The Funayama envelope as the T_D -hull of a frame

Guram Bezhanishvili, Ranjitha Raviprakash, Anna Laura Suarez, Joanne Walters-Wayland

May, 2025 (University of Colorado, Boulder, BLAST 2025)

A frame is a complete distributive lattice L satisfying the join-infinite distributive law (JID): a ∧ ∨ S = ∨{a ∧ s | s ∈ S}.

- A frame is a complete distributive lattice L satisfying the join-infinite distributive law (JID): a ∧ ∨ S = ∨{a ∧ s | s ∈ S}.
- A frame homomorphism is a map between two frames preserving finite meets and arbitrary joins.

- A frame is a complete distributive lattice L satisfying the join-infinite distributive law (JID): a ∧ ∨ S = ∨{a ∧ s | s ∈ S}.
- A frame homomorphism is a map between two frames preserving finite meets and arbitrary joins.
- Solution Let Frm be the category of frames and frame homomorphisms.

- A frame is a complete distributive lattice L satisfying the join-infinite distributive law (JID): a ∧ ∨ S = ∨{a ∧ s | s ∈ S}.
- A frame homomorphism is a map between two frames preserving finite meets and arbitrary joins.
- Solution Let Frm be the category of frames and frame homomorphisms.

Each topological space X has the frame $\Omega(X)$ of its open sets.

- A frame is a complete distributive lattice L satisfying the join-infinite distributive law (JID): a ∧ ∨ S = ∨{a ∧ s | s ∈ S}.
- A frame homomorphism is a map between two frames preserving finite meets and arbitrary joins.
- Solution Let Frm be the category of frames and frame homomorphisms.

Each topological space X has the frame $\Omega(X)$ of its open sets. If $f: X \to Y$ is a continuous map between spaces, we have the frame homomorphism $\Omega(f): \Omega(Y) \to \Omega(X)$ given by $\Omega(f)(V) = f^{-1}[V]$ for every $V \in \Omega(Y)$.

- A frame is a complete distributive lattice L satisfying the join-infinite distributive law (JID): a ∧ ∨ S = ∨{a ∧ s | s ∈ S}.
- A frame homomorphism is a map between two frames preserving finite meets and arbitrary joins.
- Solution Let Frm be the category of frames and frame homomorphisms.

Each topological space X has the frame $\Omega(X)$ of its open sets. If $f: X \to Y$ is a continuous map between spaces, we have the frame homomorphism $\Omega(f): \Omega(Y) \to \Omega(X)$ given by $\Omega(f)(V) = f^{-1}[V]$ for every $V \in \Omega(Y)$.

This defines a contravariant functor Ω : **Top** \rightarrow **Frm**, where **Top** is the category of topological spaces and continuous maps.

- A frame is a complete distributive lattice L satisfying the join-infinite distributive law (JID): a ∧ ∨ S = ∨{a ∧ s | s ∈ S}.
- A frame homomorphism is a map between two frames preserving finite meets and arbitrary joins.
- Solution Let Frm be the category of frames and frame homomorphisms.

Each topological space X has the frame $\Omega(X)$ of its open sets. If $f: X \to Y$ is a continuous map between spaces, we have the frame homomorphism $\Omega(f): \Omega(Y) \to \Omega(X)$ given by $\Omega(f)(V) = f^{-1}[V]$ for every $V \in \Omega(Y)$.

This defines a contravariant functor Ω : **Top** \rightarrow **Frm**, where **Top** is the category of topological spaces and continuous maps.

 Ω has a *right adjoint* pt : **Frm** \rightarrow **Top**, which maps a frame to its space of completely prime filters.

A frame is spatial if it is isomorphic to the lattice of opens of a topological space.

A frame is spatial if it is isomorphic to the lattice of opens of a topological space.

Sob the full subcategory of **Top** consisting of sober spaces.

A frame is spatial if it is isomorphic to the lattice of opens of a topological space.

Sob the full subcategory of **Top** consisting of sober spaces. **SFrm** the full subcategory of **Frm** consisting of spatial frames.

