A Characterization of Finitely Based Abelian Mal'cev Varieties

Mateo Muro

February 6, 2025

Algebras and Varieties

An *algebra* \mathbf{A} is a set with function symbols. These symbols are interpreted as operations on the set.

Example

▶ the group structure $\langle \mathbb{Z}, +, -, 0 \rangle$

The set of function symbols is the algebra's signature.

A variety \mathcal{V} is a class of algebras with the same signature that is defined by a set of equations Σ . Then Σ is a basis for \mathcal{V} .

Example

The variety of groups is the variety with signature $\langle +,-,0\rangle$ satisfying the following

G1
$$(x + y) + z \approx x + (y + z)$$

G2 $x + 0 \approx 0 + x \approx x$
G3 $x + (-x) \approx (-x) + x \approx 0$

A variety is *finitely based* if its basis of equations Σ is finite in size. Example

- The variety of groups is finitely based.
- The variety of lattices is finitely based.

Examples of Finite Basis Results

Example

- (A. Yu. Ol'shanskii, 1970) There exists varieties of groups which are not finitely based.
- (Lyndon, 1952) The variety of k-nilpotent groups is finitely based for every k ∈ N.

A variety \mathcal{V} is Mal'cev if there exists a ternary term operation m(x, y, z), called a *Mal'cev term*, such that

$$\mathcal{V} \models m(x, x, y) \approx y \approx m(y, x, x).$$

Example

Any expansion of additive groups has Mal'cev term m(x, y, z) = x - y + z.

Abelian Algebras

Theorem (H.P. Gumm, 1980)

A variety with Mal'cev term m(x, y, z) is abelian if and only if for every basic operation f we have

$$\mathcal{V} \models m(f(\overline{x}), f(\overline{y}), f(\overline{z})) \approx f(m(x_1, y_1, z_1), \dots, m(x_k, y_k, z_k)),$$

where f is assumed to have arity k and \overline{x} is a k-tuple.

Example

 $\langle \mathbb{Z}, x - y + z, 3x + 4y + 3 \rangle$ is an abelian algebra

Free Algebras

For a variety \mathcal{V} and variables x_1, \ldots, x_n , we let $\mathbf{F}_{\mathcal{V}}(x_1, \ldots, x_n)$ denote the *free algebra over* x_1, \ldots, x_n *in* \mathcal{V} . We let $F_{\mathcal{V}}^{id}(x_1, \ldots, x_n) = \{t \in F_{\mathcal{V}}(x_1, \ldots, x_n) \mid t(z, \ldots, z) = z\}$

Module Structure

Theorem (c.f. R. Freese, R. McKenzie, 1987) Let \mathcal{V} be an abelian variety with Mal'cev term *m*. For $s, t \in F_{\mathcal{V}}(x, z)$ define

$$s + t := m(s(x, z), z, t(x, z)),$$

 $s \cdot t := s(t(x, z), z)$
 $-s := m(z, s(x, z), z).$

R_V := ⟨F^{id}_V(x, z), +, -, ·⟩ is a ring with identity x and zero z.
M_V := ⟨F_V(z), +, -, R_V⟩ is an R_V-module with zero z.
⟨F_V(x, z), +, -, R_V⟩ ≅ R_V ⊕ M_V as R_V-modules

Theorem (M. Muro, 2024)

Let ${\mathcal V}$ be an abelian Mal'cev variety of finite signature. Then ${\mathcal V}$ is finitely based if and only if

- 1. the ring $\boldsymbol{\mathsf{R}}_{\mathcal{V}}$ of binary idempotent terms is finitely presented,
- 2. and the $\boldsymbol{R}_{\mathcal{V}}\text{-module}~\boldsymbol{M}_{\mathcal{V}}$ of unary terms is finitely presented.

