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Example
SET is the variety of all sets with no operations,
SG is the variety of all semigroups (S; ·),
SLAT is the variety of all semilattices (S;∧),
BA is the variety of all Boolean algebras (B;∧,∨, ′, 0, 1),
BR is the variety of all Boolean rings (R; +, ·, 0, 1).

The varieties BA and BR are not the same, but they are term equivalent.
Every Boolean algebra can be turned into a boolean ring and vice versa:

x + y = (x ∧ y ′) ∨ (x ′ ∧ y), x · y = x ∧ y , 1 = 1, 0 = 0.

SET and SG are not term equivalent, but every set can be turned into a
semigroup by x · y = x , and vice versa.

Semigroups cannot be turned into semilattices, because semilattices satisfy
the identity x ∧ y = y ∧ x and such operation cannot be defined as a
semigroup term.
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Definition (W.D. Neumann; 1974)
Let Γ be a set of identities over a signature. We say that Γ interprets in a
variety K if by replacing the operation symbols in Γ by some term
expressions of K, the so obtained set of identities holds in K.

Definition
A variety K1 interprets in a variety K2, denoted as K1 ⪯ K2, if there is
a set of identities Γ that defines K1 and interprets in K2.

The varieties BA and BR are equi-interpretable.
The varieties SET and SG are equi-interpretable.
The variety of groups interprets in the variety of Abelian groups.
The variety SET interprets in any other variety.
Every variety interprets in the variety of trivial algebras (x ≈ y).
Constants c are modelled by unary operations satisfying c(x) ≈ c(y).
The interpretability relation ⪯ is a quasi-order on the class of varieties.
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Lattice of interpretability types

Theorem
The class of varieties modulo equi-interpretability forms a bounded lattice,
the lattice of interpretability types, with V ∨W = V ⨿W and
V ∧W = V ⊗W.

Definition
The coproduct of the varieties V = Mod Σ and W = Mod ∆ in disjoint
signatures is the variety V ⨿W = Mod(Σ ∪∆).

Definition
The varietal product of V and W is the variety V ⊗W of algebras A⊗B
for A ∈ V and B ∈ W whose

universe is A× B,
basic operations are s ⊗ t acting coordinate-wise for each pair of
n-ary terms of V and W.
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Theorem (O. Garcia, W. Taylor; 1984)
In the lattice of interpretability types of varieties

minimal element: sets, maximal element: trivial algebras
the class of idempotent varieties form a sublattice
the class of finitely presented varieties forms a sublattice
the class of linear varieties forms a join sub-semilattice
join prime elements: commutative groupoids, trivial algebras

O. Garcia and W. Taylor conjectured in 1984 that congruence
permutability is a join prime element.
L. Sequeira proved it for linear varieties.
S. Tschantz announced a proof of the conjecture in 1996.
K. Kearnes and S. Tschantz proved it for idempotent varieties.
M. Valeriote and R. Willard: n-permutability for some n is a prime
filter for idempotent varieties.
J. Opřsal: for any n ≥ 2, n-permutability is prime for linear varieties.
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Maltsev filters of varieties

Taylor, 1 ̸∈ typ(V)

SD(∧)/Mod

Hobby-McKenzie, 5 ̸∈ typ(V)

Modular, tail ̸∈ typV

2 ̸∈ typ(V), SD(∧)

SD(∨)

Distributive

4 ̸∈ typ(V), n-permutable

3-permutable

2-permutableMajority

prime Maltsev filters:
congruence permutable, m(x , y , y) ≈ m(y , y , x) ≈ x
Hobby-McKenzie term (join semi-distributive over modular)
Taylor term, non-trivial idempotent Maltsev condition

non-prime Maltsev filters:
congruence n-permutable for some n, Hagemann-Mitschke terms
congruence distributive = join semi-distributive and modular
congruence join semi-distributive (K. Kearnes and E. W. Kiss)
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Majority is not prime

Theorem
Congruence meet semi-distributivity, congruence join semi-distributivity,
congruence distributivity and having a majority term are not prime in the
lattice of interpretability types of varieties.

Let V be the variety defined by the minority identities
m(x , y , y) ≈ m(y , x , y) ≈ m(y , y , x) ≈ x .

Let W be the variety defined by identities
s(x , x) ≈ x , s(x , y) ≈ s(y , x).

We have A = (Z2; x + y + z) ∈ V and B = (Z3; 2x + 2y) ∈ W.
Con A2 ∼= M3 and Con B2 ∼= M4, so V and W are not congruence
meet semi-distributive.
However, their join has a majority term:

m(s(x , y), s(y , z), s(z , x)).
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Taylor is prime

Theorem (W. Taylor, 1977)
For any variety V the following are equivalent
Vid ̸⪯ SET ,
satisfies a non-trivial idempotent Maltsev condition,
has a Taylor-term: t(x , . . . , x) ≈ x and t(. . . , x , . . . ) ≈ t(. . . , y , . . . ).

