(\varphi,0_E)$ from each θ -block in E.

Recap (continued)

When **A** is finite and $0 \prec \theta$, \exists a finite field \mathbb{F} such that:

- **1** Each θ -block naturally inherits the structure of a vector space over \mathbb{F} .
- ② For each $\alpha \geq \theta$ with $[\alpha, \theta] = 0$:
 - (a) Each φ -block of the difference algebra $\mathbf{D}(\alpha, \theta)$ also inherits the structure of a vector space over \mathbb{F} .
 - (b) Each $\chi_e : \mathsf{Grp}(\theta, e) \longrightarrow \mathsf{Grp}(\varphi, 0_E)$ is an \mathbb{F} -vector space embedding.
- **③** \mathbb{F} and its actions on θ -blocks can be defined (up to isomorphism) from $(\mathbf{D}(\alpha, \theta), \varphi, \mathcal{T}_{\alpha})$, for any $\alpha \geq \theta$ satisfying $[\alpha, \theta] = 0$.
- **③** \mathbb{F} is determined by the isomorphism type of $(\mathbf{D}(\alpha, \theta), \varphi, T_{\alpha})$.

Problem from 2nd lecture:

Why didn't I just let $\alpha = \theta$ and use $\mathbf{D}(\theta, \theta)$ and $\mathbb{F} = \mathbb{F}_{(\mathbf{D}(\theta, \theta), \varphi, T_{\theta})}$?

Answer: It will be more useful to use the <u>largest</u> α satisfying $[\alpha, \theta] = 0$.

- Called the **annihilator** of θ ; denoted $(0:\theta)$.
- Cute Fact:

$$\left(0 \prec \theta \text{ and } \alpha = (0:\theta)\right) \implies \mathbf{D}(\alpha,\theta)$$
 is subdirectly irreducible (SI) (with monolith φ)

Consequence of the Cute Fact

Suppose \mathbf{A}, \mathbf{A}' are finite algebras in a WDT variety, with

 $\theta \in \mathsf{Con} \, \mathbf{A} \text{ and } \theta' \in \mathsf{Con} \, \mathbf{A}', \text{ both minimal and abelian.}$

$$\alpha = (0:\theta)$$
 and $\alpha' = (0:\theta')$.

 $\mathbf{D} = \mathbf{D}(\alpha, \theta)$ with monolith φ , $\mathbf{D}' = \mathbf{D}(\alpha', \theta')$ with monolith φ' .

 $\mathbb{F}=$ the finite field for θ , and $\mathbb{F}'=$ the finite field for $\theta'.$

Lemma 8

In this situation: if $\mathbf{D}(\alpha, \theta) \cong \mathbf{D}(\alpha', \theta')$, then $\mathbb{F} \cong \mathbb{F}'$.

Proof sketch:

$$\mathbf{D} \cong \mathbf{D}' \ \Rightarrow \ (\mathbf{D}, \varphi) \cong (\mathbf{D}', \varphi') \ \Rightarrow \ (\mathbf{D}, \varphi, \mathcal{T}_\alpha) \cong (\mathbf{D}', \varphi', \mathcal{T}_{\alpha'}) \ \Rightarrow \ \mathbb{F} \cong \mathbb{F}'.$$
 because SI transversal subuniverses are conjugate

Similarity

Definition (Freese 1983)

Suppose ${\bf A},{\bf A}'$ are SI algebras in a <u>congruence modular</u> variety, with abelian monoliths μ,μ' respectively.

Say that ${\bf A}$ and ${\bf A}'$ are similar and write ${\bf A}\sim {\bf A}'$ if (some complicated shit).

Freese also proved:

(same complicated shit)
$$\iff \mathbf{D}(\alpha, \mu) \cong \mathbf{D}(\alpha', \mu')$$
 where $\alpha = (0 : \mu)$ and $\alpha' = (0 : \mu')$.

Use this to define \sim between SI's with abelian monoliths in WDT varieties.

Corollary 3

If \mathbf{A}, \mathbf{A}' are finite SI algebras in a WDT variety, with abelian monoliths and respective fields \mathbb{F}, \mathbb{F}' , then $\mathbf{A} \sim \mathbf{A}' \implies \mathbb{F} \cong \mathbb{F}'$.

(Deep breath)

Critical, completely functional relations

Definition

Suppose A_1, \ldots, A_n are finite algebras in a common signature.

Let
$$R \leq_{sd} \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$$
.

