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Linear orders and order types

A relation ⪯ on a set X is a linear order if it is a partial order
under which any two elements of X are comparable. That is,
for all x , y , z ∈ X ,

1 x ⪯ x (reflexivity),
2 [(x ⪯ y) ∧ (y ⪯ x)] =⇒ x = y (antisymmetry), and
3 [(x ⪯ y) ∧ (y ⪯ z)] =⇒ x ⪯ z (transitivity); and, in addition,
4 (x ⪯ y) ∨ (y ⪯ x) (any two elements are comparable).

If, in addition, every nonempty subset of X has a least
element, X is a well-ordering.

Notation for some common order types: ω = o.t.(N),
ω∗ = o.t.(N∗) (the reverse ordering on N), and ζ = o.t.(Z).
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Addition of linear orders

The sum L+M is the linear order obtained by declaring all l ∈ L
to be less than all m ∈ M, while preserving the orders within L and
M. That is, to form L+M, lay out a copy of L followed by a copy
of M.

L M

L+M

Note that addition of linear orders is not commutative.
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(Lexicographic) multiplication of linear orders

The product LM is the linear order obtained by putting the
lexicographic order on L×M. That is, to form LM, one replaces
each l ∈ L with a copy of M.

M

L

Multiplication of linear orders is not commutative either:
ω2 ∼= ω, but 2ω ∼= ω + ω.
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The finite condensation

For any linear order L, define x ∼F y iff there are only finitely
many points of L between x and y .

∼F is a condensation: an equivalence relation whose
equivalence classes are intervals of L (convex sets).

∼F is called the finite condensation.

ω⧸∼F
∼= 1, because between any two natural numbers there

are only finitely many points.

ω∗
⧸∼F

∼= 1,

ζ⧸∼F
∼= 1,

and n⧸∼F
∼= 1 for any finite n.

These are exactly the order types whose finite condensation is
isomorphic to 1.
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Multiplication mod the finite condensation

Define an operation ·F on linear orders by
L ·F M := o.t.(LM⧸∼F ) (the order type of the lexicographic
product modulo the finite condensation).

Set R = {1, ω, ω∗, ζ}. We get the following multiplication
table for (R, ·F ):

·F 1 ω ω∗ Z
1 1 1 1 1

ω 1 ω ω ω

ω∗ 1 ω∗ ω∗ ω∗

Z 1 Z Z Z
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Left rectangular band

A semigroup is a set with an associative binary operation.

A band is a semigroup in which every element is idempotent:
for every x in the band, x2 = x .

A left-rectangular band is a band B such that xyx = xy for all
x , y ∈ B.

Proposition (B–S)

R = ({1, ω, ω∗, ζ}, ·F ) is a left rectangular band.

Setting RON = {1, ω} (the ordinal elements of R), (RON, ·F )
is a left rectangular sub-band.
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Endomorphisms

An endomorphism of ON is a weakly order-preserving map f
from ON to ON: α ≤ β =⇒ f (α) ≤ f (β).

Define ϕF
left : R

ON → EndON by

ϕF
left(1)(α) := 1 ·F α

ϕF
left(ω)(α) := ω ·F α.

Define ϕF
right : R

ON → EndON by

ϕF
right(1)(α) := α ·F 1

ϕF
right(ω)(α) := α ·F ω.
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Endomorphisms, cont’d.

Theorem (B–S)

Each of the maps ϕF
left(1), ϕ

F
left(ω), ϕ

F
right(1), and ϕF

right(ω) is an
endomorphism of ON.

ϕF
right(ω) is the identity map from ON to ON.

ϕF
left(1) and ϕF

right(1) are the map α 7→ o.t.(α⧸∼F ).
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Endomorphisms, cont’d.

ϕF
left and ϕF

right do not act like true representations in the
sense of structure-preserving maps from the left rectangular
band RON under ·F to the class End(ON) under composition.

ϕF
right preserves the products ω ·F 1, 1 ·F ω, and ω ·F ω, but it

does not preserve the product 1 ·F 1. (A similar situation
holds for the map ϕF

left.)
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Cantor normal form

Theorem (Cantor Normal Form)

Let α be an ordinal. Then α can be written in the form

n1ω
α1 + · · ·+ nkω

αk

where α1 > α2 > · · · > αk are ordinals and where k and n1, . . . , nk
are natural numbers (with n1 ̸= 0). Further, this decomposition is
unique.

If the exponents αi are all finite, α has finite degree.
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The Cantor normal form map

We will denote by ω[ω]ωCNF the class of all Cantor normal
forms of ordinals of finite degree, considered as formal sums.

We define a map Φ by letting Φ(α) be the Cantor normal
form of α.

When we restrict Φ to the ordinals of finite degree, we get the
class map Φ : {α ∈ ON : deg(α) < ω} → ω[ω]ωCNF sending an
α of finite degree to its Cantor normal form.
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Derivatives

Theorem (B–S)

Suppose α is an ordinal of finite degree with Cantor normal form
Φ(α) = anω

n + an−1ω
n−1 + · · ·+ a1ω + a0, with n > 0. Then

1 ·F Φ(α) = anω
n−1 + an−1ω

n−2 + · · ·+ a1 + cα

where cα = 0 if a0 = 0, and cα = 1 if a0 ̸= 0.

Because of the resemblance of this map to an ordinary
polynomial derivative, we give ϕF

left(1) the notation ∂F .

Notice that ∂F (Φ(α)) is an element of ω[ω]ωCNF .

Observe that ∂
deg(α)+1
F (Φ(α)) = 1.
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The finite condensation “derivative”

We have the following commutative diagram for the finite
condensation derivative ∂F .

Here, the derivative ∂†
F mapping {α ∈ ON : deg(α) < ω} to

{α ∈ ON : deg(α) < ω} is an induced derivative, arising from
our definition of the operator ∂F defined on ω[ω]ωCNF .

Ricardo Suárez (joint work with Jennifer Brown) CSU Channel Islands

Algebraic structures defined by the finite condensation on linear orders



Extending the finite condensation “derivative” onto
ordinals

Next, consider iterating ∂†
F . We have

∂†
F ◦ ∂†

F = ∂†
F ◦ (Φ−1 ◦ ∂F ◦ Φ)

= (Φ−1 ◦ ∂F ◦ Φ) ◦ (Φ−1 ◦ ∂F ◦ Φ)
= Φ−1 ◦ ∂F ◦ Id ◦ ∂F ◦ Φ
= Φ−1 ◦ ∂2

F ◦ Φ.

Similarly, for n < ω, we will have (∂†
F )

n = Φ−1 ◦ ∂n
F ◦ Φ.
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Thank-you!

Thank-you to the organizers of BLAST for the support and the
opportunity to speak today.
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A couple of references

Standard reference on linear orders:
J. Rosenstein, Linear Orderings, Academic Press, 1982.

Our paper associated with these slides:
J. Brown and R. Suárez, Algebraic structures arising from the
finite condensation on linear orders. (submitted; current
version [v3] available on arXiv after 27 May 2025)
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