Abelian congruences in locally finite Taylor varieties Tutorial – Lecture 2

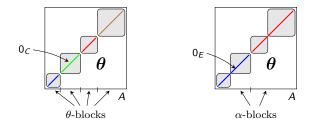
Ross Willard

Waterloo (Canada)

BLAST 2025 – Boulder, USA 21 May 2025

Recap – abelian congruence, weak difference term

A congruence θ of **A** is *abelian* if θ has a congruence Δ such that each diagonal $0_C := \{(c, c) : c \in C\}$ is a Δ -block, for C a θ -block.



<u>Generalization</u>. $[\alpha, \theta] = 0$ with $\alpha \ge \theta$. " α centralizes θ "

A 3-ary term d(x, y, z) is a *weak difference term* (WDT) for a variety \mathcal{V} if it is Maltsev on every block of an abelian congruence of any $\mathbf{A} \in \mathcal{V}$:

$$heta$$
 abelian, $(a,b)\in heta\implies d(a,a,b)=b=d(b,a,a).$

Recap (continued) – abelian groups on θ -blocks

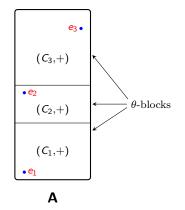
Suppose $\mathbf{A} \in \mathcal{V}$ with a WDT, $\theta \in \text{Con } \mathbf{A}$, and θ is abelian.

Each θ -block *C* carries the structure of an abelian group (C, +).

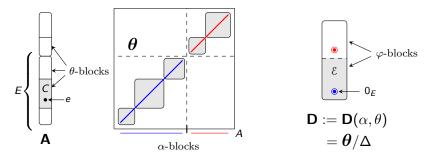
• Recipe: choose $e \in C$; then

x+y:=d(x,e,y).

• Notation for this group: $Grp(\theta, e)$.



Recap (continued) – Difference algebra $\mathbf{D}(\alpha, \theta)$



Suppose $\mathbf{A} \in \mathcal{V}$ with a WDT, $\alpha \geq \theta$ in Con \mathbf{A} , $[\alpha, \theta] = 0$, and $\Delta = \Delta_{\theta, \alpha}$ the smallest witness. Let $\mathbf{D} = \mathbf{D}(\alpha, \theta) := \boldsymbol{\theta}/\Delta$ and $\varphi := \overline{\alpha}/\Delta$.

() θ and φ are abelian. (So lots of abelian groups.)

Today's goal: examine the abelian groups

 $Grp(\theta, e)$

when **A** is <u>finite</u> and θ is <u>minimal</u>, i.e., $0 \prec \theta$.

We will see that the groups become vector spaces over a finite field \mathbb{F} .

Freese (1983) proved this for A in congruence modular varieties.

- That it also holds for **A** in WDT varieties is folklore.
- I give two proofs for WDT varieties in my "Similarity" manuscript.
- Today I sketch a 3rd (even better) proof.

Constructing the finite field \mathbb{F} (when **A** is finite and $0 \prec \theta$)

Easy case: when θ has a transversal $T \leq \mathbf{A}$

Until further notice, assume:

- $\textbf{A} \in \mathcal{V}$ with a WDT, with A finite
- $\theta \in \text{Con } \mathbf{A}$, θ is abelian, and $0 \prec \theta$.
- T is a transversal for θ satisfying $T \leq \mathbf{A}$.

Definition

$$F := \{\lambda \in \mathsf{End}(\mathsf{A}) \, : \, \lambda(\theta) \subseteq \theta \text{ and } \lambda(e) = e \text{ for all } e \in T\}.$$

Easy observation:

• $\lambda \in F \implies \forall \theta$ -block $C, \ \lambda|_C \in \text{End}(\text{Grp}(\theta, e))$ where $e \in C \cap T$.

 $F := \{\lambda \in \mathsf{End}(\mathsf{A}) \, : \, \lambda(\theta) \subseteq \theta \text{ and } \lambda(e) = e \text{ for all } e \in T\}$

Given $\lambda, \mu \in F$, define $\lambda + \mu : A \to A$ so that for every θ -block C, $(\lambda + \mu)|_{C} = \lambda|_{C} + \mu|_{C}$ in End(Grp (θ, e)) where $e \in C \cap T$.