A frame is spatial if it is isomorphic to the lattice of opens of a topological space.

Sob the full subcategory of **Top** consisting of sober spaces. **SFrm** the full subcategory of **Frm** consisting of spatial frames.

Theorem (Dowker-Papert)

The contravariant adjunction (Ω, pt) restricts to a dual equivalence between **Sob** and **SFrm**.

A frame is spatial if it is isomorphic to the lattice of opens of a topological space.

Sob the full subcategory of **Top** consisting of sober spaces. **SFrm** the full subcategory of **Frm** consisting of spatial frames.

Theorem (Dowker-Papert)

The contravariant adjunction (Ω, pt) restricts to a dual equivalence between **Sob** and **SFrm**.

This means that a sober space X can be reconstructed from $\Omega(X)$.

A topological space X is a T_D -space if each point x is locally closed ({x} is an intersection of an open set and a closed set).

A topological space X is a T_D -space if each point x is locally closed ({x} is an intersection of an open set and a closed set).

Let **Top**_D be the full subcategory of **Top** consisting of T_D -spaces.

A topological space X is a T_D -space if each point x is locally closed ({x} is an intersection of an open set and a closed set).

Let Top_D be the full subcategory of Top consisting of T_D -spaces.

Definition

A frame L is T_D -spatial if $L \cong \Omega(X)$ for some T_D -space X.

A topological space X is a T_D -space if each point x is locally closed ({x} is an intersection of an open set and a closed set).

Let Top_D be the full subcategory of **Top** consisting of T_D -spaces.

Definition

A frame L is T_D -spatial if $L \cong \Omega(X)$ for some T_D -space X.

In general, for a T_D -space X, the spectrum $pt(\Omega(X))$ may not be a T_D -space.

A topological space X is a T_D -space if each point x is locally closed ({x} is an intersection of an open set and a closed set).

Let Top_D be the full subcategory of **Top** consisting of T_D -spaces.

Definition

A frame L is T_D -spatial if $L \cong \Omega(X)$ for some T_D -space X.

In general, for a T_D -space X, the spectrum $pt(\Omega(X))$ may not be a T_D -space. We thus need to work with a different spectrum, which is always T_D .

A filter F in frame L is called slicing if it is prime and there exist $a, b \in L$ such that $a \notin F, b \in F$, and a is covered by b.

A filter F in frame L is called slicing if it is prime and there exist $a, b \in L$ such that $a \notin F, b \in F$, and a is covered by b.

For a frame L, let $pt_D(L)$ be the space of slicing filters.

A filter F in frame L is called slicing if it is prime and there exist $a, b \in L$ such that $a \notin F, b \in F$, and a is covered by b.

For a frame L, let $pt_D(L)$ be the space of slicing filters.

Remark

Every slicing filter is a completely prime filter, so $pt_D(L) \subseteq pt(L)$.

A filter F in frame L is called slicing if it is prime and there exist $a, b \in L$ such that $a \notin F, b \in F$, and a is covered by b.

For a frame L, let $pt_D(L)$ be the space of slicing filters.

Remark

Every slicing filter is a completely prime filter, so $pt_D(L) \subseteq pt(L)$. In fact, $pt_D(L)$ is precisely the collection of locally closed points of pt(L).

A filter F in frame L is called slicing if it is prime and there exist $a, b \in L$ such that $a \notin F, b \in F$, and a is covered by b.

For a frame L, let $pt_D(L)$ be the space of slicing filters.

Remark

Every slicing filter is a completely prime filter, so $pt_D(L) \subseteq pt(L)$. In fact, $pt_D(L)$ is precisely the collection of locally closed points of pt(L). Therefore, $pt_D(L)$ is a T_D -subspace of pt(L).

A filter F in frame L is called slicing if it is prime and there exist $a, b \in L$ such that $a \notin F, b \in F$, and a is covered by b.

For a frame L, let $pt_D(L)$ be the space of slicing filters.

