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A shift in foundations

Mathematics in the 21st century is fundamentally concerned with
deformations⇝ Homotopy theory is primary

Animated image created by: Lucas Vieira (LucasVB), https://en.wikipedia.org/wiki/File:Mug_and_Torus_morph.gif

Instead of sets, clouds of discrete elements, we envisage some sorts of vague spaces, which
can be very severely deformed, mapped one to another, and all the while the specific space is
not important, but only the space up to deformation. I am pretty strongly convinced that there
is an ongoing reversal in the collective consciousness of mathematicians: the [. . . ]
homotopical picture of the world becomes the basic intuition
—Y. Manin ’09 (emphases mine)

https://en.wikipedia.org/wiki/File:Mug_and_Torus_morph.gif


Homotopy type theory

Homotopy type theory (HoTT): basic types are homotopy types

Reinterpretation & extension of constructive Martin-Löf type theory (1970s) into ∞-groupoids
(even all ∞-toposes)

New and rapidly developing field: Hofmann–Streicher (’98, ’06), Voevodsky (’06/’09),
Awodey–Warren (’07), van den Berg–Garner (’08, ’10), Joyal, Kapulkin–Lumsdaine (’12), Shulman
(’12, ’19), Cisinski (’14), Coquand (’14/’15), . . .

Deep and far-reaching bridge between homotopy theory and logic/formalization!

Develop homotopy theory synthetically rather than analytically

Voevodsky’s Univalence Axiom: homotopy equivalent types are equal! ⇝ Univalent Foundations
(UF)

a b

p

q

φ

Identity types

a, b : A

p, q : (a =A b)

φ : (p =(a=Ab) q)

. . .



Example: the unit circle
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the set of points
C = {P | dist(O,P ) = 1}

•b

ℓ

C

the type C generated by:{
a point b : C

a loop ℓ : b =C b



Dependent type formers

Terms of product type: pairs ⟨a, b⟩ : A×B
with a : A and b : B.

Dependent generalization: A type and
a : A ⊢ B(a) dep. type ; dep. pair or
dep. sum type

∑
a:A

B(a) whose elements are

pairs ⟨a, b⟩ with a : A and b : B(a).

Terms of function type: functions f : A → B
taking a : A to f(a) : B.

Dependent generalization: A type and
a : A ⊢ B(a) dep. type ; dep. function or
dep. product type

∏
a:A

B(a) whose elements

are functions (sections) f taking a : A to
f(a) : B(a)

A

∑
a:A

B(a)

•
x

f :
∏
a:A

B(a)

B(x)

f(x)
•



Identity type: Formation and introduction

Per Martin-Löf’s identity types from the 1970s. ; propositional equality

Idea: Let x, y : A. Then there is a type (x =A y) of identifications or proofs that x is equal
to y (formation).

In a topological picture, we could imagine p : (x =A y) to be a path from x to y (more on
this later).

For any x : A there should be a term reflx : (x =A x) (introduction).

Γ ⊢ A

Γ ⊢ x, y : A ⊢ (x =A y)
Id-Form

Γ ⊢ A

Γ, x : A ⊢ reflx : (x =A x)
Id-Intro



Identity type: elimination and computation

Q: How do we eliminate out of (x =A y)?
A: Via induction principle!
Idea: Identity types are freely generated by the reflexivity terms.
Identity elimination: Given a type B depending on x, y : A and p : x =A y, to give a term
in B(x, y, p) we can assume y ≡ x and p ≡ reflx:

Γ ⊢ A Γ, x : A, y : A, p : x =A y ⊢ B(x, y, p)

Γ ⊢ ind=A
:
∏
a:A

B(a, a, refla)→
∏
x,y:A

∏
p:(x=Ay)

B(x, y, p)
Id-Elim

with computation rule: ind=A
(q, a, a, refla) ≡ q

Model-categorical semantics:

A B̃

P (A) P (A)

q

reflA ≃



Path induction

From identity elimination we can prove:

Theorem ((based) path induction)

Fix b : B. For P :
(∑

x:B

(b =B x)
)
→ U we have an equivalence:

(∏
x:B

∏
p:b=Bx

P (x, p)
)