I.e.,

$$(\lambda + \mu)(a) = d(\lambda(a), e, \mu(a))$$
 where $a \stackrel{\theta}{\equiv} e \in T$.

Lemma 5

 $\lambda, \mu \in F \implies \lambda + \mu \in F.$

Proof sketch. Nontrivial part: $\lambda, \mu \in F \implies \lambda + \mu \in \text{End}(\mathbf{A})$. Let f(x, y) be a basic operation. Let $a_1, a_2 \in A$. Compute $f(a_1, a_2)$.

Let $e_1, e_2, e \in T$ in their θ -blocks.

$$T \leq \mathbf{A} \implies f(e_1, e_2) = e.$$

 θ -blocks

$$e_1, e_2, e \in T$$
, $a_i \stackrel{\theta}{\equiv} e_i$, $f(a_1, a_2) \stackrel{\theta}{\equiv} f(e_1, e_2) = e$

Now let $\lambda, \mu \in F$.

Let $\sigma := \lambda + \mu$. Then:

$$f(\sigma(a_1), \sigma(a_2)) = f\left(d(\underbrace{\lambda(a_1), e_1, \mu(a_1)}_{\theta}), \ d(\underbrace{\lambda(a_2), e_2, \mu(a_2)}_{\theta})\right)$$
$$= d\left(f(\lambda(a_1), \lambda(a_2)), \ f(e_1, e_2), \ f(\mu(a_1), \mu(a_2))\right)$$

Technical Lemma 1

$$= d\left(\lambda(f(a_1, a_2)), e, \mu(f(a_1, a_2))\right) \qquad \lambda, \mu \in \operatorname{End}(\mathbf{A})$$
$$= \sigma(f(a_1, a_2)).$$

Similarly for basic operations of other arities.

Thus $\sigma \in \text{End}(\mathbf{A})$.

Ross Willard (Waterloo)

Corollary 2

(In the easy case: θ has a transversal $T \leq \mathbf{A}$)

 $\mathbb{F} := (F; +, \circ, 0, 1) \text{ is a unital ring, where}$ $0: A \to A \quad \text{is the retraction of } \mathbf{A} \text{ onto } \mathbf{T} \text{ collapsing } \theta \text{-blocks}$ $1: A \to A \quad \text{is the identity map.}$ $\mathbb{F} \text{ acts networkly an each } \theta \text{ black } Crn(\theta, s) \ (s \in T) \text{ turning each integral}$

 $\mathbb F$ acts naturally on each heta-block Grp(heta, e) ($e \in T$), turning each into an $\mathbb F$ -module.

We haven't yet used finiteness or $0 \prec \theta$.

We use them now to prove \mathbb{F} is a finite field.

Key Lemma 6 (Easy case, $0 \prec \theta$): T is a maximal proper subuniverse of **A**.

Proof sketch (if time). Suppose $T < S \leq A$.

Pick $a \in S \setminus T$. Let $b \in A$. (Must show $b \in S$.)

Ross Willard (Waterloo)

 $T < S \leq A$, $a \in S \setminus T$, $b \in A$. (Must show $b \in S$.) Let $e, e' \in T$ with $a \stackrel{\theta}{\equiv} e$ and $b \stackrel{\theta}{\equiv} e'$. Note: $a \neq e$ (since $a \notin T$). θ minimal $\implies (b, e') \in Cg(a, e).$ θ abelian $\implies \exists g \in \mathsf{Pol}_1(\mathbf{A})$ with |g(a) = b and g(e) = e' | (Lemma 1). Write $g(x) = t(x, c_1, \dots, c_n)$ with t(x, y) a term. Choose $e_1, \ldots, e_n \in T$ with $c_i \stackrel{\theta}{\equiv} e_i$. Observe: $\underbrace{t(e,e_1,\ldots,e_n)}_{\notin} \stackrel{\theta}{\equiv} t(e,c_1,\ldots,c_n) = g(e) = e'.$ So $t(e, e_1, \ldots, e_n) = e' = t(e, c_1, \ldots, c_n).$

