A Baer-like criterion for relative injective modules via model theory

Marcos Mazari-Armida marcos_mazari@baylor.com Baylor University

Partially supported by NSF DMS-2348881 and Simons Foundation MPS-TSM-00007597

May 2025 BLAST 2025

Marcos Mazari-Armida

Characterizing some classical rings via superst

22 de mayo de 2025

- Abstract elementary classes constitute a model theoretic framework to study classes of structures.
- They were introduced by Saharon Shelah in the seventies.
- The abstract theory has developed rapidly in the last 25 years.
- Recently there has been a push to find interactions and applications to algebra
- Interaction between ring theory and superstability
- Solution to a problem of Fuchs
- Baer-like criterion for relative injective modules

Basic notions

- Oividing lines
- O Applications (joint work with J. Rosický)
- Summary and future work

Basic notions: Module theory

R is an associative ring with unity.

R-Module

An R-module is a "vector space" over the ring R.

Some key examples:

- \mathbb{R} -modules are vectors spaces over \mathbb{R} .
- Z-modules are abelian groups.

Basic notions: Module theory

R is an associative ring with unity.

R-Module

An R-module is a "vector space" over the ring R.

Some key examples:

- \mathbb{R} -modules are vectors spaces over \mathbb{R} .
- Z-modules are abelian groups.

Strong submodules (Prüfer 1930s)

- $A \leq_{RD} B$ if and only if divisibility is preserved between A and B.
- A ≤_p B if and only if existence of solutions to systems of linear equations are preserved between A and B.

For \mathbb{Z} -modules: $\leq_{\mathsf{RD}} = \leq_p$.

Examples

$$M \leq_{p} M \oplus N$$
, $t(G) \leq_{p} G$, $\mathbb{Z} \nleq_{p} \mathbb{Q}$.

An abstract elementary class is a pair $\mathbf{K} = (K, \leq_{\mathbf{K}})$ where K is class of mathematical structures and $\leq_{\mathbf{K}}$ is a partial order on K.

Key axioms

- **• K** is closed under isomorphisms.
- **2** If $M \leq_{\mathbf{K}} N$, then M is a substructure of N.
- **I** K is closed under unions of increasing chains.
- Solution Every model in K can be decomposed into *small* submodels in K.

In this talk:

- $K \subseteq Ab, R$ -Mod or $K \subseteq S$ -Act
- $\leq_{\mathbf{K}}$ will be \leq or \leq_{p} or \leq_{RD} .

- (R-Mod, \leq), (R-Mod, \leq_p) and (R-Mod, \leq_{RD})
- (*R*-Flat, ≤_p).
 For *R* = ℤ, *G* is *R*-Flat if every element of *G* has infinite order.
- (ℵ₁-free, ≤_p).
 G is an ℵ₁-free group if every countable subgroup is free.

•
$$(S-Act, \leq)$$
, $(S-Act, \leq_p)$ for S a monoid

- Basic notions
- Oividing lines
- Applications (joint work with J. Rosický)
- Summary and future work

Dividing lines: Limit models (Kolman-Shelah 1990s)

M is a λ -limit model if there is $\alpha < \lambda^+$ limit ordinal and there is $\{M_i : i < \alpha\} \subseteq K$:

Marcos Mazari-Armida

Characterizing some classical rings via superst

22 de mayo de 2025

Dividing lines: Limit models

And for every $i < \alpha$, M_{i+1} is universal over M_i :

In this case, *M* is a (λ, α) -limit model.

э

Stable (Shelah 1990s)

- **K** is λ -stable if **K** has a λ -limit model.
- **K** is stable if there is a λ such that **K** is λ -stable.

Stable (Shelah 1990s)

- **K** is λ -stable if **K** has a λ -limit model.
- **K** is stable if there is a λ such that **K** is λ -stable.

Theorem (Fisher-Bauer 1970s)

If T is a complete first-order theory of modules, then $(Mod(T), \leq_p)$ is stable.

