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Pointfree topology

The basic idea of pointfree topology is to study topological spaces without
referring to points.

The popular approach is to study objects called frames (also known as locales):

Definition
A frame is a complete lattice in which finite meets distribute over arbitrary
joins.

The motivating example is that for each topological space X, the lattice of open
sets Ω(X) forms a frame. Frames of this form are called spatial.
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McKinsey–Tarski algebras

Frame theory is not the only pointfree approach to topology.

Instead of abstracting lattices of the form Ω(X) to frames, one can abstract
powerset lattices P(X) (equipped with their topological interior) to complete
interior algebras.

This alternative, interior-based approach began with KURATOWSKI’s closure
axioms in 1922 and was further generalized by MCKINSEY and TARSKI in
1944.

Although it became central in modal logic, it was largely overlooked in
pointfree topology, but recent work reintroduced McKinsey–Tarski (MT)
algebras into the pointfree study of spaces.
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MT-algebras

Definition
An MT-algebra M is a complete Boolean algebra equipped with an interior
operator □.

For each topological space X, the powerset P(X) (equipped with the topological
interior) forms an MT-algebra. Such MT-algebras are called spatial, and they
are precisely the atomic MT-algebras.

For each MT-algebra M = (M,□), the collection of open elements
O(M)= {a ∈M | □a= a} forms a frame.

Moreover, for each frame L there exists an MT-algebra M such that O(M)=L
(the Funayama envelope F(L) of L). In this sense, the MT-algebra setting
generalizes that of frames.
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Separation axioms in pointfree topology

Separation axioms weaker than or equal to T2 are infamously difficult (or even
impossible) to describe in the setting of frames.

The category of spatial MT-algebras is dually equivalent to the category of
topological spaces, allowing a pointfree generalization of all separation axioms.

GURAM and RANJITHA formulated the separation axioms Ti for
i= 0, 1

2 ,1,2,3,31
2 ,4 in [GR, 2023]. This formulation is faithful: a space X is Ti

iff P(X) is a Ti MT-algebra.

These definitions are also compatible with frame theory: under mild
assumptions (e.g., T1), M is Ti iff O(M) is Ti for i= 3,31

2 ,4.

If M is T2, then O(M) is T2. The converse was an open question. As it turns
out, the main counterexample in this talk also answers this in the negative.
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Kubiak’s comment

In a review of [GR, 2023], the following observation was made:

“A coherent system of separation axioms [...] for MT-algebras is given by
G. Nöbeling in his pioneering book1 [...]. It is rather immediate (except
possibly for i= 2) that an MT-algebra B is Nöbeling-Ti if and only if it is Ti ...”

– TOMASZ KUBIAK

Despite being mentioned briefly by JOHNSTONE (1982) as an early example of
pointfree topology, this remark points to a largely forgotten chapter in the
history of pointfree topology. NÖBELING appears to be among the last to
develop pointfree topology in the powerset-inspired direction, just before frame
theory took over.

His work includes separation axioms, local compactness, and spatiality results
in this setting.

1 Grundlagen der analytischen Topologie, 1954.
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Comparing separation axioms

Sparing you details, KUBIAK is correct that the definitions (except for T2) are
equivalent.

Lemma
Let M be an MT-algebra. For i= 1,3,31

2 ,4, M is Ti iff M is Nöbeling-Ti.

Note that NÖBELING did not consider T0.

For T2, however, the definitions diverge.
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The classical T2 condition

x ̸= y

=⇒ ∃U,V ∈Ω(X) with x ∈U, y ∈V, and U∩V =∅.

U V

x y
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The Nöbeling T2 condition

a ̸= 0, b ̸= 0, and a∧b= 0

=⇒ ∃u,v ∈O(M) with u∧a ̸= 0, v∧b ̸= 0, and u∧v= 0.

u v

a b
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MT-style thinking about separation

In a topological space, every subset is a union
of singletons. Analogously, in an atomic
Boolean algebra, every element is a join of
atoms.

This perspective allows us to describe
separation axioms in terms of properties of a
join-generating set.
Ï In a T1 space, singletons are closed.
Ï In the pointfree world, this means: the

closed elements join-generate the algebra.

atoms
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Comparing Hausdorff

The T2 property corresponds to a stronger approximation: a space X is
Hausdorff iff

{x}=⋂
{U | x ∈U ∈Ω(X)} for every x ∈X.

Thus, in the MT setting, T2 can be expressed as: every element is a join of
elements of the form

c=∧
{♢u | c≤ u ∈O(M)}. (♢=¬□¬)

Theorem
1. If M is T2, then M is Nöbeling-T2.

2. There exist Nöbeling-T2 MT-algebras that are not T1 (and hence not T2).

Example
Let B be a complete atomless Boolean algebra. Put M =B×B with
□(a,b)= (a∧b,b).
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Comparing compactness

GURAM and RANJITHA studied compactness and local compactness of
MT-algebras in [GR, 2025].

Once again, a comparison can be made with NÖBELING’s corresponding
notions.

Lemma
Let M be an MT-algebra.

