Algebraic structures defined by the finite condensation on linear orders

Ricardo Suarez (ricardo.suarez532@myci.csuci.edu) CSU Channel Islands

The finite condensation \sim_F is an equivalence relation defined on a linear order L by $x \sim_F y$ if and only if the set of points lying between x and y is finite. We define an operation \cdot_F on linear orders L and Mby $L \cdot_F M = (LM)/\sim_F$; that is, $L \cdot_F M$ is the lexicographic product of L and M modulo the finite condensation. If $L/\sim_F \cong 1$ for an infinite linear order L, then L is order-isomorphic to one of \mathbb{N}, \mathbb{N}^* , or \mathbb{Z} . We show that under the operation \cdot_F , the set $R = \{1, \omega, \omega^*, \zeta\}$ (where ω^* is the order type of the negative integers and ζ is the order type of \mathbb{Z}) forms a left rectangular band. Further, each of the ordinal elements of R defines, via left or right multiplication modulo the finite condensation, a weakly order-preserving map on the class of ordinals. We describe these maps' action on the ordinals whose Cantor normal form is of finite degree.