Stable (Shelah 1990s)

- **K** is λ -stable if **K** has a λ -limit model.
- **K** is stable if there is a λ such that **K** is λ -stable.

Theorem (Fisher-Bauer 1970s)

If T is a complete first-order theory of modules, then $(Mod(T), \leq_p)$ is stable.

Question (M. 2020)

If (K, \leq_p) is an **abstract elementary class of modules**, is (K, \leq_p) stable? Is it true if $R = \mathbb{Z}$? Under what conditions on R is it true?

Recall: In the definition of λ -limit model there is a parameter $\alpha < \lambda^+$.

Uniqueness of limit models

K has uniqueness of limit models of cardinality λ if **K** has a single λ -limit model up to isomorphisms.

Superstability (Shelah, Grossberg-Vasey)

K is *superstable* if and only if **K** has uniqueness of limit models in *all* large cardinals.

Recall: In the definition of λ -limit model there is a parameter $\alpha < \lambda^+$.

Uniqueness of limit models

K has uniqueness of limit models of cardinality λ if **K** has a single λ -limit model up to isomorphisms.

Superstability (Shelah, Grossberg-Vasey)

 ${\bf K}$ is *superstable* if and only if ${\bf K}$ has uniqueness of limit models in *all* large cardinals.

If K is superstable, then K is stable.

T is a complete first-order theory: $(Mod(T), \preceq)$

 $(Mod(T), \leq)$ is superstable if and only if T is superstable.

Question

If **K** is an abstract elementary class of algebraic objects, under what conditions is **K** superstable? Is there an algebraic reason why this happens?

Question

If **K** is an abstract elementary class of algebraic objects, under what conditions is **K** superstable? Is there an algebraic reason why this happens?

Noetherian rings (1921): Every ideal is finitely generated.

Characterizing noetherian rings (M.)

Let R be an associative ring with unity. The following are equivalent.

- **1** *R* is left noetherian.
- The class of absolutely pure left *R*-modules with pure embeddings is superstable
- **3** The class of left *R*-modules with embeddings is superstable.

Similar results for: pure semisimple rings and perfect rings.

Weakly noetherian monoids: Every ideal is finitely generated.

Characterizing weakly noetherian monoids (M.-Rosický)

Let S be a monoid. The following are equivalent.

1 *S* is left weakly noetherian.

② The class of left S-acts with embeddings is superstable.

Weakly noetherian monoids: Every ideal is finitely generated.

Characterizing weakly noetherian monoids (M.-Rosický)

Let S be a monoid. The following are equivalent.

- S is left weakly noetherian.
- ② The class of left S-acts with embeddings is superstable.

Question

Can the study of stability and superstability for other varieties give interesting information?

- Basic notions
- Oividing lines
- **O Applications (joint work with J. Rosický)**
- Summary and future work

Applications: Injective modules

Injective module

E is injective if for every modules *A* and *B* such that $A \le B$ and every homomorphism $f : A \to E$, there is a homomorphism $g : B \to E$ such that $g \upharpoonright A = f$

Injective \mathbb{Z} -modules are divisible abelian groups: $\mathbb{Q}_{\underline{*}} \mathbb{Z}(p_{\underline{*}}^{\infty})$

Applications: Hypothesis

Hypothesis

- Let (K, \mathcal{M}) be a pair such that:
 - K is a class of R-modules for a fixed ring R,
 - **2** \mathcal{M} is either the class of embeddings, *RD*-embeddings or pure embeddings, and
 - K is closed under:
 - direct sums,
 - **9** \mathcal{M} -submodules, i.e., if $A \in K$ and $B \leq_{\mathcal{M}} A$, then $B \in K$, and
 - 𝔐-epimorphic images, i.e., if f : A → B is a 𝟸-epimorphism and A ∈ K, then B ∈ K.