1. M is compact iff M is Nöbeling-compact.

2. If M is compact, then M is Nöbeling-locally compact.

3. If M is locally compact, then M is Nöbeling-locally compact.

4. If M is T2, then M is Nöbeling-locally compact iff M is locally compact.

The fact that Nöbeling-locally compact and locally compact are very different
is unsurprising.
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Nöbeling-locally compact

Locally compact

In short, they generalize different properties.

13 / 28



Nöbeling-locally compact

Locally compact

In short, they generalize different properties.

13 / 28



Nöbeling-locally compact

Locally compact

In short, they generalize different properties.

13 / 28



Nöbeling-locally compact

Locally compact

In short, they generalize different properties.

13 / 28



Spatiality theorems

NÖBELING proved several spatiality theorems.

One of them is:

Theorem (Nöbeling, 1954)
Compact T1 MT-algebras are spatial.

There is a connection between T1 MT-algebras and subfit frames, which allows
one to derive ISBELL’s Spatiality Theorem from NÖBELING’s result.

Corollary (Isbell, 1972)
Compact subfit frames are spatial.
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Nöbeling-locally compact T1 algebras are spatial

NÖBELING also generalized his spatiality result to the Nöbeling-locally
compact case:

Theorem (Nöbeling, 1954)
Nöbeling-locally compact T1 MT-algebras are spatial.

He did not consider weaker separation axioms such as T0, T1/2, or sobriety.

T0

T1/2 Sober

T1 T1/2 +Sober

T2

This leads to a natural question: how much separation is actually needed to
make Nöbeling-locally compact MT-algebras spatial?
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Nöbeling-locally compact sober T1/2 algebras are not spatial

The search for a weaker separation axiom that guarantees spatiality under
Nöbeling-local compactness ends early:

Theorem
There exist compact (and hence Nöbeling-locally compact) sober T1/2
MT-algebras that are not spatial.

Example
Let L be a complete atomless Boolean algebra with an extra top element
adjoined. Then F(L) is compact, sober, and T1/2, but has only one atom.

This shows that Nöbeling-local compactness does not provide enough local
information to ensure spatiality.
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Nöbeling-local compactness is not a local property

In a T0 MT-algebra, compact elements must contain atoms:

Lemma
Let M be a T0 MT-algebra. If k ∈M is nonzero and compact, then there exists an
atom x ∈M such that x≤ k.

However, if there are too few compact elements, this does not generate enough
atoms to make the algebra atomic.

In fact, a compact (and hence Nöbeling-locally compact) MT-algebra may
contain only a single compact element (recall the the previous example).

We will see that this changes when working with locally compact MT-algebras.
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The T1/2 + sober case

When working with sober T1/2 MT-algebras, spatiality can be recovered from
the frame:

Theorem (Guram–Ranjitha, 2023)
If M is sober and T1/2, then M is spatial iff O(M) is spatial.

Moreover, frame-theoretically nothing

*

is required:

(*Prime Ideal Theorem)

Theorem (Hofmann–Lawson, 1977)
Continuous frames are spatial.

(Continuity is the frame-theoretic analogue of local compactness.)

Combining the two gives:

Corollary
Locally compact sober T1/2 MT-algebras are spatial.
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The T1/2 case

We can in fact do better: sobriety is not necessary.

Recall the following fact:

Lemma
Let M be a T0 MT-algebra. If k ∈M is nonzero and compact, then there exists an
atom x ∈M such that x≤ k.

In the locally compact T1/2 setting, we can localize this lemma to every nonzero
element:

Theorem
If M is locally compact and T1/2, then below every nonzero element there exists a
nonzero compact element.

Corollary
Locally compact T1/2 MT-algebras are spatial.
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The sober case and Raney extensions

The spatiality of locally compact sober MT-algebras is the main open problem
in this talk.

Since such algebras are spatial when T1/2 holds, any counterexample must fail
T1/2. Examples like this cannot come from Funayama envelopes of frames as
those are always T1/2 (see the next talk).

Instead, we turn to Raney extensions, as studied by ANNA.

Roughly speaking, just as frames correspond to lattices of open sets, Raney
extensions correspond to lattices of saturated sets.
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Raney extensions and T0

Raney extensions play the same role for T0 MT-algebras as frames do for T1/2
MT-algebras.

For any MT-algebra M, the lattice of saturated elements Sat(M) forms a Raney
extension. Conversely, for any Raney extension C, the Funayama envelope
F(C) is a T0 MT-algebra.

We also have:

Lemma
Let C be a Raney extension.

1. C is spatial iff F(C) is spatial.

2. C is sober iff F(C) is sober.
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The main example

Every frame has a largest and smallest Raney extension.

Of particular interest is the largest Raney extension C of the frame Ω(R),
where R carries the standard topology.

In this case, C is sober but not spatial. Therefore, F(C) is sober and not
spatial.

Moreover, since Ω(R) is continuous and F(C) is sober, F(C) is locally compact.

Theorem
There exist locally compact sober MT-algebras that are not spatial.
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Conclusion

Frames are blind to weak separation. They always seem T1/2, so local
compactness always makes them spatial.

MT-algebras aren’t blind. They see more, and sometimes, that means seeing
too little separation to be spatial.

Local compactness does not always imply spatiality
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Thank you!


