

Towers of sublocales induced by cozero elements

Joanne Walters-Wayland

CECAT: Schmid College

Some basic concepts in frame theory

Categories: **Frm** and **Loc** A *frame* is a complete lattice *L* which satisfies

 $x \land \bigvee x_i = \bigvee (x \land x_i)$ for all $x, x_i \in L$

Examples: Complete Boolean/Heyting algebras The open sets $\mathcal{O}X$ of a topological space X

A frame map preserves finite meets and arbitrary joins. Examples: lattice morphism between complete Boolean algebras Preimage of continuous maps

 $Loc = Frm^{op}$

Sublocales/quotient frames/nuclei/congruences

Every frame is a complete Heyting algebra: $x \to y = \bigvee \{z : z \land x \le y\}$ Note that $z \land x \le y$ iff $z \le x \to y$ Galois connection

A subset S of L is a sublocale if

1 S is closed under \land **2** $x \rightarrow s \in S$ for all $s \in S$ and $x \in L$.

- S has the same meets as L
- $1 \in S$
- joins in S may be different from joins in L

The collection of all sublocales form a coframe: (arbitrary) meet is intersection.

Sublocales/quotient frames/nuclei/congruences

A frame map $h: L \longrightarrow M$ has a right adjoint:

- $h_*(x) = \bigvee \{a \in L \mid h(a) = x\}$ largest element mapped to x
- $h(h_*(x)) = x$

Sublocales/quotient frames/nuclei/congruences

A frame map $h: L \longrightarrow M$ has a right adjoint:

- $h_*(x) = \bigvee \{a \in L \mid h(a) = x\}$ largest element mapped to x
- $h(h_*(x)) = x$

If h is onto, $h_*[M] \cong M$,

• $h_*[M]$ is a sublocale of L

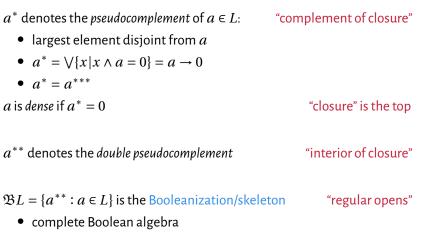
 $h_* \circ h$ is a nucleus

If S is a sublocale of L, define a frame map $h: L \longrightarrow S$

$$h(a) = \bigwedge \{s \in S \mid s \ge a\}$$

• *h* is an onto i.e. a frame quotient

Skeleton a.k.a. Booleanization: $\mathfrak{B}L$



- sublocale of L
- has no proper dense elements

Dense sublocales/quotient frames

S is a *dense* sublocale of L if $0 \in S$

"closure" of S is L

A frame map is *dense* if it maps only 0 to 0

- *S* is dense iff the associated frame quotient is a dense map.
- $0 = 0^{**}$ so $0 \in \mathfrak{B}L$

Dense sublocales/quotient frames

S is a dense sublocale of L if $0 \in S$

A frame map is *dense* if it maps only 0 to 0

- *S* is dense iff the associated frame quotient is a dense map.
- $0 = 0^{**}$ so $0 \in \mathfrak{B}L$

Theorem (Isbell)

Every locale has a smallest dense sublocale namely $\mathfrak{B}L = \{x^{**} : x \in L\}$.

S is dense iff $\mathfrak{B}L \subseteq S$

No spatial analog

Cozero elements

Rather below relation: b < a means that $b^* \lor a = 1$

•
$$a \in L$$
 is cozero if $a = \bigvee_n \{a_n | a_n \prec a\}$

- Coz L denotes all cozero elements of L
- largest regular sub- σ -frame of L

A frame L is completely regular if it is join-generated by $\operatorname{Coz} L$

These may be described as images of "continuous" real-valued functions: $a \in \text{Coz } L \text{ iff } a = h(\mathbb{R} \setminus \{0\}) \text{ for some frame map } h : \mathcal{O}\mathbb{R} \longrightarrow L.$

The cozero tree rings of a (completely regular) frame

Kappa cozeros

For a regular cardinal κ :

- $a \in L$ is a κ -cozero if a is a κ -join of cozeros
- $\kappa \operatorname{Coz} L$ denotes the κ -cozero elements of L
- largest regular regular sub- κ -frame of L

The cozero tree rings of a (completely regular) frame

Kappa cozeros

For a regular cardinal κ :

- $a \in L$ is a κ -cozero if a is a κ -join of cozeros
- $\kappa \operatorname{Coz} L$ denotes the κ -cozero elements of L
- largest regular regular sub- κ -frame of L

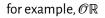
Cozero tower

Ascending sequence of regular sub- κ -frames of L:

 $\operatorname{Coz} L = \omega_1 \operatorname{Coz} L \subseteq \cdots \subseteq \kappa \operatorname{Coz} L \subseteq \cdots \subseteq \rho \operatorname{Coz} L = L$

The least such cardinal ρ is called the perfectly normal degree of L

• L is perfectly normal iff PN degree is ω_1



κ -Lindelöf coreflections

A frame is κ -Lindelöf if every cover has a κ -sized subcover.