P (b, reflb)

evreflb

ind

≃



The Curry–Howard–Voevodsky interpretation1

Type theory Logic Set theory Homotopy theory
A proposition set space/homotopy type

x : A witness/realizer element point
0,1 ⊥, ⊤ ∅, {∅} ∅, ∗

A+B A ∨B disjoint union coproduct space
A×B A ∧B set of ordered pairs product space
A→ B A⇒ B set of functions function space

x : A ⊢ B(x) predicate B(x) family of sets fibration
x : A ⊢ b : B(x) conditional proof choice of elements section

Σx:AB(x) ∃x.B(x) disjoint sum total space
Πx:AB(x) ∀x.B(x) product space of sections
p : (x =A y) x = y x = y path x⇝ y in A

1Table based on: Emily Riehl The synthetic theory of ∞-categories vs the synthetic theory of ∞-categories,
Presentation at Vladimir Voevodsky Memorial Conference, IAS, Princeton, NJ, USA, 2018.



Types as∞-groupoids

Can define symmetry/inversion (−)−1 :
∏
x,y:A

(x =A y)→ (y =A x) and

transitivity/composition ∗ :
∏

x,y,z:A

(x =A y)→ (y =A z)→ (x =A z).

One can also show some expected laws, namely associativity, neutrality, and
inversion, e.g.

(p ∗ q) ∗ r =(x=Az) p ∗ (q ∗ r), refly ∗ p =(x=Ay) p, p−1 ∗ p =(x=Ax) idx, . . .

These are known as the groupoid laws.

They arise as higher identities/homotopies φ : p =(x=Ay) q for p, q : (x =A y):

x y

p

q

φ



Dependent types as fibrations

Identity proofs p : (x =A y) are a kind of “path”.

Indeed, dependent types behave well w.r.t. paths in the base.

Namely, every dependent type supports a notion of path transport. =⇒ Dependent
types are fibrations.

For a : A ⊢ B, we can define a function trA :
∏
x,y:A

∏
p:(x=Ay)

B(x)→ B(y).

Again by path induction, with trB(x, x, reflx) :≡ idB(x).

Indeed, this is connected with a synthetic notion of path lifting:∑
a:A

B(a) d trB(d)

A x y
p

lift(p,d)



The concept of (∞, 1)-category
(∞, 1)-categories: weak composition of 1-morphisms given uniquely up to contractibility

•

• •

How to express this in HoTT?

Problem: We have path types (a =A b), but what about directed hom types (a →A b)?

Several possible type-theoretic frameworks, e.g. by Warren, Licata–Harper,
Annenkov–Capriotti–Kraus–Sattler, Nuyts, North, Weaver–Licata,. . .

Other synthetic theories: Riehl–Verity, Cisinski–Cnossen–Nguyen–Walde, Martini–Wolf

But their connection to traditional ∞-category theory is less clear.

In our work: Riehl–Shulman’s simplicial type theory (2017). Also heavily influenced by
Riehl–Verity’s ∞-cosmos theory (2013-2021-. . . ).



Simplicial HoTT

1 Simplicial HoTT: Extension of HoTT by Riehl–Shulman ’17
2 add strict shapes

• • •

• • • • • • • • • . . .

∆
0

∆
1

∆
2

∂∆
2

Λ
2
1

3 add extension types (due to Lumsdaine–Shulman, cf. Cubical Type Theory):

Input:
shape inclusion Φ ↪→ Ψ

family P : Ψ → U ;
partial section a : Πt:ΦP (t)

P̃

Φ Ψ

a
b

Extension type
〈∏

Ψ P
∣∣∣Φa〉

with terms b : ΠΨP such that b|Φ ≡ a.
Semantically:〈∏

Ψ P
∣∣∣Φa〉 P̃Ψ

1 P̃Φa

⌟



Hom types I

Definition (Hom types, [RS17])

Let B be a type. Fix terms a, b : B. The type of arrows in B from a to b is the extension type

homB(a, b) :≡ (a→B b) :≡
〈
∆1 → B

∣∣∣∂∆1

[a,b]

〉
.

Definition (Dependent hom types, [RS17])

Let P : B → U be family. Fix an arrow u : homB(a, b) in B and points d : P a, e : P b in the
fibers. The type of dependent arrows in P over u from d to e is the extension type

dhomP,u(d, e) :≡ (d→P
u e) :≡

〈∏
t:∆1 P (u(t))

∣∣∣∂∆1

[d,e]

〉
.