Remark

Every slicing filter is a completely prime filter, so $pt_D(L) \subseteq pt(L)$. In fact, $pt_D(L)$ is precisely the collection of locally closed points of pt(L). Therefore, $pt_D(L)$ is a T_D -subspace of pt(L).

Frame homomorphisms $f : L \to M$ in general do not yield well-defined maps $pt_D(M) \to pt_D(L)$.

A filter F in frame L is called slicing if it is prime and there exist $a, b \in L$ such that $a \notin F, b \in F$, and a is covered by b.

For a frame L, let $pt_D(L)$ be the space of slicing filters.

Remark

Every slicing filter is a completely prime filter, so $pt_D(L) \subseteq pt(L)$. In fact, $pt_D(L)$ is precisely the collection of locally closed points of pt(L). Therefore, $pt_D(L)$ is a T_D -subspace of pt(L).

Frame homomorphisms $f : L \to M$ in general do not yield well-defined maps $pt_D(M) \to pt_D(L)$.

Definition

A frame homomorphism $f : L \to M$ is a D-morphism provided $f^{-1}(F)$ is a slicing filter of L for each slicing filter F of M. **Top**_D the full subcategory of **Top** consisting of T_D -spaces.

Top_D the full subcategory of **Top** consisting of T_D -spaces.

Frm_D the wide subcategory of Frm whose morphisms are D-morphisms.

Top_D the full subcategory of **Top** consisting of T_D -spaces.

Frm_D the wide subcategory of Frm whose morphisms are D-morphisms.

If $f : X \to Y$ is a continuous map between T_D -spaces, then the frame homomorphism $\Omega(f)$ is a D-morphism.

Top_D the full subcategory of **Top** consisting of T_D -spaces. **Frm**_D the wide subcategory of **Frm** whose morphisms are D-morphisms.

If $f : X \to Y$ is a continuous map between T_D -spaces, then the frame homomorphism $\Omega(f)$ is a D-morphism.

Thus, Ω : **Top** \rightarrow **Frm** restricts to a functor from **Top**_D to **Frm**_D.

Top_D the full subcategory of **Top** consisting of T_D -spaces. **Frm**_D the wide subcategory of **Frm** whose morphisms are D-morphisms.

If $f : X \to Y$ is a continuous map between T_D -spaces, then the frame homomorphism $\Omega(f)$ is a D-morphism.

Thus, Ω : **Top** \rightarrow **Frm** restricts to a functor from **Top**_D to **Frm**_D. Its right adjoint is pt_D : **Frm**_D \rightarrow **Top**_D.

Top_D the full subcategory of **Top** consisting of T_D -spaces. **Frm**_D the wide subcategory of **Frm** whose morphisms are D-morphisms.

If $f : X \to Y$ is a continuous map between T_D -spaces, then the frame homomorphism $\Omega(f)$ is a D-morphism.

Thus, Ω : **Top** \rightarrow **Frm** restricts to a functor from **Top**_D to **Frm**_D. Its right adjoint is pt_D : **Frm**_D \rightarrow **Top**_D.

Let **TD-SFrm**_D be the full subcategory of **Frm**_D consisting of T_D -spatial frames.

Top_D the full subcategory of **Top** consisting of T_D -spaces. **Frm**_D the wide subcategory of **Frm** whose morphisms are D-morphisms.

If $f : X \to Y$ is a continuous map between T_D -spaces, then the frame homomorphism $\Omega(f)$ is a D-morphism.

Thus, Ω : **Top** \rightarrow **Frm** restricts to a functor from **Top**_D to **Frm**_D. Its right adjoint is pt_D : **Frm**_D \rightarrow **Top**_D.

Let **TD-SFrm**_D be the full subcategory of **Frm**_D consisting of T_D -spatial frames.

Theorem (Banaschewski-Pultr)

The contravariant adjunction (Ω, pt_D) restricts to a dual equivalence between Top_D and TD-SFrm_D.

Drawbacks

• The pt and pt_D functors are in general different, even for T_D -spatial frames.

- The pt and pt_D functors are in general different, even for T_D -spatial frames.
- The T_D -duality is not a restriction of the $\Omega \dashv pt$ adjunction.

