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Finite algebras viewed as finite-state automata

Remark
VanderWerf made the following philosophical claim in his PhD thesis “...what
matters about finite algebras is what they can compute.” It was VanderWerf’s aim
to order finite algebras corresponding to their computational power (as bottom-up
tree automata). This led to the notion of a simulation class.

Definition
A collection of finite algebras is called a simulation class if it is closed under
division, matrix powers, and wreath products. If K is a class of finite algebras,
then the simulation class generated by K, denoted by Sim(K), is the smallest
simulation class containing K.
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Division

Definition
Let A be an algebra. The clone of A, denoted by CloA, is the collection of
all operations which may be obtained by composing all basic operations of A
and the projection operations.

We say that B is a reduct of A if B = A and CloB ⊆ CloA.
We say that B is a subreduct of A if it is a subalgebra of a reduct of A.
We say that C is a divisor of A if there is a subreduct B of A and a
congruence θ of B, such that B/θ ∼= C.
We write B ≤ A if B is a subreduct of A and we write C ⪯ A if C is a divisor
of A.

Example

Let L3 = ⟨{0, 1, 2},∨,∧⟩ denote the three-element lattice. The two-element join
semilattice, S = ⟨{0, 1},∨⟩, is a subreduct of L3.
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Matrix powers

Definition (Definition 13.2 Hobby and McKenzie)

Let A be an algebra and let k be a positive integer. The k th matrix power of A,
denoted by A[k], is defined as follows: The universe of A[k] is Ak . For any n ≥ 0
and f1, . . . , fk ∈ CloknA, there is an operation f ∈ Clon(A[k]) defined by

f (a1, . . . , an) = (f1(a1, . . . , an), . . . , fk(a1, . . . , an)),

where a1, . . . , an ∈ Ak .

Fact

ConA and ConA[k] are naturally isomorphic.

A and A[k] have the same typeset.
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Matrix power example

Example

Let L = ⟨{0, 1},∨,∧⟩ denote the two-element lattice. Consider the following
operations in Clo(L[2]):

j(x, y) = (x1 ∨ y1, x2 ∧ y2),

m(x, y) = (x1 ∧ y1, x2 ∨ y2),

‘(x) = (π2(x1, x2), π1(x1, x2)).

Let B = {(0, 1), (1, 0)}. Claim: ⟨B, j(x, y)|B ,m(x, y)|B , ‘(x)|B⟩ is a subreduct of
L[2] isomorphic to the two-element Boolean algebra.

Remark
The two-element Boolean algebra is a member of the simulation class generated
by the two-element lattice.
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Wreath products

Definition
Let A and B be finite algebras. The wreath product of A and B, denoted by A ◦B,
is defined as follows: The universe of A ◦ B is A× B. For any n ≥ 0, g ∈ ClonB,
and α : Bn → ClonA, there is an operation h ∈ Clon(A ◦ B) defined by

h((a1, b1), . . . , (an, bn)) = (α(b1, . . . , bn)(a1, . . . , an), g(b1, . . . , bn)),

where (a1, b1), . . . , (an, bn) ∈ A× B.

Fact
Projection onto the second factor of a wreath product is a homomorphism.
However, due to the asymmetry of the wreath product, projection onto the
first factor need not be a homomorphism.

Any finite algebra can be decomposed as a wreath product of simple algebras.
This implies that a simulation class is determined by its simple members.
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Wreath product example

Example

Let S = ⟨{0, 1},∨, 0, 1⟩ denote the two-element semilattice and let
Z3 = ⟨{0, 1, 2},+⟩ denote the three-element group. The following operation is a
member of Clo3(S ◦ Z3).

f (x, y, z) =

{
(x1 ∨ y1 ∨ z1,−(x2 + y2 + z2) mod 3) , if (x2, y2, z2) ∈ D,

(1,−(x2 + y2 + z2) mod 3) , otherwise,

where D = {(0, 0, 0), (1, 1, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.

Remark

Let θ denote the following equivalence relation on {0, 1} × {0, 1, 2}:

{(0, 0)} ∪ {(0, 1)} ∪ {(0, 2), (1, 0), (1, 1), (1, 2)}.

One can verify that θ is a congruence of ⟨{0, 1} × {0, 1, 2}, f (x, y, z)⟩. Let
A3 = ⟨{0, 1} × {0, 1, 2}, f (x, y, z)⟩/θ.
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Simulation classes of interest

Definition

An algebra A is primal if Sim(A) is the class of all finite algebras.