Theorem
The filter of Taylor varieties is prime in the lattice of interpretability types.

Approach: Given two non-Taylor varieties V and W, find a compatible
digraph G in both V and W that does not admit a Taylor polymorphism.

Lemma
Let C = ({0, 1, 2};→) be the reflexive directed 3-cycle. A variety is
non-Taylor iff it has a compatible reflexive digraph that has C as a retract.
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Theorem
For any variety V the following are equivalent:
V is non-Taylor,
there are sets Kt (t ∈ T), not all empty, such that

⋃̇
t∈TCKt is a

compatible digraph in V,
for any sufficiently large infinite cardinals κ and τ the digraph⋃̇

µ≤κτCµ is a compatible digraph in V.

Proposition
SET ⪇ Pol(C) because of the Maltsev condition u(x) ≈ u(y).
Pol(C) ⪇ Pol(C2) because of the Maltsev condition

f (f (x , y), f (y , z)) ≈ y
satisfied by the polymorphism f (x1x2, y1y2) = x2y1 of C2.
Pol(C + 1) ̸⪯ Pol(CK ) because of the Maltsev condition

e(x) ≈ e(y), t(e(x), y) ≈ t(y , e(x)) ≈ y .
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Hobby-McKenzie is prime

Theorem (D. Hobby and R. McKenzie; 1988)
For any variety V the following are equivalent:
V has Hobby-McKenzie terms,
Vid ̸⪯ SLAT .

Theorem
Let S be a connected reflexive relational structure and S be the variety
generated by (S; Pol(S)). If Vid ⪯ S, then V has a compatible relational
structure F with S as a retract.

For the variety SLAT we have considered the following two structures:

D = ({0, 1, 2}; {00, 11, 22, 01, 10, 12, 20}),
S = ({0, 1}; {000, 010, 100, 111}).

Similar theorems hold as for Taylor varieties.
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Congruence and graph conditions
Congruence condition: any property of varieties that can be expressed by
the congruence relations of the algebras in the variety.
Graph condition: any property of varieties that can be expressed by the
set of compatible directed graphs of the algebras in the variety.

Proposition
A variety V is congruence 2-permutable iff every reflexive compatible
digraph in V is symmetric (and transitive).

Definition
The extreme congruence of a digraph G = (G ;→) is (→ ∩ ←)∗, the
strong congruence is →∗ ∩ ←∗, the weak congruence is (→ ∪ ←)∗.

Proposition
A variety V is congruence n-permutable for some n iff the strong and weak
congruences are the same in every reflexive compatible digraph in V.
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Graph conditions for Taylor varieties

Theorem
A variety is Taylor iff all its reflexive antisymmetric digraphs are cycle free.

Theorem
A variety V is Taylor iff the ∗-extreme and strong congruences are the
same in every compatible reflexive digraph in V, where the ∗-extreme
congruence is the smallest equivalence that makes the factor
antisymmetric.

Example
The following digraph has a compatible semilattice with linear order, so
need to factorize by the extreme congruence arbitrary many times.

0 1 2 3 4 5
. . .
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Definition
A subset X of an algebra A is strongly rectangular if for every n-ary
term t and all elements xi , yi ∈ X and zi ∈ {xi , yi} we have

t(x1, . . . , xn) = t(y1, . . . , yn)⇒ t(x1, . . . , xn) = t(z1, . . . , zn).

Definition
A subset X of an algebra A is strongly Abelian if for every n-ary term t
and all elements xi , yi , zi ∈ X we have

t(x1, . . . , xn) = t(y1, . . . , yn)⇒ t(x1, z2, . . . , zn) = t(y1, z2, . . . , zn).

Definition
A subset X of an algebra A is diagonal if for every n-ary term t, and all
elements x1,1, x1,2, . . . , xn,n ∈ X we have

t(t(x1,1, . . . , x1,n), . . . , t(xn,1, . . . , xn,n)) = t(x1,1, x2,2, . . . , xn,n).

Theorem
For idempotent algebras the above three concepts are all equivalent.
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Graph conditions for other varieties

Theorem
A variety V has Hobby-McKenzie terms iff the strong and extreme
congruences are the same in every reflexive compatible digraph in V.

Theorem (A. Kazda; 2011)
Any finite digraph that admits a Maltsev operation also admits a majority
operation.

Corollary
The variety M admitting a majority operation cannot be described by a
graph condition referencing only finite graphs.

Theorem (M. M. and L. Zádori; 2012)
Any finite reflexive digraph that admits Gumm operations also admits a
near-unanimity operation.

Corollary
The varieties admitting a near-unanimity operation cannot be described by
a graph condition referencing only finite graphs.
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B. Bertalan, G. Gyenizse, M. Maróti and L. Zádori: The filter of
interpretability types of Hobby-Mckenzie varieties is prime, preprint
(2024).
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