R is **completely functional** if each coordinate is determined by (i.e., is a function of) the remaining coordinates:

$$\forall i \in [n], \quad \begin{array}{c} (\mathbf{r}, a, \mathbf{s}) \in R \\ (\mathbf{r}, b, \mathbf{s}) \in R \end{array} \right\} \implies a = b.$$

n=2: R completely functional $\iff R$ is the graph of some $\mathbf{A}_1 \cong \mathbf{A}_2$. Boring

Examples with n = 3.

Also boring.

2 Let $\mathbf{A} = (A, +, 0)$ be a finite abelian group,

$$R_+ := \{(a_1, a_2, a_3) \in A^3 : a_1 + a_2 + a_3 = 0\} \leq_{sd} \mathbf{A} \times \mathbf{A} \times \mathbf{A}.$$

Not boring!

Definition (Kearnes & Szendrei 2012; Zhuk "Key relations" 2017)

Suppose $R \leq_{sd} \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$. R is critical if

- **1** R is meet-irreducible in the lattice $Sub(\mathbf{A}_1 \times \cdots \times \mathbf{A}_n)$.
- ② R has no dummy coordinates. (*) In particular, $|A_i| > 1$ for each i.

Examples:

Not critical

② $R_+ \leq_{sd} \mathbf{A} \times \mathbf{A} \times \mathbf{A}$ Critical when **A** is cyclic of prime power order.

(*) $R \neq A_1 \times \text{proj}_{\{2,...,n\}}(R)$, and similarly for the other coordinates.

Rectangular relations

Another kind of relation:

rectangular (a.k.a. "having the (1, n-1)-parallelogram property").

I won't define them. But let

$$CCF = \{all \ critical, \ completely \ functional \ relations\}$$

 $CR = \{all \ critical, \ rectangular \ relations\}$

$$PCCF = \{\text{all pullbacks of critical, completely functional relations}$$
 on quotients of the factor algebras $\mathbf{A}_1, \dots, \mathbf{A}_n\}.$

Then

$$CCF \subseteq CR \subseteq PCCF$$
.

Understanding $\it CR$ (in a locally finite variety) is sometimes important.

Understanding CCF is typically enough.

A worthy goal:

To describe critical rectangular relations in <u>locally finite WDT varieties</u>*.

We focus on critical, completely functional relations of arity ≥ 3 in locally finite WDT varieties.

Building on

- Kearnes & Szendrei (2012) in CM case.
- Zhuk "CSP" (2017).

(*) = locally finite Taylor varieties.

Theorem 4

Let $\mathbf{A}_1, \dots, \mathbf{A}_n$ be finite algebras in a locally finite WDT variety, $n \geq 3$. Suppose $R \leq_{sd} \mathbf{A}_1 \times \dots \times \mathbf{A}_n$ is completely functional and critical.

- **1** Each \mathbf{A}_i is subdirectly irreducible, say with monolith μ_i .
- **2** Each μ_i is abelian.

Let
$$\alpha_i := (0 : \mu_i)$$
 for each $i \in [n]$.

3 $\mathbf{A}_1 \sim \mathbf{A}_2 \sim \cdots \sim \mathbf{A}_n$, meaning

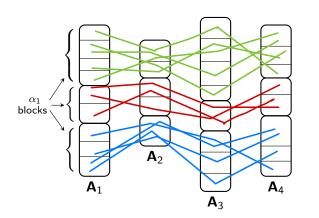
$$\mathbf{D}(\alpha_1,\mu_1)\cong\mathbf{D}(\alpha_2,\mu_2)\cong\cdots\cong\mathbf{D}(\alpha_n,\mu_n).$$

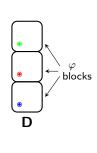
• R is "annihilator-coherent," meaning:

$$\mathbf{a}, \mathbf{b} \in R \implies (\forall i, j \ (a_i, b_i) \in \alpha_i \iff (a_j, b_j) \in \alpha_j).$$

- (1) is due to Kearnes & Szendrei (and does not need "WDT" or $n \ge 3$).
- (2)-(4) were proved by Kearnes & Szendrei in CM case; I extend to WDT.

