Abelian congruences in locally finite Taylor varieties Tutorial – Lecture 1

Ross Willard

Waterloo (Canada)

BLAST 2025 – Boulder, USA 19 May 2025

What is this tutorial about?

Shameless flogging of my recent papers:

- "Abelian congruences and similarity in varieties with a weak difference term" (arXiv 2025)
- 2 "Zhuk's bridges, centralizers, and similarity" (arXiv 2025)
- "Critical rectangular relations in locally finite Taylor varieties" (coming).

Plan

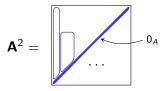
(Today)

- Abelian congruences, weak difference terms
- Centrality, difference algebras
- Embedding congruence blocks, ranges
- (Wednesday)
 - The finite field associated to an abelian minimal congruence of a finite Taylor algebra
- (Thursday)
 - Critical, completely functional relations in locally finite Taylor varieties

Part 1 – abelian congruences, weak difference terms

Definition

An algebra **A** is *abelian* if \mathbf{A}^2 has a congruence Δ for which the diagonal $0_A := \{(a, a) : a \in A\}$ is a single block.



Example: An abelian group $\mathbf{A} = (A, +)$ is abelian.

Proof: $0_A \triangleleft \mathbf{A}^2$. So 0_A is a block of the congruence Δ of \mathbf{A}^2 , namely

$$\begin{pmatrix} a \\ b \end{pmatrix} \stackrel{\Delta}{=} \begin{pmatrix} a' \\ b' \end{pmatrix} \iff \begin{pmatrix} a \\ b \end{pmatrix} - \begin{pmatrix} a' \\ b' \end{pmatrix} \in 0_A$$
$$\iff a - a' = b - b'$$
$$\iff a - b = a' - b'.$$
 'Equal differences'

Theorem 1 (Gumm, Herrmann 1979)

Suppose **A** is abelian (witnessed by Δ) and has a *Maltsev* term m(x, y, z):

 $m(x, x, y) \approx y \approx m(y, x, x).$

Fix $e \in A$, and define

$$x+y:=m(x,e,y).$$

 $\mathbf{0}$ + is an abelian group operation on A, with identity element e.

$$m(x,y,z) = x - y + z.$$

③
$$\Delta = \{((a, b), (a', b')) \in A^2 \times A^2 : a - b = a' - b'\}.$$

(And more: + governs the polynomial operations of A . . .)

A is abelian. $m(x, x, y) \approx y \approx m(y, x, x)$. x + y := m(x, e, y).

Proof of x + y = y + x

Let $\Delta \in \text{Con } \mathbf{A}^2$ witness abelianness of \mathbf{A} . Let $a, b \in A$.

We have

$$\begin{pmatrix} a \\ b \end{pmatrix} \stackrel{\Delta}{=} \begin{pmatrix} a \\ b \end{pmatrix}, \quad \begin{pmatrix} b \\ b \end{pmatrix} \stackrel{\Delta}{=} \begin{pmatrix} e \\ e \end{pmatrix}, \quad \begin{pmatrix} b \\ a \end{pmatrix} \stackrel{\Delta}{=} \begin{pmatrix} b \\ a \end{pmatrix}.$$

So

$$m\left(\begin{pmatrix}a\\b\end{pmatrix},\begin{pmatrix}b\\b\end{pmatrix},\begin{pmatrix}b\\a\end{pmatrix}\end{pmatrix}\stackrel{\Delta}{\equiv}m\left(\begin{pmatrix}a\\b\end{pmatrix},\begin{pmatrix}e\\e\end{pmatrix},\begin{pmatrix}b\\a\end{pmatrix}\right),$$

i.e.,

$$\begin{pmatrix} a \\ a \end{pmatrix} = \begin{pmatrix} m(a, b, b) \\ m(b, b, a) \end{pmatrix} \stackrel{\Delta}{=} \begin{pmatrix} m(a, e, b) \\ m(b, e, a) \end{pmatrix} = \begin{pmatrix} a + b \\ b + a \end{pmatrix}$$

The diagonal 0_A is a Δ -block, so a + b = b + a.

