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Frames

Definition

1 A frame is a complete distributive lattice L satisfying the join-infinite
distributive law (JID): a ∧

∨
S =

∨
{a ∧ s | s ∈ S}.

2 A frame homomorphism is a map between two frames preserving
finite meets and arbitrary joins.

3 Let Frm be the category of frames and frame homomorphisms.

Each topological space X has the frame Ω(X ) of its open sets. If
f : X → Y is a continuous map between spaces, we have the frame
homomorphism Ω(f ) : Ω(Y ) → Ω(X ) given by Ω(f )(V ) = f −1[V ] for
every V ∈ Ω(Y ).

This defines a contravariant functor Ω : Top → Frm, where Top is the
category of topological spaces and continuous maps.

Ω has a right adjoint pt : Frm → Top, which maps a frame to its space
of completely prime filters.
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Sober spaces and spatial frames

A space X is sober if every completely prime filter is of the form
N(x) := {U ∈ Ω(X ) | x ∈ U} for some unique x ∈ X .

A frame is spatial if it is isomorphic to the lattice of opens of a
topological space.

Sob the full subcategory of Top consisting of sober spaces.

SFrm the full subcategory of Frm consisting of spatial frames.

Theorem (Dowker-Papert)

The contravariant adjunction (Ω, pt) restricts to a dual equivalence
between Sob and SFrm.

This means that a sober space X can be reconstructed from Ω(X ).
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TD-spaces and TD-spatial frames

Definition

A topological space X is a TD -space if each point x is locally closed ({x}
is an intersection of an open set and a closed set).

Let TopD be the full subcategory of Top consisting of TD -spaces.

Definition

A frame L is TD -spatial if L ∼= Ω(X ) for some TD -space X .

In general, for a TD -space X , the spectrum pt(Ω(X)) may not be a
TD -space. We thus need to work with a different spectrum, which is
always TD .
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Slicing filters and D-morphisms

Definition

A filter F in frame L is called slicing if it is prime and there exist a, b ∈ L
such that a /∈ F , b ∈ F , and a is covered by b.

For a frame L, let ptD(L) be the space of slicing filters.

Remark

Every slicing filter is a completely prime filter, so ptD(L) ⊆ pt(L). In fact,
ptD(L) is precisely the collection of locally closed points of pt(L).
Therefore, ptD(L) is a TD -subspace of pt(L).

Frame homomorphisms f : L → M in general do not yield well-defined
maps ptD(M) → ptD(L).

Definition

A frame homomorphism f : L → M is a D-morphism provided f −1(F ) is
a slicing filter of L for each slicing filter F of M.
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TD-duality

TopD the full subcategory of Top consisting of TD -spaces.

FrmD the wide subcategory of Frm whose morphisms are
D-morphisms.

If f : X → Y is a continuous map between TD -spaces, then the frame
homomorphism Ω(f ) is a D-morphism.

Thus, Ω : Top → Frm restricts to a functor from TopD to FrmD . Its
right adjoint is ptD : FrmD → TopD.

Let TD-SFrmD be the full subcategory of FrmD consisting of TD -spatial
frames.

Theorem (Banaschewski-Pultr)

The contravariant adjunction (Ω, ptD) restricts to a dual equivalence
between TopD and TD-SFrmD .
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The pt and ptD functors are in general different, even for TD -spatial
frames.

The TD -duality is not a restriction of the Ω ⊣ pt adjunction.

Not all frame morphisms between TD -spatial frames are
D-morphisms.
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McKinsey-Tarski approach

An alternative approach is to work with powerset algebras and interior
operators (Kuratowski, 1922).

This was generalized to Boolean algebras
with interior operators by McKinsey and Tarski (1944).

Definition

1 A McKinsey-Tarski algebra or an MT-algebra is a complete Boolean
algebra with an interior operator □ (that is,

□1 = 1, □(a ∧ b) = □a ∧□b, □a ≤ a, and □a ≤ □□a).

2 An MT-morphism between MT-algebras M and N is a complete
Boolean homomorphism h : M → N satisfying h(□Ma) ≤ □Nh(a)
for each a ∈ M.

3 Let MT be the category of MT-algebras and MT-morphisms.
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Top and MT

For each topological space X , (P(X ), int) is an MT-algebra.

If f : X → Y is a continuous function between topological spaces, then
f −1 : P(Y ) → P(X ) is an MT-morphism.