- The pt and pt_D functors are in general different, even for *T*_D-spatial frames.
- The T_D -duality is not a restriction of the $\Omega \dashv pt$ adjunction.
- Not all frame morphisms between T_D -spatial frames are D-morphisms.

An alternative approach is to work with powerset algebras and interior operators (Kuratowski, 1922).

Definition

A McKinsey-Tarski algebra or an MT-algebra is a complete Boolean algebra with an interior operator □ (that is, □1 = 1, □(a ∧ b) = □a ∧ □b, □a ≤ a, and □a ≤ □□a).

- A McKinsey-Tarski algebra or an MT-algebra is a complete Boolean algebra with an interior operator □ (that is, □1 = 1, □(a ∧ b) = □a ∧ □b, □a ≤ a, and □a ≤ □□a).
- ② An MT-morphism between MT-algebras M and N is a complete Boolean homomorphism $h: M \to N$ satisfying $h(\Box_M a) \leq \Box_N h(a)$ for each $a \in M$.

- A McKinsey-Tarski algebra or an MT-algebra is a complete Boolean algebra with an interior operator □ (that is, □1 = 1, □(a ∧ b) = □a ∧ □b, □a ≤ a, and □a ≤ □□a).
- ② An MT-morphism between MT-algebras M and N is a complete Boolean homomorphism $h: M \to N$ satisfying $h(\Box_M a) \leq \Box_N h(a)$ for each $a \in M$.
- Ict MT be the category of MT-algebras and MT-morphisms.

If $f : X \to Y$ is a continuous function between topological spaces, then $f^{-1} : \mathcal{P}(Y) \to \mathcal{P}(X)$ is an MT-morphism.

If $f: X \to Y$ is a continuous function between topological spaces, then $f^{-1}: \mathcal{P}(Y) \to \mathcal{P}(X)$ is an MT-morphism.

This defines a contravariant functor $\mathcal{P} : \mathbf{Top} \to \mathbf{MT}$.

If $f: X \to Y$ is a continuous function between topological spaces, then $f^{-1}: \mathcal{P}(Y) \to \mathcal{P}(X)$ is an MT-morphism.

This defines a contravariant functor $\mathcal{P} : \mathbf{Top} \to \mathbf{MT}$. The functor at : $\mathbf{MT} \to \mathbf{Top}$, sending an MT-algebra to its space of atoms, is *right adjoint* to \mathcal{P} .

If $f: X \to Y$ is a continuous function between topological spaces, then $f^{-1}: \mathcal{P}(Y) \to \mathcal{P}(X)$ is an MT-morphism.

This defines a contravariant functor $\mathcal{P} : \mathbf{Top} \to \mathbf{MT}$. The functor at : $\mathbf{MT} \to \mathbf{Top}$, sending an MT-algebra to its space of atoms, is *right adjoint* to \mathcal{P} .

A spatial MT-algebra (SMT) is an atomic MT-algebra.

If $f: X \to Y$ is a continuous function between topological spaces, then $f^{-1}: \mathcal{P}(Y) \to \mathcal{P}(X)$ is an MT-morphism.

This defines a contravariant functor $\mathcal{P} : \mathbf{Top} \to \mathbf{MT}$. The functor at : $\mathbf{MT} \to \mathbf{Top}$, sending an MT-algebra to its space of atoms, is *right adjoint* to \mathcal{P} .

A spatial MT-algebra (SMT) is an atomic MT-algebra.

Theorem

The adjuction (\mathcal{P} , at) restricts to a dual equivalence between SMT and Top.

If $f: X \to Y$ is a continuous function between topological spaces, then $f^{-1}: \mathcal{P}(Y) \to \mathcal{P}(X)$ is an MT-morphism.

This defines a contravariant functor $\mathcal{P} : \mathbf{Top} \to \mathbf{MT}$. The functor at : $\mathbf{MT} \to \mathbf{Top}$, sending an MT-algebra to its space of atoms, is *right adjoint* to \mathcal{P} .

A spatial MT-algebra (SMT) is an atomic MT-algebra.