Theorem (Madden & Vermeer)

 κ -Lindelöf completely regular frames are a coreflective (full) subcategory of completely regular frames

- denoted by $\mathscr{L}_{\kappa}L$: all κ -ideals of κ Coz L (downsets closed under κ -joins)
- "free" frame over κCoz_L (as a κ -frame)
- coreflection map is given by join and is a frame quotient, so L may be identified as a sublocale of $\mathscr{L}_{\kappa}L$
- $\kappa \operatorname{Coz} L = \kappa \operatorname{Coz} \mathscr{L}_{\kappa} L$

The "Lindelöf" tower

- $\operatorname{Coz} L = \operatorname{Coz} \mathscr{L}_{\kappa} L$ for all κ
- $\kappa \operatorname{Coz} L = \kappa \operatorname{Coz} \mathscr{L}_{\gamma} L$ for all $\gamma \geq \kappa$

Ascending sequence of sublocales:

Lindelöf tower

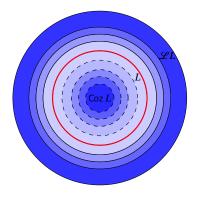
 $L = \mathscr{L}_{\mu}L \subseteq \cdots \subseteq \mathscr{L}_{\gamma}L \subseteq \cdots \subseteq \mathscr{L}_{\kappa}L \subseteq \cdots \subseteq \mathscr{L}_{\omega_{1}}L$

where $\mu \geq \gamma \geq \kappa \geq \omega_1$

The least such cardinal μ is called the Lindelöf degree of L

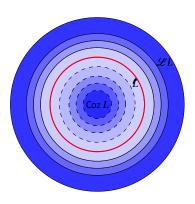
- L is Lindelöf iff the Lindelöf degree $\mu \leq \omega_1$
- For example, the Lindelöf degree of $\mathcal{O}\mathbb{R}$ is ω_1

The cozero "tree rings" of a completely regular frame L



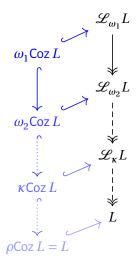
Œ

The cozero "tree rings" of a completely regular frame L



 (\mathbf{e})

-



Towers of sublocales Joanne Walters-Wayland 10/24

Bruns-Lakser completion of a regular κ -frame

Frames are the injective hulls of \land -semilattices.

- For any ∧-semilattice *A*, the injective hull will be denoted by BL *A*: may be described as a sublocale of the frame of downsets
- If A has a least element, 0_A , then BL A is dense
- If A is a sub- \wedge -semilattice of a frame L, and A join-generates L, then BL A is a sublocale of L
- Moreover, if A has a least element, $\mathfrak{B}L$ is a sublocale of $\mathsf{BL}A$
- if *A* is regular, then it is "proheyting", so the *BL*-completion is the normal (Dedekind MacNeille) completion

For each κ , consider BL (κ Coz)

 κCoz L is regular, hence "proheyting", so the BL-completion is the normal (Dedekind MacNeille) completion

- κCoz *L* is regular, hence "proheyting", so the *BL*-completion is the normal (Dedekind MacNeille) completion
- κCoz L is a sub-Λ-semilattice of L, join-generates L, so BL κCoz L is a sublocale of L

- κCoz *L* is regular, hence "proheyting", so the *BL*-completion is the normal (Dedekind MacNeille) completion
- κCoz L is a sub-Λ-semilattice of L, join-generates L, so BL κCoz L is a sublocale of L
- $0 \in \kappa \operatorname{Coz} L$ so $\mathfrak{B}L \subseteq \mathsf{BL}(\kappa \operatorname{Coz})$

- κCoz *L* is regular, hence "proheyting", so the *BL*-completion is the normal (Dedekind MacNeille) completion
- κCoz L is a sub-Λ-semilattice of L, join-generates L, so BL κCoz L is a sublocale of L
- $0 \in \kappa \operatorname{Coz} L$ so $\mathfrak{B}L \subseteq \operatorname{BL}(\kappa \operatorname{Coz})$
- If $\kappa \operatorname{Coz} L \subseteq \lambda \operatorname{Coz} L$, then BL ($\kappa \operatorname{Coz}$) is a sublocale of BL ($\lambda \operatorname{Coz}$)