Hom types II

P̃ e′

e e′′

b′

B b b′′

u

w

v

h

gf

σ

τ



Segal, Rezk, and discrete types

We can now define synthetic (∞, 1)-categories using shapes and extension types:

Definition (Synthetic (∞, 1)-categories, [RS17])

Synthetic pre-(∞, 1)-category aka Segal type: types A with weak composition, i.e.:

ι : Λ2
1 ↪→ ∆2 ; Aι : A∆2 ≃−→ AΛ2

1 (Joyal).

Synthetic (∞, 1)-category aka Rezk type: Segal types A satisfying Rezk
completeness/local univalence, i.e.

idtoisoA : Πx,y:A(x =A y)
≃−→ isoA(x, y).

Synthetic∞-groupoid aka discrete type: types A such that every arrow is
invertible, i.e.

idtoarrA : Πx,y:A(x =A y)
≃−→ homA(x, y).



Adequate semantics of synthetic∞-category theory

Theorem (Shulman ’19, Riehl–Shulman ’17)
1 Every∞-topos admits a model of HoTT.
2 Every∞-topos of simplicial objects admits a model of sHoTT, with weakly stable

extension types.

Theorem (W ’21)

Extension types are strictly substitution-stable.

Extension types have become of independent interest in type and programming language
theory.

Corollary
1 Synthetic∞-category theory interprets to ordinary∞-category theory.
2 Synthetic∞-category theory interprets to internal∞-category theory (cf. Martini–Wolf,

Cisinski–Ngyuen–Walde–Cnossen, Rasekh, Stenzel).



Functors and natural transformations

Segal types have categorical structure: composition g ◦ f , identities idx, and
homotopies

h ◦ (g ◦ f) = (h ◦ g) ◦ f, idy ◦f = f, f ◦ idx = f.

Any map f : A→ B between Segal types is automatically a functor.

For f, g : A→ B define the type of natural transformations as

(f ⇒ g) :≡ hom
A→B

(f, g) :≡
〈
∆1 → (A→ B)

∣∣∣∂∆1

[f,g]

〉
.

One can then prove that for φ : (f ⇒ g) any arrow u : x→A y gives rise to the expected
naturality square:

fx gx

fy gy

φx

fu

φy

gu



Fibered Yoneda lemmas

Riehl–Shulman had introduced functorial type families, but only valued in groupoids.

The fundamental principle of category theory is the Yoneda lemma: characterization of
functorial families by maps from base elements into it

Theorem (Yoneda lemma for discrete covariant families, Riehl–Shulman ’17)

For a covariant discrete family P : b ↓B → U evaluation at the identity is an equivalence:

evidb
:
(∏

b↓B

P
)

≃−→ P (idb)

Theorem (Yoneda lemma for cocartesian families, Buchholtz–W’ 21)

For a cocartesian family P : b ↓B → U , evaluation at the identity is an equivalence:

evidb
:
( cocart∏

b↓B

P
)

≃−→ P (idb)



Covariant type families

Definition (Covariant family, [RS17])

Let C : A→ U be a family. It is covariant if and only if for all a, b : A, arrows u : (a→A b) and
points x : C(a) the type ∑

y:C(b)

(x→C
u y)

is contractible.

This give a synthetic analogue of discrete covariant or left fibrations:

∑
a:A

C(a) x uC
! (x)

A a b
u

transCu (x)



Fibered Yoneda lemma as directed path induction

Theorem

Fix b : B. For P :
(∑

x:B

(b =B x)
)
→ U we have an equivalence:

(∏
x:B

∏
p:b=Bx

P (x, p)
)

P (b, reflb)

evreflb

indP
b

≃

Theorem ((dependent) Yoneda Lemma for covariant families, [RS17])

Let B be a Segal type, and fix b : B. For a covariant type family P :
(∑

x:B

(b →B x)
)
→ U , we have an

equivalence: (∏
x:B

∏
p:b→Bx

P (x, p)
)

P (b, idb)

evidb

yP
b

≃



Fibered Yoneda lemma: proof idea

Theorem (Yoneda Lemma for covariant families, [RS17])

Let A be a Segal type, and a : A any term. For a covariant type family C : A→ U , we have an
equivalence:

evidCa :
(∏

x:A

homA(a, x)→ C(x)
)

≃−→ C(a)

The inverse map is given by

yC
a : C(a)→

(∏
x:A

homA(a, x)→ C(x)
)
, yC

a (u)(x)(f) :≡ f!u

Proof “simply” follows from naturality properties and covariance of homA(a,−).
There also exists a dependent version.