Theorem

The adjuction (\mathcal{P} , at) restricts to a dual equivalence between **SMT** and **Top**.

This shows that **MT** is a faithful generalization of **Top**.

Let $M \in MT$. An element $a \in M$ is open if $a = \Box a$. Let $\mathcal{O}(M)$ be the collection of open elements of M.

Let $M \in \mathbf{MT}$. An element $a \in M$ is open if $a = \Box a$. Let $\mathcal{O}(M)$ be the collection of open elements of M.

Definition

● An element $x \in M$ is locally closed if $x = u \land \neg v$, where $u, v \in \mathcal{O}(M)$. Let LC(M) be the set of locally closed elements of M.

Let $M \in \mathbf{MT}$. An element $a \in M$ is open if $a = \Box a$. Let $\mathcal{O}(M)$ be the collection of open elements of M.

- An element $x \in M$ is locally closed if $x = u \land \neg v$, where $u, v \in \mathcal{O}(M)$. Let LC(M) be the set of locally closed elements of M.
- We define a relation a ≺ b provided there is a finite subset T of LC(M) such that a ≤ ∨ T ≤ b

Let $M \in \mathbf{MT}$. An element $a \in M$ is open if $a = \Box a$. Let $\mathcal{O}(M)$ be the collection of open elements of M.

- An element $x \in M$ is locally closed if $x = u \land \neg v$, where $u, v \in \mathcal{O}(M)$. Let LC(*M*) be the set of locally closed elements of *M*.
- We define a relation a ≺ b provided there is a finite subset T of LC(M) such that a ≤ V T ≤ b (equivalently, a ≺ b provided there is x in the Boolean subalgebra of M generated by O(M) such that a ≤ x ≤ b).

Let $M \in \mathbf{MT}$. An element $a \in M$ is open if $a = \Box a$. Let $\mathcal{O}(M)$ be the collection of open elements of M.

- **()** An element $x \in M$ is locally closed if $x = u \land \neg v$, where $u, v \in \mathcal{O}(M)$. Let LC(M) be the set of locally closed elements of M.
- We define a relation a ≺ b provided there is a finite subset T of LC(M) such that a ≤ V T ≤ b (equivalently, a ≺ b provided there is x in the Boolean subalgebra of M generated by O(M) such that a ≤ x ≤ b).
- **3** *M* is a T_D -algebra if $a = \bigvee \{b \in M \mid b \prec a\}$ for all $a \in M$.

Let $M \in \mathbf{MT}$. An element $a \in M$ is open if $a = \Box a$. Let $\mathcal{O}(M)$ be the collection of open elements of M.

- **()** An element $x \in M$ is locally closed if $x = u \land \neg v$, where $u, v \in \mathcal{O}(M)$. Let LC(M) be the set of locally closed elements of M.
- We define a relation a ≺ b provided there is a finite subset T of LC(M) such that a ≤ V T ≤ b (equivalently, a ≺ b provided there is x in the Boolean subalgebra of M generated by O(M) such that a ≤ x ≤ b).
- $M \text{ is a } T_D \text{-algebra if } a = \bigvee \{ b \in M \mid b \prec a \} \text{ for all } a \in M.$
- Let MT_D be the full subcategory of MT consisting of T_D-algebras, and let SMT_D be the full subcategory of MT_D consisting of spatial T_D-algebras.

Let $M \in \mathbf{MT}$. An element $a \in M$ is open if $a = \Box a$. Let $\mathcal{O}(M)$ be the collection of open elements of M.

Definition

- **()** An element $x \in M$ is locally closed if $x = u \land \neg v$, where $u, v \in \mathcal{O}(M)$. Let LC(M) be the set of locally closed elements of M.
- We define a relation a ≺ b provided there is a finite subset T of LC(M) such that a ≤ V T ≤ b (equivalently, a ≺ b provided there is x in the Boolean subalgebra of M generated by O(M) such that a ≤ x ≤ b).
- **3** *M* is a T_D -algebra if $a = \bigvee \{b \in M \mid b \prec a\}$ for all $a \in M$.
- Let MT_D be the full subcategory of MT consisting of T_D-algebras, and let SMT_D be the full subcategory of MT_D consisting of spatial T_D-algebras.