Proof of Characterization Theorem

Lemma (c.f. Szendrei, 1980)

Every abelian Mal'cev variety \mathcal{V} of finite signature is equivalent to a subvariety \mathcal{W} of \mathcal{U} in the signature $\{u_1, \ldots, u_\ell, r_1, \ldots, r_n, m\}$ defined by

•
$$m(x, y, y) \approx x \approx m(y, y, x).$$

•
$$r_i(z,z) \approx z$$
 for all $1 \leq i \leq n$.

 $\blacktriangleright m(u_i(x), u_i(y), u_i(z)) \approx u_i(m(x, y, z)) \text{ for all } 1 \leq i \leq \ell.$

►
$$m(r_i(x_1, x_2), r_i(y_1, y_2), r_i(z_1, z_2)) \approx$$

 $r_i(m(x_1, y_1, z_1), m(x_2, y_2, z_2))$ for all $1 \le i \le n$

 $m(m(x_1, x_2, x_3), m(y_1, y_2, y_3), m(z_1, z_2, z_3)) \approx m(m(x_1, y_1, z_1), m(x_2, y_2, z_2), m(x_3, y_3, z_3)).$

\mathcal{U}

Lemma

The variety $\ensuremath{\mathcal{U}}$ has the following properties

- The variety \mathcal{U} is finitely based.
- The ring $\mathbf{R}_{\mathcal{U}}$ is free over r_1, \ldots, r_n .
- The **R**_{\mathcal{U}}-module **M**_{\mathcal{U}} is free over u_1, \ldots, u_ℓ .
- The variety \mathcal{W} is a subvariety of \mathcal{U} .
- ▶ $\mathbf{R}_{\mathcal{W}}$ is a quotient of $\mathbf{R}_{\mathcal{U}}$ and $\mathbf{M}_{\mathcal{W}}$ is a quotient of $\mathbf{M}_{\mathcal{U}}$.

Fully Invariant Congruences

Lemma

A congruence θ on $\mathbb{F}_{\mathcal{U}}(x, z)$ is fully invariant if and only if

•
$$I = z/\theta \cap R_{\mathcal{U}}$$
 is an ideal of $\mathbf{R}_{\mathcal{U}}$,

•
$$N = z/\theta \cap M_U$$
 is an \mathbf{R}_U -submodule of \mathbf{M}_U ,

$$\triangleright \ z/\theta = I + N,$$

►
$$IM_{\mathcal{U}} \subseteq N$$
,

▶ and $f(x) - f(z) - x \in I$ for all $f(z) \in N$, f a unary term of U.

Finitely Generated Fully Invariant Congruences

Lemma

A fully invariant congruence θ on $\mathbb{F}_{\mathcal{U}}(x, z)$ is finitely generated if and only if

- 1. the ideal $\textit{I}=\textit{z}/\theta\cap\textit{R}_{\!\mathcal{U}}$ of $\textit{\textbf{R}}_{\!\mathcal{U}}$ is finitely generated and
- 2. for $N = z/\theta \cap M_U$ the **R**_U-module N/IM_U is finitely generated.

We have all the parts to prove that W is finitely based if and only if \mathbf{R}_{W} and \mathbf{M}_{W} are finitely presented.

Let $\phi \colon \mathbf{F}_{\mathcal{U}}(x,\ldots) \to \mathbf{F}_{\mathcal{W}}(x,\ldots), \ t^{\mathcal{U}} \mapsto t^{\mathcal{W}} \text{ and let } \theta = \ker \phi.$

- If W is finitely based, then θ is finitely generated as a fully invariant congruence of F_U(x₁,...).
- This means that θ uniquely determines a finitely generated ideal I of R_U and finitely generated submodule N of M_U.
- We have $\mathbf{R}_{\mathcal{W}} \cong \mathbf{R}_{\mathcal{U}}/I$ and $\mathbf{M}_{\mathcal{W}} \cong \mathbf{M}_{\mathcal{U}}/N$.
- Since R_U and M_U are free with finitely many generators, that means R_W and M_W are finitely presented.

The backwards direction is similar.

References

[M. Muro, 2024] Characterizing Finitely Based Abelian Mal'cev Algebras - https://arxiv.org/abs/2411.17004