Both have been formalized in Kudasov’s new proof assistant Rzk.

Cocartesian and other generalizations due to Buchholtz–W and W have been proven, but
formalization is WIP.



The Rzk proof assistant



Formalizing∞-categories in Rzk

Kudasov has developed the Rzk proof assistant, implementing sHoTT:
https://rzk-lang.github.io/

Using Rzk we initiated the first ever formalizations of ∞-category theory.

In spring 2023, with Kudasov and Riehl we formalized the (discrete fibered) Yoneda lemma of
∞-category theory: https://emilyriehl.github.io/yoneda/

alongside many other results

Many proofs in this ∞-dimensional setting easier than in dimension 1!

Formalization helped find a mistake in original paper

More students & researchers joined us developing a library for ∞-category theory:
https://rzk-lang.github.io/sHoTT/ Join us!

https://rzk-lang.github.io/
https://emilyriehl.github.io/yoneda/
https://rzk-lang.github.io/sHoTT/


Synthetic∞-category theory in sHoTT

Functors, natural transformations, discrete fibrations & fibered Yoneda lemma, adjunctions
(Riehl–Shulman ’17)

Cartesian fibrations (Buchholtz–W ’21) & generalizations (W ’21)

Limits and colimits (Bardomiano ’22)

Conduché fibrations (Bardomiano ’24)

Proof assistant Rzk (Kudasov ’23) and formalization of fibered Yoneda lemma
(Kudasov–Riehl–W ’23)

sHoTT library and more formalizations (Abounegm, Bakke, Bardomiano, Campbell,
Carlier, Chatzidiamantis-Christoforidis, Ergus, Hutzler, Kudasov, Maillard, Martínez,
Pradal, Rasekh, Riehl, F. Verity, Walde, W ’23–)

But many desiderata missing!

opposite categories, categories S and Cat, presheaves & Yoneda embedding, higher algebra,
. . .



Multimodal type theory

Multi-modal dependent type theory (MTT) to the rescue!
(Gratzer–Kavvos–Nuyts–Birkedal ’20)

start from a cubical outer layer, augmented by an instance of MTT

the added modal operators: simplicial localization �, opposite op, twisted arrows tw
(groupoid) core/discretization ♭ ⊣ codiscretization ♯,
path type (−)I ⊣ amazing right adjoint (−)I

plus axioms about the interaction between the simplicial and modal structure

This unlocks a whole new range of constructions

We call the ensuing type theory triangulated type theory

S∆
op

S

Π Γ ∇∆⊣ ⊣⊣
s :≡ LI ≡ ∆ ◦ Γ (Rijke–Shulman–Spitters ’20)

♭ :≡ ∆ ◦ Γ
♯ :≡ ∇ ◦ Γ

See also work on cohesive∞-toposes by Schreiber (’13), Shulman (’18), Myers–Riley (’23), as
well as internal universes via a tiny interval by Licata–Orton–Pitts-Spitters (’18) and Riley (’24).



Mode theory

One single mode m with the modalities for the tiny interval, cohesion, and direction. Some
intuitions:

Opposite op: ⟨op | A⟩ has its n-simplices reversed
Discretization/core ♭: ⟨♭ | A⟩ → A is the maximal subgroupoid of A
Codiscretization ♯: A→ ⟨♯ | A⟩ is localization at ∂∆n → ∆n (for crisp closed types)
Twisted arrows tw: ⟨tw | A⟩ has as n-simplices:

an . . . a2 a1 a0

an+1 . . . a2n−2 a2n−1 a2n

Mode theory:

♭ ◦ ♭ = ♭ ◦ op = ♭ ◦ ♯ = tw ◦ ♭ = op ◦ ♭ = ♭ ♯ ◦ ♯ = ♯ ◦ ♭ = ♯ ◦ op = op ◦ ♯ = ♯

op ◦ op = id ε : ♭→ id η : id→ ♯

η · ♯ = ♯ · η = id : ♯→ ♯ ♭ · η = id : ♭→ ♭

plus some coherence conditions for tw



Axioms for triangulated type theory I

Axiom (Interval I)

There is a bounded distributive lattice (I : Set, 0, 1,∨,∧)

Axiom (Path type former as modality)

The path type (−)I is presented by a modality p.

Axiom (Crisp induction)

Modalities commute with path types: for every µ, the map modµ(a) = modµ(b) → ⟨µ | a = b⟩ is an
equivalence.