Ross Willard (Waterloo)

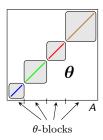
•

Relativizing abelianness: to congruences

Definition

Suppose **A** is an algebra and $\theta \in Con \mathbf{A}$.

- $\boldsymbol{\theta} :=$ the subalgebra of \mathbf{A}^2 with universe $\boldsymbol{\theta}$.
- **2** θ is abelian if θ has a congruence Δ such that for each θ -block C, the diagonal $0_C := \{(c, c) : c \in C\}$ is a Δ -block.



Ideal situation:

- Each θ-block has an abelian group operation + on it.
- $(a, b) \stackrel{\Delta}{=} (a', b') \iff a, b, a', b'$ belong to the same θ -block and a - b = a' - b'.

"Equal differences in each group"

The theorem on abelian Maltsev algebras relativizes to congruences.

You simply need a term which satisfies Maltsev's identities **on each block of the abelian congruence.**

Corollary 1 (folklore)

Suppose **A** is an algebra, $\theta \in \text{Con } \mathbf{A}$ is abelian, and **A** has a term d(x, y, z) which "is Maltsev" on each θ -block.

- For each θ -block C, if $e \in C$ and x + y := d(x, e, y), then (C, +) is an abelian group.
- **2** The smallest $\Delta \in \text{Con } \boldsymbol{\theta}$ witnessing abelianness of θ is the "equal differences in each group" relation.
- (And more: the operations + on the θ-blocks govern the restrictions of polynomials to tuples of θ-blocks ...)

Definition (Kearnes 1995, Lipparini 1996)

A term d(x, y, z) which is Maltsev on each block of every abelian congruence (of every algebra in a variety) is called a **weak difference term** (or **WDT**) for the variety.

Nearly all varieties of interest have a weak difference term, including:

- congruence modular varieties (Gumm 1980)
- locally finite Taylor varieties (Hobby & McKenzie 1988)

Recent papers with a focus on varieties with a WDT:

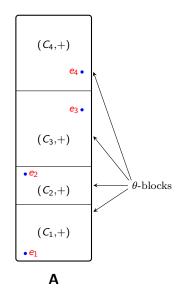
- Kearnes & Kiss, The Shape of Congruence Lattices, 2013
- Kearnes, Relative Maltsev definability..., 2023
- Kearnes & Kiss, What is the weakest idempotent. . . (arXiv 2024)

The picture

Blocks of an abelian congruence θ (in a WDT variety):

Notation: Grp
$$(\theta, e)$$
 denotes $(C, +)$
where $C = e/\theta$ and $x + y := d(x, e, y)$.

1980s notation: $M(\theta, e)$



Technical Lemma 1

Suppose **A** belongs to a variety with a WDT, $\theta \in \text{Con } \mathbf{A}$, and θ is abelian.

The proofs are elementary. For example (if time):

(1) Show $\theta \circ \delta \circ \theta \subseteq \delta \circ \theta \circ \delta$. Assume $a \stackrel{\theta}{\equiv} x \stackrel{\delta}{\equiv} y \stackrel{\theta}{\equiv} b$. Then

$$a = d(a, x, x) \stackrel{\delta}{\equiv} d(a, y, y) \stackrel{\theta}{\equiv} d(x, y, b) \stackrel{\delta}{\equiv} d(y, y, b) = b.$$

(2)
$$\theta$$
 abelian $\implies (\theta \lor \delta)/\delta$ abelian

Let Δ be the smallest witness to abelianness of θ .

Using (1), it is enough to assume $\delta \leq \theta$ and show the following:

$$\begin{pmatrix} a \\ b \end{pmatrix} \stackrel{\Delta}{=} \begin{pmatrix} a' \\ b' \end{pmatrix}$$
 and $(a, b) \in \delta \implies (a', b') \in \delta.$ (*

Assume the hypotheses of (*). Then by the folklore Corollary, a, b, a', b' are in a common θ -block C and

$$a-b=a'-b'$$
 in $(C,+)$

c	\sim
э	v

$$b' = a' - a + b$$

= $d(a', a, b)$

so

$$b'=d(a',a,b)\stackrel{\delta}{\equiv}d(a',a,a)=a'$$

as required.