Aprim is the class of algebras A such that Sim(A) is not the class of all finite
algebras, such algebras are said to be aprimal.

StrSolv is the class of all finite strongly solvable algebras.

Solv is the class of all finite solvable algebras.

Aper is the class of all algebras A, such that Sim(A) does not contain any
finite group.

Example

Any finite unary algebra is in StrSolv .

Any finite Abelian group is in Solv .

Any finite semilattice is in Aper .
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A hierarchy of simulation classes

StrSolv

Sim(S) Solv

Aper

Aprim

Figure: Some simulation classes of particular interest ordered by inclusion.
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VanderWerf’s decidability results

Definition
Let C be a simulation class. The membership problem for C asks if a given finite
algebra A is a member of C. The membership problem for C is decidable if there
exists an algorithm which when given any finite algebra as input, outputs whether
or not this algebra is a member of C.

Theorem (VanderWerf 1994)

The membership problem is decidable for the following classes:

StrSolv

Solv

Aprim
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Exclusion classes

Definition

Let K be a class of finite algebras. The exclusion class of K, denoted by Excl(K),
is the class of all finite algebras that cannot simulate any algebra in K.

Theorem (VanderWerf 1994)

StrSolv = Excl{S ,Zp : p a prime.}
Solv = Excl{S}
Aprim = Excl{B}
Aper = Excl{Zp : p a prime.}
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A decision procedure for Aprim

Theorem (VanderWerf 1994)

The membership problem for Aprim is decidable.

Proof.

Let A be a finite algebra and let B = ⟨{0, 1},∨,∧, ‘(x)⟩ denote the two-element
Boolean algebra.

If A ̸∈ Aprim, then B ⪯ A[n1] ◦ · · · ◦ A[nm], for some n1, . . . , nm ≥ 1.

If B ⪯ A[n1] ◦ · · · ◦ A[nm], then B ≤ A[n] for some n ≥ 1.

If B ≤ A[n] for some n ≥ 1, then B ≤ A[m] for m ≤ |A|2.
As A is finite, for any fixed integer m, there are finitely many subreducts of A[m]

with signature (2, 2, 1). So, the above describes an algorithm which decides the
membership problem for Aprim.
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The membership problem for Aper

Question (VanderWerf 1994)

Is the membership problem for Aper decidable?

Remark

If A ̸∈ Aper , then Zp ⪯ A[n1] ◦ · · · ◦ A[nm], for some prime p and
n1, . . . , nm ≥ 1.

If Zp ⪯ A[n1] ◦ · · · ◦ A[nm], then Zp ≤ A[n] for some n ≥ 1.

If Zp ≤ A[n] for some n ≥ 1, then Zp ≤ A[m] for m ≤ |A|p.
However, this only gives a decision procedure for a fixed prime p. As there are
infinitely many primes to check the above algorithm does not decide the
membership problem for Aper .
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Separating Sim(S) and Aper

Question

VanderWerf demonstrated that Solv = Sim{Zp : p a prime}. So one might ask
the question: Is Aper = Sim(S)?

Theorem (VanderWerf 1994)

Sim(S) and Aper are distinct simulation classes.

Proof.
Let A3 be as previously defined. It can be demonstrated that
A3 ∈ Aper \ Sim(S).

Conjecture (Bojańczyk 2004)

The membership problem for Sim(S) is decidable.
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Results

Definition

Let p be an odd prime and let Ap = ⟨{0, 1, 2}, fp(x1, . . . , xp)⟩, where

f (x1, . . . , xp) =


0, if (x1, . . . , xp) ∈ {(0, . . . , 0), (1, . . . , 1)},
1, if (x1, . . . , xp) ∈ {(0, 1, . . . , 1), . . . , (1, . . . , 1, 0)},
2, otherwise

Theorem

Ap ∈ Sim(S ,Zp) [2021].

Ap ∈ Aper [2021].

Ap ̸∈ Sim(S) [2021].

Ap is not a member of Sim{Aq : q an odd prime, q ̸= p} [2023].

Corollary

There are continuum many simulation classes contained in Aper .
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What is known about Aper?

Theorem (VanderWerf 1994)

Let A be a finite algebra. The following are equivalent.

1 A ∈ Aper .

2 A ∈ Aprim and there is no subreduct B of A[k] that has a type 2 subtrace for
any k ≥ 1.

Theorem (VanderWerf 1994)

Let A be a finite simple algebra of type 5. If the trace order of A has a unique
minimal element, then A ∈ Aper .
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The end

Thank you!
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