Axiom (Reversal on I)

There is an equivalence ¬ : ⟨op | I⟩ → I which swaps 0 for 1 and ∧ for ∨.



Axioms for triangulated type theory II

Axiom (I detects discreteness)

If A :♭ U then ⟨♭ | A⟩ → A is an equivalence if and only if A → (I → A) is an equivalence.

Axiom (Global points of I)

The map B → I is injective and induces an equivalence B ≃ ⟨♭ | I⟩.

Axiom (Cubes separate)

f :♭ A → B is an equivalence if and only if the following holds:

Πn:♭N isEquiv
(
f∗ : ⟨♭ | In → A⟩ → ⟨♭ | In → B⟩

)
Axiom (Simplicial stability)

If A :♭ U then for all n :♭ N the following map is an equivalence:

η∗ : ⟨♭ | ∆n → A⟩ → ⟨♭ | ∆n → �A⟩



Axioms for triangulated type theory III

Axiom (Twisted arrows)

For each n :♭ N there is a map ξ :♭ ∆
n → ⟨tw | ∆2n+1⟩, satisfying some naturality conditions, inducing

an equivalence ξ∗ :♭ ⟨♭ | ∆2n+1 → C⟩ ≃→ ⟨♭ | ∆n → ⟨tw | C⟩⟩.

Axiom (Blechschmidt duality)

Let I → A be a finitely presented I-algebra, i.e., A ≃ I[x1, . . . , xn]/(r1 = s1, . . . , rn = sn), then the
evaluation map is an equivalence:

ev ≡ λa, f.f(a) : A ≃ (homI(A, I) → I)

Versions of the latter axiom appear in synthetic differential geometry (Kock–Lawvere axioms),2 synthetic
algebraic geometry,3 and synthetic domain theory4

2A. Kock: A simple axiomatics for differentiation, Math. Scand. 40.2 (1977): 183–193 (JSTOR)
3F. Cherubini, T. Coquand, M. Hutzler: A foundation for synthetic algebraic geometry, Math. Struct. Comp. Sci.

(2023): 1–46, doi:10.1017/S0960129524000239
4J. Sterling, L. Ye: Domains and classifying topoi, (2025): 1–47arXiv:2505.13096

https://www.jstor.org/stable/24491223
https://doi.org/10.1017/S0960129524000239 
https://arxiv.org/pdf/2505.13096


Simplicial vs cubical models

Theorem (Kapulkin–Voevodsky ’18, Sattler ’18, Streicher–W ’19)

Simplicial sets (spaces) are an essential sub(-∞-)topos of cubical sets (spaces).

Internally, a cubical type A is simplicial if

isSimp(A) :≡
∏
i,j:I

isEquiv(A! : A→ Ai≤j∨j≤i).

This defines a lex modality à la Rijke–Shulman–Spitters.



Applications of duality I

Lemma (Phoa’s principle; ind. Pugh and Sterling)

(I→ I) ≃ ∆2 → I× I

Proof.

We have homI(I[x], I) ≃ I. Thus, by duality, ev : I[x] ≃ (I→ I). Then it suffices to show that
⟨ev0, ev1⟩ : I[x]→ I× I factors through ∆2. Finrally, we get an equivalence I[x] ≃ ∆2 by using
the normal forms p(x) = p(0) ∨ x ∧ p(1).

Lemma (Generalized Phoa’s principle)

(In → I) ≃ Pos(Bn, I)

(∆n → I) ≃ Pos([0 ≤ . . . ≤ n], I)

See also: L. Pugh, J. Sterling: When is the partial map classifier a Sierpiński cone?, LICS
2025, arxiv:2504.06789

https://arxiv.org/abs/2504.06789


Applications of duality II

Theorem

I is simplicial.

Proof.

Have to show I ≃ ((i ≤ j ∨ j ≤ i)→ I). By the generation axiom, it suffices to show for
f, g :♭ In → I that:

⟨♭ | In → I⟩ ≃ ⟨♭ | {x⃗ : In | f(x⃗) ≤ g(x⃗) ∨ g(x⃗) ≤ f(x⃗)} → I⟩

By the generalized Phoa principle, to extend a function in the codomain amounts to defining it
for all x⃗ : Bn. Indeed, f(x⃗) ≤ g(x⃗) ∨ g(x⃗) ≤ f(x⃗).