Theorem 4 picture:





A completely functional, critical $R \leq_{sd} \mathbf{A}_1 \times \cdots \times \mathbf{A}_4$

Device for proving (3), (4)

To show e.g.

$$\mathbf{a}, \mathbf{b} \in R \implies \Big((\mathbf{a}_1, b_1) \in \alpha_1 \iff (\mathbf{a}_2, b_2) \in \alpha_2 \Big)$$
 and $\mathbf{A}_1 \sim \mathbf{A}_2$

define $\mathbf{C} := \operatorname{proj}_{1,2}(R) \leq_{sd} \mathbf{A}_1 \times \mathbf{A}_2$ and

$$\tau := \left\{ \begin{array}{ccc} a & C & b \\ \mu_1 & \mu_2 & \vdots & \exists \mathbf{x} \text{ with } (a, b, \mathbf{x}), (a', b', \mathbf{x}) \in R \\ a' & C & b' \end{array} \right\}$$

"Zhuk Bridge"

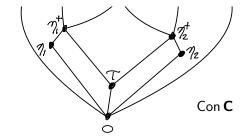
As a binary relation on rows, $\tau \in \mathsf{Con}\,\mathbf{C}$.

As a binary relation on columns, $\tau \leq_{sd} \mu_1 \times \mu_2$.

Using τ on rows:

$$\eta_i = \ker(\operatorname{proj}_i) \in \operatorname{Con} \mathbf{C}$$
 $\eta_i^+/\eta_i \searrow \tau/0 \text{ for } i = 1, 2.$

So τ is abelian.



In WDT varieties, perspective abelian intervals have = relative annihilators.

So
$$(\eta_1:\eta_1^+)=(0:\tau)=(\eta_2:\delta_2^+)$$
. Proves (α_1,α_2) -coherence of R .

Using τ on columns: the rule

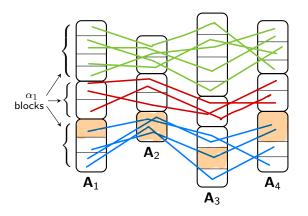
$$(a,a')/\Delta_1 \longmapsto (b',b)/\Delta_2 \quad \text{for all} \quad \mu_1 = b \\ a' = b'$$

determines a well-defined isomorphism $\lambda_{12}: \mathbf{D}(\alpha_1, \mu_1) \cong \mathbf{D}(\alpha_2, \mu_2)$.

Proves $\mathbf{A}_1 \sim \mathbf{A}_2$.

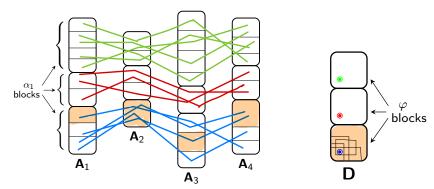
Strands

Suppose $R \leq_{sd} \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ as in Theorem 4.



A **strand** of R is a product $C = C_1 \times \cdots \times C_n$ where each C_i is a μ_i -block and $R \cap C \neq \emptyset$.

Fix a strand $C = C_1 \times \cdots \times C_n$.



Let \boldsymbol{D} be the common (up to \cong) difference algebra for $\boldsymbol{A}_1,\dots,\boldsymbol{A}_n.$

Let \mathbb{F} be the common finite field.

Let $\mathcal E$ be the φ -block corresponding to the α_i -blocks containing $\mathcal C$.

Embed C_1, \ldots, C_n in \mathcal{E} via $\chi_{e_1}, \ldots, \chi_{e_n}$ composed with \cong 's.

<u>Intuition</u>: $R \cap C$ "should" be the pullback to C of the solution set in \mathcal{E}^n of a single \mathbb{F} -linear equation.

I can't prove this intuition.

But I can prove it "locally" (using ideas from Zhuk "Key relations" 2017).

Let R^* be the unique upper cover of R in $Sub(\mathbf{A}_1 \times \cdots \times \mathbf{A}_n)$.

Let $C = C_1 \times \cdots \times C_n$ be a strand of R.

Define an edge relation E on $R^* \cap C$ by

a E **b** $\iff \exists i \in [n]$ with $a_j = b_j$ for all $j \neq i$.

Definition

An R-block (in C) is a connected component of the graph $(R^* \cap C, E)$.

I can verify the intuition on each R-block in C.

Blocks have a lot of structure.

Theorem 5

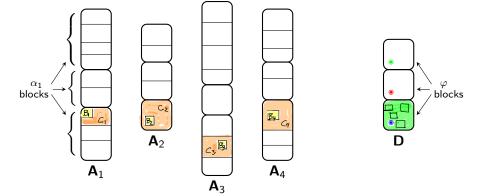
Let $R \leq_{sd} \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ as in Theorem 4.

Let $C = C_1 \times \cdots \times C_n$ be a strand of R.

Let B be an R-block in C.