(Proof continued next page)

Ross Willard (Waterloo)

$$T < S \le A, \quad a \in S \setminus T, \quad b \in A. \quad (\text{Must show } b \in S.)$$

$$e_1 \stackrel{\theta}{=} c_1, \dots, e_n \stackrel{\theta}{=} c_n, \quad e \stackrel{\theta}{=} a, \text{ and } e, e_1, \dots, e_n \in T$$

$$t(e, e_1, \dots, e_n) = e' = t(e, c_1, \dots, c_n) \qquad \qquad b = t(a, c_1, \dots, c_n)$$

Let $\Delta \in \mathsf{Con}\, \boldsymbol{\theta}$ witness that θ is abelian. Observe that

$$t\left(\begin{pmatrix}e\\e\\e\end{pmatrix},\begin{pmatrix}e_1\\c_1\end{pmatrix},\ldots,\begin{pmatrix}e_n\\c_n\end{pmatrix}\right) \stackrel{\Delta}{\equiv} t\left(\begin{pmatrix}a\\a\\\end{pmatrix},\begin{pmatrix}e_1\\c_1\end{pmatrix},\ldots,\begin{pmatrix}e_n\\c_n\end{pmatrix}\right)$$

This simplifies to

$$\begin{pmatrix} e' \\ e' \end{pmatrix} \stackrel{\Delta}{=} \begin{pmatrix} t(a, e_1, \dots, e_n) \\ b \end{pmatrix}.$$

$$\implies t(a, e_1, \ldots, e_n) = b$$

 $\implies b \in Sg(\{a\} \cup T) \subseteq S.$

(Completes the proof that T is a maximal proper subuniverse of A.)

 $F = \{\lambda \in \operatorname{End}(\mathbf{A}) : \lambda(\theta) \subseteq \theta \text{ and } \lambda(e) = e \text{ for all } e \in T\}$ $T < \mathbf{A}, T \text{ maximal}$

Suppose
$$\lambda \in \mathbb{F}$$
, $\lambda \neq 0$.
Observe: $T \leq \operatorname{ran}(\lambda) \leq \mathbf{A}$ and $T \leq \lambda^{-1}(T) \leq \mathbf{A}$
 $\lambda \neq 0 \implies \operatorname{ran}(\lambda) \neq T$ and $\lambda^{-1}(T) \neq A$.
Hence (1) $\operatorname{ran}(\lambda) = A$ and (2) $\lambda^{-1}(T) = T$.
(1) $\implies \lambda$ is surjective.

(2)
$$\implies$$
 each $\lambda|_{\mathcal{C}}$ is injective $\implies \lambda$ is injective

 $\implies \lambda^{-1}$ exists; so \mathbb{F} is a division ring. Thus \mathbb{F} is a field (by finiteness).

Theorem 2

If **A** is finite in a WDT variety, θ is abelian, $0 \prec \theta$, and T is a transversal of θ satisfying $T \leq \mathbf{A}$, then \mathbb{F} constructed above is a finite field, and for each $e \in T$, $\operatorname{Grp}(\theta, e)$ is naturally a vector space over \mathbb{F} , $\forall e \in T$.

Problem:

- A transversal T for θ satisfying $T \leq \mathbf{A}$ might not exist.
- For example, the quaternion group **Q** and $\theta = \{(x, y) : y = \pm x\}$.

Solution:

Choose
$$\alpha \ge \theta$$
 satisfying $[\alpha, \theta] = 0$. (E.g., $\alpha = \theta$)
Form $\mathbf{D} = \mathbf{D}(\alpha, \theta)$ and its derived congruence φ .
 $0 \prec \theta \implies 0 \prec \varphi$ (can show).
And φ has a natural transversal T_{α} satisfying $T_{\alpha} \le \mathbf{D}$, namely,

$$T_{\alpha} = \{ 0_E : E \text{ is an } \alpha \text{-block} \}.$$

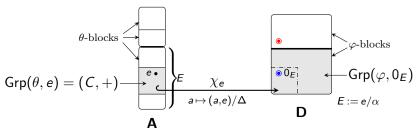
So we can define $\mathbb{F} = \mathbb{F}_{(\mathbf{D}, \varphi, \mathcal{T}_{\alpha})}$ as in the easy case, using $\mathbf{D}, \varphi, \mathcal{T}_{\alpha}$.