Ross Willard (Waterloo)

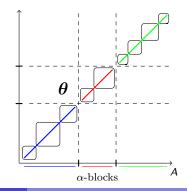
Part 2 – centrality, difference algebras

Let **A** be an algebra and $\alpha, \theta \in \text{Con } \mathbf{A}$.

Definition

We say that α centralizes θ , and write $[\alpha, \theta] = 0$, if θ has a congruence Δ such that for each α -block E, the diagonal 0_E is a Δ -block.

Picture when $\alpha \geq \theta$.



Ross Willard (Waterloo)

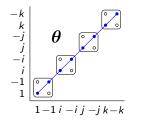
Example

Let $\mathbf{A} =$ the quaternian group $\mathbf{Q} = (\{\pm 1, \pm i, \pm j, \pm k\}, \cdot)$

$$\boldsymbol{\theta} = \mathsf{the} \ \mathsf{congruence} \ \mathsf{corresp.} \ \mathsf{to} \ \{\pm 1\} \lhd \mathbf{Q}$$

lpha=1 (= Q^2). Con Q

So
$$oldsymbol{ heta}=\{(x,y)\in Q^2\,:\,y=\pm x\}\leq {f Q}^2$$
 (a subgroup of order 16)



Observe that $0_Q = \{(x,x) : x \in Q\} \lhd \boldsymbol{\theta}.$

So 0_Q is a block of a congruence Δ of $\boldsymbol{\theta}$.

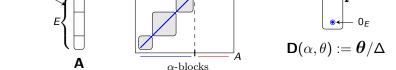
 Δ witnesses $[1, \theta] = 0$.

 $1=\alpha$

θ

Construction

Assume $\alpha \ge \theta$ and $[\alpha, \theta] = 0$. Let Δ = the smallest witness. (*) α -blocks



The difference algebra for (α, θ) is $\mathbf{D}(\alpha, \theta) := \boldsymbol{\theta}/\Delta$.

Let $\overline{\alpha} :=$ the congruence of θ corresponding to α . Then $\Delta \leq \overline{\alpha}$.

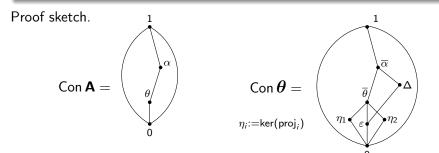
Define

 $\varphi := \overline{\alpha} / \Delta \in \mathsf{Con} \, \mathbf{D}(\alpha, \theta), \quad \text{the derived congruence.}$

(*) $\Delta = \Delta_{\theta,\alpha} = \text{the transitive closure of } \left\{ \left\langle \begin{pmatrix} r \\ s \end{pmatrix}, \begin{pmatrix} r' \\ s' \end{pmatrix} \right\rangle : \begin{pmatrix} r & r' \\ s & s' \end{pmatrix} \text{ is a } \theta, \alpha \text{-matrix} \right\}.$

Lemma 2

In varieties with a WDT, the derived congruence $\varphi = \overline{\alpha}/\Delta$ is abelian.



Let $\overline{\theta}$ = the congruence of θ corresponding to θ . θ is abelian $\implies \overline{\theta}$ is abelian

By Technical Lemma 1, $(\overline{ heta} \lor \Delta) / \Delta$ is abelian.