Theorem

The dual equivalence between **Top** and **SMT** restricts to a dual equivalence between **Top**_D and **SMT**_D.

The setting of frames lacks the expressive power to tell the difference between T_D and non T_D -spaces.

The setting of frames lacks the expressive power to tell the difference between T_D and non T_D -spaces. We use the richer language of MT-algebras to define the T_D -hull of a frame.

For a frame *L*, let \overline{BL} be the MacNeille completion of its Boolean envelope BL.

$$\overline{\Box}a = \bigvee \{ \Box b \mid b \in \mathcal{B}L \text{ and } b \leq a \}.$$

$$\overline{\Box}a = \bigvee \{ \Box b \mid b \in \mathcal{B}L \text{ and } b \leq a \}.$$

Then $(\overline{\mathcal{B}L},\overline{\Box})$ is an MT-algebra such that $\mathcal{O}(\overline{\mathcal{B}L}) \cong L$.

$$\overline{\Box} a = \bigvee \{ \Box b \mid b \in \mathcal{B}L \text{ and } b \leq a \}.$$

Then $(\overline{\mathcal{B}L},\overline{\Box})$ is an MT-algebra such that $\mathcal{O}(\overline{\mathcal{B}L})\cong L$.

Definition

For a frame *L*, we call the MT-algebra $(\overline{BL}, \overline{\Box})$ the Funayama envelope of *L* and denote it by $\mathcal{F}(L)$.

$$\overline{\Box} a = \bigvee \{ \Box b \mid b \in \mathcal{B}L \text{ and } b \leq a \}.$$

Then $(\overline{\mathcal{B}L},\overline{\Box})$ is an MT-algebra such that $\mathcal{O}(\overline{\mathcal{B}L})\cong L$.

Definition

For a frame *L*, we call the MT-algebra $(\overline{BL}, \overline{\Box})$ the Funayama envelope of *L* and denote it by $\mathcal{F}(L)$.

Theorem

```
• For a frame L, \mathcal{F}(L) is T_D.
```

$$\overline{\Box} a = \bigvee \{ \Box b \mid b \in \mathcal{B}L \text{ and } b \leq a \}.$$

Then $(\overline{\mathcal{B}L},\overline{\Box})$ is an MT-algebra such that $\mathcal{O}(\overline{\mathcal{B}L})\cong L$.

Definition

For a frame *L*, we call the MT-algebra $(\overline{BL}, \overline{\Box})$ the Funayama envelope of *L* and denote it by $\mathcal{F}(L)$.

Theorem

```
• For a frame L, \mathcal{F}(L) is T_D.
```

```
2 M is T_D iff \mathcal{F}(\mathcal{O}(M)) \cong M.
```

The assignment $L \to \mathcal{F}(L)$ is not functorial: frame morphisms do not in general lift to complete Boolean homomorphisms between their Funayama envelopes.

The assignment $L \to \mathcal{F}(L)$ is not functorial: frame morphisms do not in general lift to complete Boolean homomorphisms between their Funayama envelopes.

In order to remedy this, we introduce a weaker notion of morphism:

The assignment $L \to \mathcal{F}(L)$ is not functorial: frame morphisms do not in general lift to complete Boolean homomorphisms between their Funayama envelopes.

In order to remedy this, we introduce a weaker notion of morphism:

Definition

For $M, N \in \mathbf{MT}$, a map $f : M \to N$ is a proximity morphism provided

The assignment $L \to \mathcal{F}(L)$ is not functorial: frame morphisms do not in general lift to complete Boolean homomorphisms between their Funayama envelopes.

In order to remedy this, we introduce a weaker notion of morphism:

Definition

For $M, N \in \mathbf{MT}$, a map $f : M \to N$ is a proximity morphism provided • $f|_{\mathcal{O}(M)} : \mathcal{O}(M) \to \mathcal{O}(N)$ is a frame homomorphism.