Problem:

But $\mathbb{F}_{(\mathbf{D},\varphi,\mathcal{T}_{\alpha})}$ acts on φ -blocks (in **D**), not on θ -blocks (in **A**).

Solution.

Given $e \in A$, consider $\chi_e : \operatorname{Grp}(\theta, e) \longrightarrow \operatorname{Grp}(\varphi, 0_E)$ where $E := e/\alpha$.



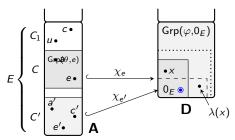
If we show $ran(\chi_e)$ is an $\mathbb{F}_{(\mathbf{D},\varphi,\mathcal{T}_{\alpha})}$ -subspace of $Grp(\varphi, \mathbf{0}_E) \dots$

... then we can define an action of $\mathbb{F}_{(\mathbf{D},\varphi,T_{\alpha})}$ on C via χ_e and χ_e^{-1} .

Lemma 7

Suppose **A** is finite, $\mathbf{A} \in \mathcal{V}$ with WDT, $0 \prec \theta \leq \alpha$, and $[\alpha, \theta] = 0$. Let $\mathbf{D} := \mathbf{D}(\alpha, \theta)$, φ its derived congruence, and $\mathbb{F} := \mathbb{F}_{(\mathbf{D},\varphi,T_{\alpha})}$. If $e \in A$ and $E = e/\alpha$, then $\operatorname{ran}(\chi_e)$ is an \mathbb{F} -subspace of $\operatorname{Grp}(\varphi, 0_E)$.

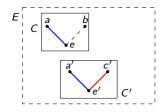
Proof. Fix $\lambda \in \mathbb{F}$, let $C := e/\theta$. Must show ran(C) is closed under λ . Let $x \in \operatorname{ran}(C)$, so $x = (a, e)/\Delta$ with $a \in C$. (Can assume $a \neq e$.) Write $\lambda(x) = (c, u)/\Delta$ and $C_1 := u/\theta$.



Trick: $\exists \theta$ -block $C' \subseteq E$ with

 $\operatorname{ran}(C) \cup \operatorname{ran}(C_1) \subseteq \operatorname{ran}(C').$

Get
$$a', c', e' \in C'$$
 with
 $(a', e')/\Delta = x$
 $(c', e')/\Delta = \lambda(x).$



$$egin{aligned} x &= (a,e)/\Delta = (a',e')/\Delta \ \lambda(x) &= (c',e')/\Delta \end{aligned}$$

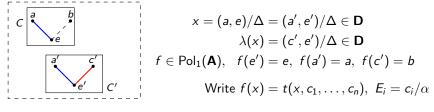
Recall: $a \neq e$. So $a' \neq e'$.

$$egin{array}{ll} heta & (a,e) \in \mathsf{Cg}(a',e') \ & \Longrightarrow \ \exists f \in \mathsf{Pol}_1(\mathsf{A}) \ \mathrm{s.t.} \ f(a') = a \ \mathrm{and} \ f(e') = e. \end{array}$$
 (Lemma 1)

Observe that $f(C') \subseteq C$.

Define b = f(c').

Claim: $(b, e)/\Delta = (c', e')/\Delta \ (= \lambda(x)).$



$$t(x, 0_{E_1}, \dots, 0_{E_n}) = t((a', e')/\Delta, (c_1, c_1)/\Delta, \dots, (c_n, c_n)/\Delta)$$
$$= (f(a'), f(e'))/\Delta$$
$$= (a, e)/\Delta = x$$

~	1	2	
5	C		

$$\begin{split} \lambda(x) &= \lambda(t(x, 0_{E_1}, \dots, 0_{E_n})) \\ &= t(\lambda(x), 0_{E_1}, \dots, 0_{E_n}) \\ &= t((c', e')/\Delta, (c_1, c_1)/\Delta, \dots, (c_n, c_n)/\Delta) \\ &= (f(c'), f(e'))/\Delta \\ &= (b, e)/\Delta, \quad \text{proving the Claim.} \quad \text{Hence } \lambda(x) \in \operatorname{ran}(C). \end{split}$$