This defines a contravariant functor P : Top → MT. The functor
at : MT → Top, sending an MT-algebra to its space of atoms, is right
adjoint to P.

A spatial MT-algebra (SMT) is an atomic MT-algebra.

Theorem

The adjuction (P, at) restricts to a dual equivalence between SMT and
Top.

This shows that MT is a faithful generalization of Top.
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TD-algebras

Let M ∈ MT. An element a ∈ M is open if a = □a. Let O(M) be the
collection of open elements of M.

Definition

1 An element x ∈ M is locally closed if x = u ∧ ¬v , where u, v ∈ O(M).
Let LC(M) be the set of locally closed elements of M.

2 We define a relation a ≺ b provided there is a finite subset T of LC(M)
such that a ≤

∨
T ≤ b (equivalently, a ≺ b provided there is x in the

Boolean subalgebra of M generated by O(M) such that a ≤ x ≤ b).

3 M is a TD -algebra if a =
∨
{b ∈ M | b ≺ a} for all a ∈ M.

4 Let MTD be the full subcategory of MT consisting of TD -algebras, and let
SMTD be the full subcategory of MTD consisting of spatial TD -algebras.

Theorem

The dual equivalence between Top and SMT restricts to a dual equivalence
between TopD and SMTD .
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between TD and non TD -spaces. We use the richer language of
MT-algebras to define the TD -hull of a frame.
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Funayama envelope as the TD-hull

For a frame L, let BL be the MacNeille completion of its Boolean
envelope BL.

We lift the interior operator □ : BL → BL to □ : BL → BL
by

□a =
∨

{□b | b ∈ BL and b ≤ a}.

Then
(
BL,□

)
is an MT-algebra such that O(BL) ∼= L.

Definition

For a frame L, we call the MT-algebra
(
BL,□

)
the Funayama envelope

of L and denote it by F(L).

Theorem

1 For a frame L, F(L) is TD .

2 M is TD iff F(O(M)) ∼= M.
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Proximity morphisms

The assignment L → F(L) is not functorial: frame morphisms do not in
general lift to complete Boolean homomorphisms between their
Funayama envelopes.

In order to remedy this, we introduce a weaker notion of morphism:

Definition

For M,N ∈ MT, a map f : M → N is a proximity morphism provided

1 f |O(M) : O(M) → O(N) is a frame homomorphism.

2 f (a ∧ b) = f (a) ∧ f (b) for each a, b ∈ M.

3 a1 ≺ b1 and a2 ≺ b2 imply f (a1 ∨ a2) ≺ f (b1) ∨ f (b2).

4 f (a) =
∨
{f (b) | b ∈ M, b ≺ a} for each a ∈ M.

Remark

Proximity morphisms between MT-algebras are reminiscent of de Vries
morphisms.
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Main Theorem

Let PMTD be the category of TD -algebras with proximity morphisms.

F extends frame homomorphisms to proximity morphisms, yielding:

Lemma

F : Frm → PMTD is a functor.

Main Theorem

Frm is equivalent to PMTD .
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TD-coreflection of T0-spaces

DTop the wide subcategory of Top whose morphisms f are such that
Ω(f ) is a D-morphism.

DTop0 the full subcategory of DTop consisting of T0-spaces.

Theorem (Banaschewski-Pultr)

TopD is a coreflective subcategory of DTop0.

Remark

The coreflection can be achieved by the inclusion of locally closed points
of a T0-space X into X .

Drawback

While it is easy to descibe the TD -coreflection in terms of topological
spaces, the notion of TD -reflection is not expressible in the language of
frames.
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Pointfree description of the TD-coreflection of spaces.

Definition

1 An MT-morphism f is a D-morphism if the left adjoint f ∗ maps
locally closed atoms to locally closed atoms.

2 Let DMT be the category of MT-algebras and D-morphisms. We
also let DSMT be the full subcategory of DMT consisting of spatial
MT-algebras.

Theorem

The category SMTD is a reflective subcategory of DSMT.

Corollary

TopD is a coreflective subcategory of DTop.

Our pointfree approach yields the TD -coreflection for all spaces, lifting
the T0 restriction of the Banaschewski-Pultr construction.
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TopD is a coreflective subcategory of DTop.

Our pointfree approach yields the TD -coreflection for all spaces, lifting
the T0 restriction of the Banaschewski-Pultr construction.
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