The assignment $L \to \mathcal{F}(L)$ is not functorial: frame morphisms do not in general lift to complete Boolean homomorphisms between their Funayama envelopes.

In order to remedy this, we introduce a weaker notion of morphism:

Definition

For $M, N \in \mathbf{MT}$, a map $f : M \to N$ is a proximity morphism provided

• $f|_{\mathcal{O}(M)} : \mathcal{O}(M) \to \mathcal{O}(N)$ is a frame homomorphism.

$$f(a \wedge b) = f(a) \wedge f(b) \text{ for each } a, b \in M.$$

The assignment $L \to \mathcal{F}(L)$ is not functorial: frame morphisms do not in general lift to complete Boolean homomorphisms between their Funayama envelopes.

In order to remedy this, we introduce a weaker notion of morphism:

Definition

For $M, N \in \mathbf{MT}$, a map $f : M \to N$ is a proximity morphism provided

• $f|_{\mathcal{O}(M)} : \mathcal{O}(M) \to \mathcal{O}(N)$ is a frame homomorphism.

$$f(a \wedge b) = f(a) \wedge f(b) \text{ for each } a, b \in M.$$

 $a_1 \prec b_1 \text{ and } a_2 \prec b_2 \text{ imply } f(a_1 \lor a_2) \prec f(b_1) \lor f(b_2).$
Proximity morphisms

The assignment $L \to \mathcal{F}(L)$ is not functorial: frame morphisms do not in general lift to complete Boolean homomorphisms between their Funayama envelopes.

In order to remedy this, we introduce a weaker notion of morphism:

Definition

For $M, N \in \mathbf{MT}$, a map $f : M \to N$ is a proximity morphism provided

• $f|_{\mathcal{O}(M)} : \mathcal{O}(M) \to \mathcal{O}(N)$ is a frame homomorphism.

$$f(a \wedge b) = f(a) \wedge f(b) \text{ for each } a, b \in M.$$

- $a_1 \prec b_1 \text{ and } a_2 \prec b_2 \text{ imply } f(a_1 \lor a_2) \prec f(b_1) \lor f(b_2).$
- $f(a) = \bigvee \{ f(b) \mid b \in M, b \prec a \}$ for each $a \in M$.

Proximity morphisms

The assignment $L \to \mathcal{F}(L)$ is not functorial: frame morphisms do not in general lift to complete Boolean homomorphisms between their Funayama envelopes.

In order to remedy this, we introduce a weaker notion of morphism:

Definition

For $M, N \in \mathbf{MT}$, a map $f : M \to N$ is a proximity morphism provided

• $f|_{\mathcal{O}(M)} : \mathcal{O}(M) \to \mathcal{O}(N)$ is a frame homomorphism.

$$f(a \wedge b) = f(a) \wedge f(b) \text{ for each } a, b \in M.$$

$$\ \, \textbf{0} \ \, \textbf{a}_1 \prec b_1 \ \, \textbf{and} \ \, \textbf{a}_2 \prec b_2 \ \, \textbf{imply} \ \, f(a_1 \lor a_2) \prec f(b_1) \lor f(b_2).$$

• $f(a) = \bigvee \{ f(b) \mid b \in M, b \prec a \}$ for each $a \in M$.

Remark

Proximity morphisms between MT-algebras are reminiscent of de Vries morphisms.

Let PMT_D be the category of T_D -algebras with proximity morphisms.

Let PMT_D be the category of T_D -algebras with proximity morphisms.

 ${\mathcal F}$ extends frame homomorphisms to proximity morphisms, yielding:

Let PMT_D be the category of T_D -algebras with proximity morphisms.

 ${\mathcal F}$ extends frame homomorphisms to proximity morphisms, yielding:

Lemma $\mathcal{F} : \mathbf{Frm} \to \mathbf{PMT}_D$ is a functor.

Let **PMT**_D be the category of T_D -algebras with proximity morphisms.