Theorem 3

Suppose **A** is finite in a WDT variety, $0 \prec \theta \leq \alpha$, and $[\alpha, \theta] = 0$. Let **D** = **D** (α, θ) , φ its derived congruence, and $\mathbb{F} := \mathbb{F}_{(\mathbf{D}, \varphi, \mathcal{T}_{\alpha})}$.

- For every e ∈ A, 𝔽 acts naturally on Grp(θ, e), turning it into a vector space over 𝔽.
- 2 The action is this: letting $C = e/\theta$, then for every $\lambda \in \mathbb{F}$ and $a \in C$,

 $\lambda \cdot a :=$ the unique $b \in C$ satisfying $(b, e)/\Delta = \lambda((a, e)/\Delta)$.

With respect to these actions, the maps χ_e : Grp(θ, e) → Grp(φ, 0_E) become 𝔽-linear embeddings of vector spaces.

Discussion

Problem:

Why didn't I just let $\alpha = \theta$ and use $\mathbf{D} = \mathbf{D}(\theta, \theta)$ and $\mathbb{F} = \mathbb{F}_{(\mathbf{D}(\theta, \theta), \varphi, T_{\theta})}$?

Then each α -class has only one θ -class, and we would not have needed Lemma 7 (or the definition of $[\alpha, \theta] = 0$).

Answer:

Come to tomorrow's lecture.

Problem:

Do different choices for α lead to different fields $\mathbb{F}_{(\mathbf{D},\varphi,\mathcal{T}_{\alpha})}$?

Answer:

They don't!

Proposition

Let **A** be finite in a WDT variety, and $0 \prec \theta \in \text{Con } \mathbf{A}$ with θ abelian.

Let
$$\alpha \geq \theta$$
 satisfy $[\alpha, \theta] = 0$.

Let
$$\mathbb{F}_{\alpha} = \mathbb{F}_{(\mathsf{D}, \varphi, \mathcal{T}_{\alpha})}$$
 where $\mathsf{D} = \mathsf{D}(\alpha, \theta)$ and $\varphi = \overline{\alpha} / \Delta_{\theta, \alpha}$.

Then:

- **Q** \mathbb{F}_{α} is independent of the choice of α (up to obvious isomorphisms).
- Por each e ∈ A, the actions of 𝔽_α on Grp(θ, e) are the same (modulo the obvious isomorphisms).

Summary

Suppose $\mathbf{A} \in \mathcal{V}$ with a WDT, \mathbf{A} is <u>finite</u>, $\theta \in \text{Con } \mathbf{A}$ is abelian, and $0 \prec \theta$. There is a finite field \mathbb{F} such that:

() Each θ -block naturally inherits the structure of a vector space over \mathbb{F} .

2 For each
$$\alpha \geq \theta$$
 with $[\alpha, \theta] = 0$:

- (a) Each φ -block of the difference algebra $\mathbf{D}(\alpha, \theta)$ inherits the structure of a vector space over \mathbb{F} .
- (b) Each $\chi_e : \operatorname{Grp}(\theta, e) \hookrightarrow \operatorname{Grp}(\varphi, 0_E)$ is a vector space embedding.
- (And more!) The F-vector space structure on θ-blocks determines the restrictions of polynomials of A to θ-blocks, in the following sense:

Fix a transveral T for θ . For all $n \ge 1$, for all θ -blocks C_1, \ldots, C_n , the set $\{p|_{C_1 \times \cdots \times C_n} : p \in \text{Pol}_n(\mathbf{A})\}$

is exactly the set of all $\mathbb F\text{-affine}$ maps

$$\mathsf{Grp}(\theta, e_1) \times \cdots \times \mathsf{Grp}(\theta, e_n) \to \mathsf{Grp}(\theta, e)$$

where $e_i \in C_i \cap T$ and $e \in T$.