For an alternative proof, see M. D. Williams: Projective Presentations of Lex Modalities,
arXiv:2501.19187.

https://www.arxiv.org/abs/2501.19187


Applications of duality III

Theorem

∆n is a category.

Proof.

Rezk-completeness is clear (no nontrivial isos). Simplicialness is clear (retract of In).
Segalness follows using (generalized) Phoa principle.



Applications of duality IV

Theorem

If A :♭ U is discrete then A is simplicial.

Proof.

By discreteness and cubical generation it suffices to show that f.a. p, q : I[x⃗] and
φ(x⃗) :≡ p(x⃗) ≤ q(x⃗) ∨ q(x⃗) ≤ p(x⃗) that:

A ≃ (φ(x⃗) → A)

For this, we construct a “homotopy” h from λx⃗.0 to φ(x⃗). The claim then follows using Phoa’s principle:

h(x⃗, t) :≡ x⃗ ∧ t

After Gratzer, using ♭ ⊣ ♯ one can prove that N is discrete.

Corollary

B and N are both discrete and simplicial, i.e., groupoids.

Warning: The theorem is false for Rezk in place of discrete types, e.g. ∆2 ⨿∆1 ∆2.



Towards the universe of spaces

Covariant families have transport: (−)! :
∏
a,b:X

(a→X b)→ A(a)→ A(b)

If X is Segal, then each fiber A(a) is discrete.

Can we take
∑
A:U

isCov(A)?

No: isCov(A) just means that A is discrete; doesn’t see variance.

Need a predicate that yields covariance over all possible contexts.

Solution: Amazing fibrations due to M. Riley (2024): A Type Theory with a Tiny Object ,
arXiv:2403.01939; based on Licata–Orton–Pitts–Spitters ’18 (which was used for similar
purposes by Weaver–Licata ’20)

https://arxiv.org/abs/2403.01939


Amazingly covariant families

Consider isCov(A : I→ U) ≃
∏

x:A(0)

isContr
( ∑
y:A(1)

(x→α y)
)
, where α : homI(0, 1).

This gives a predicate isCovI : U I → Prop.

Definition (Amazingly covariant types)

Let A : U be a type. It is amazingly covariant if and only if the following proposition is inhabited:

isACov(A) :≡
(
isCovI(λi.A

η(i))
)

I
,

where Aη is the image of A under the unit ηU : U → (U I)I.



The universe of spaces

The simplicial objects give rise to the (simplicial) subuniverse of simplicial types:

U� :≡
∑
A:U

isSimp(A)

Definition

We call S :≡
∑
A:U�

isACov(A) the universe of spaces.

Theorem

1 The universe S is a synthetic ∞-category whose terms are ∞-groupoids.

2 S classifies amazingly covariant families in U�.

3 S is closed under Σ, identity types, and finite (co)limits.

4 S is directed univalent:

arrtofun : (∆1 → S) ≃

( ∑
A,B:S

(A → B)

)



Equivalence lemma

Theorem

Assume maps f, g : ∆1 → S and a natural transformation α :
∏
x:∆1

f(x)→ g(x). Then α is a

family of equivalences if and only if α(0) and α(1) are equivalences.

f 0 g 0

f 1 g 1

α 0
∼=

α 1

∼=

For the proof, we need the axiom that cubes detect equivalences:( ∏
n:Nat

⟨♭ | In → A⟩ ≃ ⟨♭ | In → B⟩
)
→ (A ≃ B)

We can also prove a generalization of the equivalence lemma to ∆n.



Directed univalence

1 Since S classifies (amazingly) covariant families, there is a map

arrtofun :≡ λF.(F 0, F 1, αF
! : F 0→ F 1) : (∆1 → S)→

( ∑
A,B:S

(A→ B)
)
.

2 In the other direction, we consider the mapping cone/directed glue type (cf. cubical type
theory and Weaver–Licata ’20):

Gl :≡ A,B, f.λi.
∑
b:B

(i = 0)→ f−1(b) :
( ∑

A,B:S
(A→ B)

)
→ (∆1 → S)

3 We show that they form an inverse pair making crucial use of the equivalence lemma.
4 Segalness of S is using similar arguments, but in higher dimensions.