- **1** $B \cap R \neq \emptyset$. (In fact, every $a \in B \setminus R$ is "essentially" in $B \cap R$.)
- $B = B_1 \times \cdots \times B_n$
- $|B_1| = \cdots = |B_n|.$
- Each B_i is a coset of a subgroup of $Grp(\mu_i, e_i)$ ($e_i \in C_i$).
- **⑤** $\forall i \in [n]$, $R \cap B$ "is" the graph of a function $\prod_{i \neq i} B_i \rightarrow B_i$.

Kearnes & Szendrei proved (1).



Theorem 6

(With everything as before): If $B = B_1 \times \cdots \times B_n$ is an R-block in the strand $C = C_1 \times \cdots \times C_n$, and each C_i is embedding in the appropriate φ -block of \mathbf{D} , then $R \cap B$ is the pullback to B of the solution set of a single \mathbb{F} -linear equation

$$\lambda_1 x_1 + \dots + \lambda_n x_n = u$$

in \mathcal{E}^n .

(Congruence modular case)

Lemma 9

(With everything as before): If $\mathbf{A}_1, \dots, \mathbf{A}_n$ are in a congruence modular variety, then every strand of R is contained in R^* and is an R-block.

So the intuition holds in CM varieties.

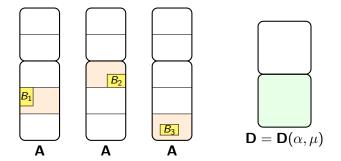
Question: where do $\lambda_1, \ldots, \lambda_n \in \mathbb{F}$ in Theorem 6 come from?

Consider the special case where n = 3 and

•
$$A_1 = A_2 = A_3 =: A$$
.

(monolith μ , annihilator α)

$$\bullet \ (a_1,a_2,a_3) \in R \implies a_1 \stackrel{\alpha}{\equiv} a_2 \stackrel{\alpha}{\equiv} a_3.$$



Recall that R induces isomorphisms $\lambda_{ij} : \mathbf{D}(\alpha_i, \mu_i) \cong \mathbf{D}(\alpha_j, \mu_j)$.

I.e., $\lambda_{ij} \in \operatorname{Aut}(\mathbf{D})$. Can check that $\lambda_{ij}(\varphi) \subseteq \varphi$ and $\lambda_{ij}(0_E) = 0_E \ \forall E$.

The linear equations used to define $R \cap B$, for each R-block B, use the same coefficients $\lambda_1, \ldots, \lambda_n$. Only the right-hand side constants vary.

Question 1: what (if anything) can be said about the right-hand side constants, for R-blocks within a fixed strand C?

If $B = B_1 \times \cdots \times B_n$ is an R-block, then B_1, \ldots, B_n cosets of subgroups of their respective μ_i -blocks.

Question 2: Are B_1, \ldots, B_n cosets of \mathbb{F} -subspaces of their respective μ_i -blocks?

Thank you!

References

- R. Freese, Subdirectly irreducible algebras in modular varieties, in Springer Lecture Notes Math. $1004 \ (1983)$.
- H.-P. Gumm, Algebras in permutable varieties: geometrical properties of affine algebras, Algebra Universalis $\bf 9$ (1979).
- C. Herrmann, Affine algebras in congruence modular varieties, *Acta Sci. Math. (Szeged)* **41** (1979).
- K. Kearnes, Varieties with a difference term, J. Algebra 177 (1995).
- ______, Relative Maltsev definability of some commutator properties, *Internat. J. Algebra Comput.* **33** (2023).
- K. Kearnes and E. Kiss, The Shape of Congruence Lattices, *Mem. Amer. Math. Soc.* **222** (2013).
- _____, What is the weakest idempotent Maltsev condition that implies that abelian tolerances generate abelian congruences?, arXiv:2412.00565 (2024).
- K. Kearnes & A. Szendrei, Clones of algebras with parallelogram terms, *Internat. J. Algebra Comput.* **22** (2012).

P. Lipparini, A characterization of varieties with a difference term, <i>Canad. Math. Bull.</i> 39 (1996).
R. Willard, Abelian congruences and similarity in varieties with a weak difference term, arXiv:2502.20517, 2025.
, Zhuk's bridges, centralizers, and similarity, arXiv:2503:03551, 2025.
, Critical rectangular relations in locally finite Taylor varieties (very soon I hope
D. Zhuk, Key (critical) relations preserved by a weak near-unanimity function, $Algebra$ Universalis 77 (2017).
, A proof of CSP dichotomy conjecture, 58th IEEE Symposium FOCS (2017).
, A proof of the CSP dichotomy conjecture, <i>J. ACM</i> 67 (2020).