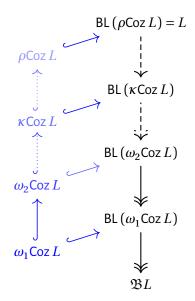
- κCoz *L* is regular, hence "proheyting", so the *BL*-completion is the normal (Dedekind MacNeille) completion
- κCoz L is a sub-Λ-semilattice of L, join-generates L, so BL κCoz L is a sublocale of L
- $0 \in \kappa \operatorname{Coz} L$ so $\mathfrak{B}L \subseteq \operatorname{BL}(\kappa \operatorname{Coz})$
- If $\kappa \operatorname{Coz} L \subseteq \lambda \operatorname{Coz} L$, then BL ($\kappa \operatorname{Coz}$) is a sublocale of BL ($\lambda \operatorname{Coz}$)
- If L is κ -perfectly normal (that is $L = \kappa \text{Coz}$), then $L = \text{BL}(\kappa \text{Coz})$

For each κ , consider BL (κ Coz)

- κCoz *L* is regular, hence "proheyting", so the *BL*-completion is the normal (Dedekind MacNeille) completion
- κCoz L is a sub-Λ-semilattice of L, join-generates L, so BL κCoz L is a sublocale of L
- $0 \in \kappa \operatorname{Coz} L$ so $\mathfrak{B}L \subseteq \operatorname{BL}(\kappa \operatorname{Coz})$
- If $\kappa \operatorname{Coz} L \subseteq \lambda \operatorname{Coz} L$, then BL ($\kappa \operatorname{Coz}$) is a sublocale of BL ($\lambda \operatorname{Coz}$)
- If L is κ -perfectly normal (that is $L = \kappa \text{Coz}$), then $L = \text{BL}(\kappa \text{Coz})$ Ascending sequence of sublocales:

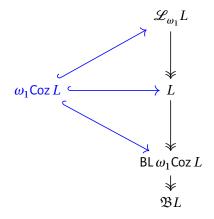
$\mathsf{BL}(\omega_1\mathsf{Coz}\,L) \subseteq \cdots \subseteq \mathsf{BL}(\kappa\mathsf{Coz}\,L) \subseteq \cdots \subseteq \mathsf{BL}(\rho\mathsf{Coz}\,L) = L$

Tower of BL-quotients



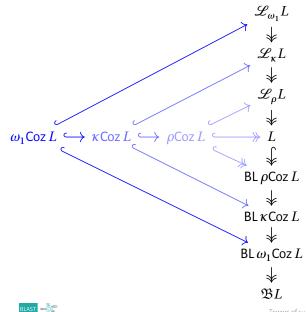
Ô

Tower of sublocales/quotients induced by cozeros

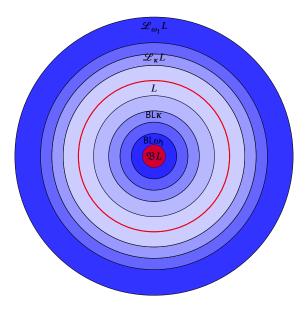


Œ

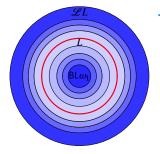
Tower of sublocales/quotients induced by cozeros



Cozero induced "tree rings" of a completely regular frame L

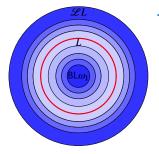


Some interesting "collapses"...



Total collapse $\iff \mathscr{L}_{\omega_1}L = L = \mathsf{BL}(\omega_1 \mathsf{Coz} L)$

Some interesting "collapses"...



Total collapse $\iff \mathscr{L}_{\omega_1}L = L = \mathsf{BL}(\omega_1 \operatorname{Coz} L)$ $\iff \mathsf{BL}(\omega_1 \operatorname{Coz} L)$ is Lindelöf

Some interesting "collapses" wrt the skeleton

A frame *L* is ω_1 -hollow if *L* has no proper dense cozero elements, that is, $\operatorname{Coz} L \subseteq \mathfrak{B}L$; aka almost P

Some interesting "collapses" wrt the skeleton

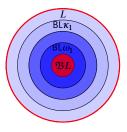
A frame L is ω_1 -hollow if L has no proper dense cozero elements, that is, Coz $L \subseteq \mathfrak{B}L$; aka almost P

More generally, *L* is κ -hollow if *L* has no proper dense κ -cozero elements, that is, κ Coz $L \subseteq \mathfrak{B}L$