Application: directed structure identity principle (DSIP)

Theorem (DSIP for pointed spaces)

Let S∗ :≡
∑
A:S

A. Then for (A, a), (B, b) : S∗ we have:

homS∗((A, a), (B, b)) ≃
∑

f :A→B

f(a) = b

Theorem (DSIP for monoids)

Consider the type (category!) of (set-)monoids

Monoid :≡
∑

A:S≤0

∑
ε:A

∑
·:A×A

isAssoc(·)× isUnit(·, ε).

Then homomorphisms from (A, εA, ·A, αA, µA) to (B, εB , ·B , αB , µB) correspond to set maps A → B
compatible with multiplication and units.



Towards synthetic higher algebra

We can internally define presheaf categories PSh(C) :≡ ⟨o|C⟩ → S.

Definition (∞-monoids)

The category Mon∞ of∞-monoids is the full subcategorya of PSh(∆) defined by the predicate

φ(X :♭ PSh(∆)) :≡
∏

n:Nat

isEquiv(⟨X(ιk)k<n⟩ : X(∆n)→ X(∆1)n)

aneed the codiscrete modality ♯

This encodes the structure of a homotopy-coherent monoid. Multiplication is given through

µX : X(∆1) ≃ X(∆1)2 → X(∆1).

Definition (∞-groups)

The category Grp∞ of∞-groups is the full subcategory of Mon∞ defined by the predicate

φ(X :♭ Mon∞) :≡ isEquiv(λx, y.⟨x, µX(x, y)⟩ : X(∆1)2 → X(∆1)2)

One can show that both these categories satisfy the expcted DSIP.



The category of spectra

Definition (The category of spectra)

The type of spectra is defined as the limit (in the ambient universe)

Sp :≡ lim←−(S∗
Ω← S∗

Ω← . . .).

Proposition

Sp is a stable∞-category and cocomplete.



Functorial Yoneda lemma

Let C be a category. Using the twisted arrow modality t, we obtain the hom-bifunctor
Φ : C × ⟨o|C⟩ → S. We write y(c) :≡ Φ(−, c).
We now recover the synthetic∞-categorical version of the “standard” Yoneda lemma:

Theorem (Yoneda lemma)

We have hom(y(c), X) ≃ X(c), naturally in each c : C and X : PSh(C).

Theorem (Density)

If X :♭ PSh(C), then X ≃ lim−→
⟨o | X̃⟩

y ◦ πop.



Universal property of presheaf categories

Theorem (Descent for presheaf categories)

Let E :≡ PSh(A) and F :♭ C → E, then E/ lim−→
c:C

F (c) ≃ lim←−
c:C

E/F (c).

Theorem (Universal property of PSh(C))

PSh(C) is the free cocompletion of C: y∗ : (PSh(C)→cc E)→ (C → E)



Kan extensions

The notion of Kan extensions subsumes all the other fundamental concepts of category. theory

– S. Mac Lane ’71

Definition (Kan extensions)

Given f :♭ C → D and a category E, the left Kan extension lanf is the left adjoint to
f∗ : ED → EC .

Theorem (Colimit formula)

If E is cocomplete, then lanf exists. For X :♭ C → E it computes to
lanfX d ≃ lim−→(C ×D D/d→ C → E)



Quillen’s Theorem A

Definition (Cofinal functors)

A functor f :♭ C → D is right cofinal if for every X :♭ D → S the map lim←−
D

X → lim←−
C

X ◦ f is an

equivalence.

Theorem (Quillen’s Theorem A)

A functor f :♭ C → D is right cofinal if and only if LI(C ×D d/D) ≃ 1 for each d :♭ D.



Application to cocartesian fibrations

Theorem (Properness of cocartesian fibrations)

As below, if π are cocartesian and m is right cofinal then v is right cofinal:

A×B E E

A B

v

ξ
⌟

π

u

Using Quillen’s Theorem A and some localization theory we can give a new synthetic proof:

Proof.

We compute the fiber:

(A×B E)×E e/E ≃ A×B e/E ≃ A×B

(
Σb′:BΣf :(π(e)→Bb′)(E

∆1

b′ )
)

≃ Σ⟨a,f⟩:A×Bπ(e)/B f! e/Eu(a)

Now, we have both LI(A×B π(e)/B) ≃ 1 and LI(f! e/Eu(a)) ≃ 1. This suffices by a theorem
in: E. Rijke, M. Shulman, B. Spitters (2020): Modalities in homotopy type theory.



Outlook

1 Synthetic higher algebra
2 Universe of higher categories
3 Extend formalizations
4 . . .
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