Part 3 – Embedding θ -blocks, ranges

Embeddings

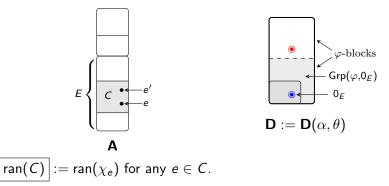
Let $\mathbf{A} \in WDT$ variety, $\alpha \geq \theta$, $[\alpha, \theta] = 0$. Let $\mathbf{D} = \mathbf{D}(\alpha, \theta)$ and $\varphi = \overline{\alpha}/\Delta$. Abelian groups!! 8 Fix $e \in A$, let $C = e/\theta$. Е 0_E $\operatorname{Grp}(\theta, e) := (C, +).$ $\mathbf{D} := \mathbf{D}(\alpha, \theta)$ Fix $E \in A/\alpha$, let $\mathcal{E} = 0_E/\varphi$. Α $\operatorname{Grp}(\varphi, 0_F) := (\mathcal{E}, +).$

If
$$C \subseteq E$$
, define $| \chi_e : C \to \mathcal{E}$ by $\chi_e(a) := (a, e)/\Delta$.

Lemma 3

$$\chi_e$$
 is a group embedding $\operatorname{Grp}(\theta, e) \hookrightarrow \operatorname{Grp}(\varphi, 0_E)$.

Fact: If C is a θ -block and $e, e' \in C$, then $ran(\chi_e) = ran(\chi_{e'})$.



Lemma 4

Fix an α -block E.

For all θ -blocks $C_1, C_2 \subseteq E$, there exists a θ -block $C \subseteq E$ such that

 $\operatorname{ran}(C_1) \cup \operatorname{ran}(C_2) \subseteq \operatorname{ran}(C).$

Proof hint: Let $C = d(C_1, C_1, C_2)$ in \mathbf{A}/θ .

Proof sketch (if time). (*E* an α -block; C_1, C_2 two θ -blocks $\subseteq E$) Fix $e_1 \in C_1$ and $e_2 \in C_2$. So $(e_1, e_2) \in \alpha$. Let $e = d(e_1, e_1, e_2)$ and $C = e/\theta$. $e \stackrel{\alpha}{\equiv} d(e_1, e_1, e_1) = e_1 \implies e \in E \implies C \subseteq E.$ <u>Claim</u>. ran $(C_1) \subseteq ran(C)$. Proof. Fix $a \in C_1$. (We want $\chi_{e_1}(a) \in \operatorname{ran}(\chi_e) = \operatorname{ran}(C)$.) Let $b := d(a, e_1, e_2) \stackrel{\theta}{\equiv} d(e_1, e_1, e_2) = e$. (So $b \in C$) $d\left(\begin{pmatrix}a\\e_1\end{pmatrix},\begin{pmatrix}e_1\\e_1\end{pmatrix},\begin{pmatrix}e_1\\e_1\end{pmatrix}\right) \stackrel{\Delta}{=} d\left(\begin{pmatrix}a\\e_1\end{pmatrix},\begin{pmatrix}e_1\\e_1\end{pmatrix},\begin{pmatrix}e_2\\e_2\end{pmatrix}\right)$ Δ i.e..

$$(a,e_1) \stackrel{\Delta}{=} (b,e)$$
 so $\chi_{e_1}(a) = \chi_e(b) \in \operatorname{ran}(C).$

A similar argument shows $ran(C_2) \subseteq ran(C)$.

Ross Willard (Waterloo)

Summary

Suppose $\mathbf{A} \in \mathcal{V}$ with a WDT, $\alpha \geq \theta$ in Con \mathbf{A} , and $[\alpha, \theta] = 0$.

Let $\Delta =$ the smallest witness, $\mathbf{D} = \boldsymbol{\theta} / \Delta$, and $\varphi = \overline{\alpha} / \Delta \in$ Con \mathbf{D} .

- φ (like θ) is abelian.
- **2** The φ -blocks in **D** (like the θ -blocks in **A**) support abelian groups.
- **3** The φ -blocks in **D** are naturally in 1-1 correspondence with the α -blocks in **A**: $E \mapsto 0_E/\varphi$.
- Abelian groups on θ-blocks within a fixed α-block E naturally embed into the corresponding group Grp(φ, 0_E).
- The ranges in Grp(φ, 0_E) of the θ-blocks in E form a directed set of subgroups of Grp(φ, 0_E).