 ${\mathcal F}$ extends frame homomorphisms to proximity morphisms, yielding:

Lemma $\mathcal{F} : \mathbf{Frm} \to \mathbf{PMT}_D$ is a functor.

Main Theorem

Frm is equivalent to **PMT**_D.

T_D -coreflection of T_0 -spaces

D Top the wide subcategory of Top whose morphisms f are such that $\Omega(f)$ is a D-morphism.

T_D -coreflection of T_0 -spaces

DTop the wide subcategory of **Top** whose morphisms f are such that $\Omega(f)$ is a D-morphism.

 $_D$ **Top**₀ the full subcategory of $_D$ **Top** consisting of T_0 -spaces.

DTop the wide subcategory of **Top** whose morphisms f are such that $\Omega(f)$ is a D-morphism.

 $_D$ **Top**₀ the full subcategory of $_D$ **Top** consisting of T_0 -spaces.

Theorem (Banaschewski-Pultr)

 \mathbf{Top}_D is a coreflective subcategory of $_D\mathbf{Top}_0$.

DTop the wide subcategory of **Top** whose morphisms f are such that $\Omega(f)$ is a D-morphism.

 $_D$ **Top**₀ the full subcategory of $_D$ **Top** consisting of T_0 -spaces.

Theorem (Banaschewski-Pultr)

 \mathbf{Top}_D is a coreflective subcategory of $_D\mathbf{Top}_0$.

Remark

The coreflection can be achieved by the inclusion of locally closed points of a T_0 -space X into X.

DTop the wide subcategory of **Top** whose morphisms f are such that $\Omega(f)$ is a D-morphism.

 $_D$ **Top**₀ the full subcategory of $_D$ **Top** consisting of T_0 -spaces.

Theorem (Banaschewski-Pultr)

 \mathbf{Top}_D is a coreflective subcategory of $_D\mathbf{Top}_0$.

Remark

The coreflection can be achieved by the inclusion of locally closed points of a T_0 -space X into X.

Drawback

While it is easy to describe the T_D -coreflection in terms of topological spaces, the notion of T_D -reflection is not expressible in the language of frames.

Definition

An MT-morphism f is a D-morphism if the left adjoint f* maps locally closed atoms to locally closed atoms.

Definition

- An MT-morphism f is a D-morphism if the left adjoint f* maps locally closed atoms to locally closed atoms.
- **2** Let $_{D}MT$ be the category of MT-algebras and D-morphisms.

Definition

- An MT-morphism f is a D-morphism if the left adjoint f* maps locally closed atoms to locally closed atoms.
- Let _DMT be the category of MT-algebras and D-morphisms. We also let _DSMT be the full subcategory of _DMT consisting of spatial MT-algebras.

Definition

- An MT-morphism f is a D-morphism if the left adjoint f* maps locally closed atoms to locally closed atoms.
- Let _DMT be the category of MT-algebras and D-morphisms. We also let _DSMT be the full subcategory of _DMT consisting of spatial MT-algebras.

Theorem

The category SMT_D is a reflective subcategory of $_DSMT$.

Definition

- An MT-morphism f is a D-morphism if the left adjoint f* maps locally closed atoms to locally closed atoms.
- Let _DMT be the category of MT-algebras and D-morphisms. We also let _DSMT be the full subcategory of _DMT consisting of spatial MT-algebras.

Theorem

The category SMT_D is a reflective subcategory of $_DSMT$.

Corollary

 \mathbf{Top}_D is a coreflective subcategory of $_D\mathbf{Top}$.

Definition

- An MT-morphism f is a D-morphism if the left adjoint f* maps locally closed atoms to locally closed atoms.
- Let _DMT be the category of MT-algebras and D-morphisms. We also let _DSMT be the full subcategory of _DMT consisting of spatial MT-algebras.

Theorem

The category SMT_D is a reflective subcategory of $_DSMT$.

Corollary

 \mathbf{Top}_D is a coreflective subcategory of $_D\mathbf{Top}$.

Our pointfree approach yields the T_D -coreflection for all spaces, lifting the T_0 restriction of the Banaschewski-Pultr construction.

Thank you!