Some interesting "collapses" wrt the skeleton

A frame L is ω_1 -hollow if L has no proper dense cozero elements, that is, Coz $L \subseteq \mathfrak{B}L$; aka almost P

More generally, L is κ -hollow if L has no proper dense κ -cozero elements, that is, κ Coz $L \subseteq \mathfrak{B}L$



L is ω_1 -hollow \iff BL $(\omega_1 \text{Coz } L) = \mathfrak{B}L$;

L is κ -hollow \iff BL (κ Coz L) = $\mathfrak{B}L$

Some interesting "collapses" wrt cozeros

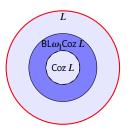
A frame *L* is a *cozero frame* if Coz *L* is a frame.

(For example, all perfectly normal frames; converse is not true) More generally, L is a κ -cozero frame if κ Coz L is a frame.

Some interesting "collapses" wrt cozeros

A frame *L* is a *cozero frame* if Coz *L* is a frame.

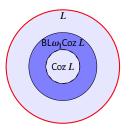
(For example, all perfectly normal frames; converse is not true) More generally, L is a κ -cozero frame if κ Coz L is a frame.



Some interesting "collapses" wrt cozeros

A frame *L* is a *cozero frame* if Coz *L* is a frame.

(For example, all perfectly normal frames; converse is not true) More generally, L is a κ -cozero frame if κ Coz L is a frame.



L is a cozero frame iff $BL(\omega_1 Coz L) = Coz L$;

L is κ -cozero frame iff BL (κ Coz L) = κ Coz L

This makes $\kappa \operatorname{Coz} L$ is a sublocale of L

The "Hollowing out" tower of sublocales

In general, an element *a* in *L* can be "removed" by collapsing the frame:

- frame quotient $L \twoheadrightarrow \downarrow a: b \mapsto a \land b$
- corresponding sublocale is o(a) = {a → b : b ∈ L}: each b in L is mapped to a → b

Theorem (Ball, Hager, WW)

 λ -hollow completely regular frames are a reflective (non-full) subcategory of completely regular frames

• denoted by $\mathcal{H}_{\lambda}L$

remove all dense λ -cozeros

• intersection of all the dense λ -cozero sublocales of L

 $\mathscr{H}_{\lambda}L = \bigcap_{\text{dense}a \in \lambda \text{Coz } L} \mathfrak{o}(a)$

The "Hollowing out" tower of sublocales

In general, an element *a* in *L* can be "removed" by collapsing the frame:

- frame quotient $L \twoheadrightarrow \downarrow a: b \mapsto a \land b$
- corresponding sublocale is o(a) = {a → b : b ∈ L}: each b in L is mapped to a → b

Theorem (Ball, Hager, WW)

 λ -hollow completely regular frames are a reflective (non-full) subcategory of completely regular frames

- denoted by $\mathcal{H}_{\lambda}L$
- intersection of all the dense λ -cozero sublocales of L

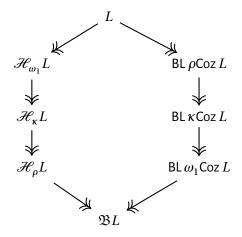
$$\mathscr{H}_{\lambda}L = \bigcap_{\text{dense}a \in \lambda \text{Coz } L} \mathfrak{o}(a)$$

Hollowing sequence (descending):

$$L \supseteq \mathscr{H}_{\omega_1} L \supseteq \cdots \supseteq \mathscr{H}_{\lambda} L \supseteq \cdots \supseteq \mathscr{H}_{\rho} L = \mathfrak{B} L$$

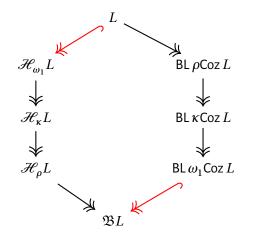
remove all dense λ -cozeros

Hollowing vs BL-towers



Θ

Hollowing vs BL-towers



L is ω_1 -hollow iff $L = \mathcal{H}_{\omega_1}L$ iff $\mathfrak{B}L = \mathsf{BL}\,\omega_1\mathsf{Coz}\,L$

Advertising Moment: Banaschewski 100

Advertising Moment: Banaschewski 100

SAVE THE DATE: ? July 13-17, 2026?

CHAPMAN

https://sites.google.com/chapman.edu/banaschewski100/

Advertising Moment: Banaschewski 100

SAVE THE DATE: ? July 13-17, 2026 ? Chapman Chrivenity, Change, California USA

Thank you :)

https://sites.google.com/chapman.edu/banaschewski100/