Applications: Hypothesis

Hypothesis

- Let (K, \mathcal{M}) be a pair such that:
 - K is a class of R-modules for a fixed ring R,
 - **2** \mathcal{M} is either the class of embeddings, *RD*-embeddings or pure embeddings, and
 - K is closed under:
 - direct sums,
 - **9** \mathcal{M} -submodules, i.e., if $A \in K$ and $B \leq_{\mathcal{M}} A$, then $B \in K$, and
 - 𝔅 𝔅 𝔅-epimorphic images, i.e., if 𝔅 : 𝔅 → 𝔅 is a 𝔅-epimorphism and 𝔅 𝔅, then 𝔅 𝔅.

Always an AEC

 $\mathcal{K}_{\mathcal{M}} = (\mathcal{K}, \leq_M)$ is an AEC.

(*R*-Modules, Emb/RD/Pure) (*R*-Flat, Pure), (*R*-Tor, Pure)

Applications: Relative injective modules

Relative injective module

E is $K_{\mathcal{M}}$ -injective module if $E \in K$ and for every $A, B \in K$ such that $A \leq_{\mathcal{M}} B$ and every homomorphism $f : A \to E$, there is a homomorphism $g : B \to E$ such that $g \upharpoonright A = f$

Applications: Relative injective modules

Relative injective module

E is $K_{\mathcal{M}}$ -injective module if $E \in K$ and for every $A, B \in K$ such that $A \leq_{\mathcal{M}} B$ and every homomorphism $f : A \to E$, there is a homomorphism $g : B \to E$ such that $g \upharpoonright A = f$

- When (*R*-Modules, Emb) we get injective modules.
- When (R-Modules, Pure/RD) we get pure/RD injective modules
- When (R-Flat, Pure) we get cotorsion flat modules

Marcos Mazari-Armida

Characterizing some classical rings via superst

Baer's Criterion (1940)

E is injective if and only if for every ideal *I* and every homomorphism $f: I \to E$, there is a homomorphism $g: R \to E$ such that $g \upharpoonright I = f$.

∃ ► < ∃ ►

Baer's Criterion (1940)

E is injective if and only if for every ideal *I* and every homomorphism $f: I \to E$, there is a homomorphism $g: R \to E$ such that $g \upharpoonright I = f$.

Question

Can one extend Baer Criterion to relative injective modules?

One cannot restrict to ideals such that $I \leq_{\mathcal{M}} R$. (Ab, \leq_p): If $I \leq_p \mathbb{Z}$, then $I = \mathbb{Z}$ or $\{0\}$.

Applications: Independence relations

Extending linear independence and non-forking to arbitrary categories.

Independence relation (Lieberman-Rosický-Vasey 2019)

An independence relation on (K, M) is a set \bot of commutative squares in M such that for any commutative diagram:

we have that $(f_1, f_2, g_1, g_2) \in \bigcup$ if and only if $(f_1, f_2, h_1, h_2) \in \bigcup$. Elements of \bigcup are called independent squares.

19/28

Stable independence relation (Lieberman-Rosický-Vasey 2019)

An independence relation \downarrow is a stable independence relation if:

- Existence: every span $M_1 \leftarrow M_0 \rightarrow M_2$ can be completed to an independent square.
- Uniqueness: there is a unique independent square for every span (up to equivalence).
- Symmetry: the ears of an independent squares can be switched.
- Transitivity: composition of independent squares is an independent square.
- Local character: given $M_1 \rightarrow N \leftarrow M_2$ there is a *small* module that completes the diagram to an independent square.
- Witness property: Checking if an independent square is an independent square can be done by checking for *small* sets.

An independence relation

 $(f_1, f_2, h_1, h_2) \in \bigcup$ if and only if all the arrows of the outer square are \mathcal{M} -embeddings, (P, g_1, g_2) is the pushout of (M, f_1, f_2) , and the unique map $t : P \to N$ is a \mathcal{M} -embedding:

An independence relation

 $(f_1, f_2, h_1, h_2) \in \bigcup$ if and only if all the arrows of the outer square are \mathcal{M} -embeddings, (P, g_1, g_2) is the pushout of (M, f_1, f_2) , and the unique map $t : P \to N$ is a \mathcal{M} -embedding:

Theorem (M.-Rosický)

 \bot as defined above is a stable independence relation with the (< \aleph_0)-witness property. In particular, K_M is stable.

Marcos Mazari-Armida

Characterizing some classical rings via superst

22 de mayo de 2025

21 / 28

Applications: Baer-like criterion

Baer-like criterion for relative injective modules (M.-Rosický)

Assume $E \in K$. *E* is a $K_{\mathcal{M}}$ -injective module if and only if if for every $A, B \in K$ such that $A \leq_{\mathcal{M}} B$ and $||A||, ||B|| \leq \operatorname{card}(R) + \aleph_0$ and for every $f : A \to E$ a *R*-homomorphism there is $g : B \to E$ a *R*-homomorphism such that $g \upharpoonright A = f$.

Baer-like criterion for relative injective modules (M.-Rosický)

Assume $E \in K$. *E* is a K_M -injective module if and only if if for every $A, B \in K$ such that $A \leq_M B$ and $||A||, ||B|| \leq \operatorname{card}(R) + \aleph_0$ and for every $f : A \to E$ a *R*-homomorphism there is $g : B \to E$ a *R*-homomorphism such that $g \upharpoonright A = f$.

Proof. By induction on ||B||. Suppose $||B|| > \operatorname{card}(R) + \aleph_0$

Decompose A ≤_M B into small {A_i : i < λ}, {B_i : i < λ} which are independent of each other, i.e., if i < j, then B_i ↓ A_j (intuition A_i)

$$B_i \cap A_j = A_i)$$

- Build $\{g_i : i < \lambda\}$ such that for every $i < \lambda$, $f \upharpoonright A_i \subseteq g_i$ and $g_i : B_i \rightarrow E$.
- i + 1: dom(g_i) ∩ dom(f ↾ A_{i+1}) = A_i and g_i agrees with f up to that point so we can keep going...

•
$$g = \bigcup_{i < \lambda} g_i : B \to E.$$

The Baer-like criterion for relative injective modules ...

- Is a weakening of Baer's Criterion for injective modules.
- is new for *RD*-injective modules;
- was obtained using algebraic methods for pure injective modules in [ŠaTr20]
- was obtained using algebraic methods for flat cotorsion modules in [ŠaTr20]
- **o** is new for torsion pure injective modules.

Enough injective modules (1940s): Every module can be embedded into an injective module.

Enough injective modules (1940s): Every module can be embedded into an injective module.

Enough relative injective modules

If $A \in K$, then there is $B \in K$ such that $A \leq_{\mathcal{M}} B$ and B is $K_{\mathcal{M}}$ -injective.

Proof.

- Let B be a (λ, (card(R) + ℵ₀)⁺)-limit model such that A ≤_M B. It exists by stabilty.
- B is $K_{\mathcal{M}}$ -injective by Baer-like criterion.

- Basic notions
- Abstract elementary classes of modules
- Applications (joint work with J. Rosický)
- **9** Summary and future work

Summary

- There are many natural abstract elementary classes of modules.
- Superstability is a natural algebraic property.
- Abstract elementary classes can be used to answer algebraic questions.

Future work

- Are all abstract elementary classes of modules with pure embeddings stable?
- Can the results be extended to other varieties?
- Use abstract elementary classes of modules to answer algebraic questions.

- Baylor University at Waco Texas.
- Dates: Summer 2026 (May? August?)

More information before Christmas...

Thank you!

- Marcos Mazari-Armida and Jiří Rosický, *Relative injective modules*, superstability and noetherian categories,, to appear in Journal of Mathematical Logic, 32 pages.
- Marcos Mazari-Armida, Superstability, noetherian rings and pure-semisimple rings, Annals of Pure and Applied Logic 172 (2021), no. 3, 102917 (24 pages).
- Marcos Mazari-Armida and Jiří Rosický , *On the abstract elementary class of acts with embeddings*, Preprint.

28 / 28