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Motivation

Kripke semantics has been very successful in the study of propositional modal

logic.

Incompleteness is “rare”, i.e., most systems of propositional modal logic we

care about happen to be Kripke complete.

However, Kripke semantics for predicate modal logics (pm-logics) is largely

inadequate (see, e.g., [Ghilardi, 1991]).

There have been many attempts to remedy this.

One such is to consider Kripke bundles, which generalize predicate Kripke

frames [Shehtman, Skvortsov, 1990].
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Motivation

Definition

A Kripke bundle is a triple ((X ,R), π, (X0,R0)), where (X ,R), (X0,R0)

are Kripke frames, and π : (X ,R) → (X0,R0) is an onto p-morphism.

(X ,R)

(X0,R0)

π
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Motivation

Unfortunately, many pm-logics remain incomplete with respect to Kripke

bundles [Isoda, 1997].

This is an indication that pm-logics are too expressive to have a simple

semantics.

Indeed, the interactions of modalities with quantifiers can be quite

unpredictable.

There are at least two possible ways to address this:

1. One approach would be to develop a more sophisticated semantics that

matches pm-logics in terms of complexity (e.g., hyperdoctrines and

metaframes).

2. The other approach is to reduce the expressivity of the logics to match the

semantics we have available.
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Monadic modal logic

We adopt the latter approach by considering fragments of pm-logics of one

fixed variable.

These can be viewed under the umbrella of monadic modal logics, which are

often Kripke bundle complete.

The language of monadic modal logic has two modalities, ♢ and ∃.

Here, ♢ plays the usual role of modal possibility.

We assume that ∃ is an S5-modality, meant to stand for existential

quantification over a fixed variable.
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Monadic modal logic

There is a translation into the predicate language that clarifies this idea.

pt = p(x),

(φ ∨ ψ)t = φt ∨ ψt ,

(¬φ)t = ¬φt ,

(♢φ)t = ♢φt ,

(∃φ)t = ∃xφt .

Definition

A propositional logic in the signature {♢, ∃} is a monadic modal logic

(mm-logic) if ∃ is an S5-modality and the two modalities are connected

by the axiom ∃♢p → ♢∃p.
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Monadic Kripke frames

We have a Kripke-style semantics for mm-logics. The structures we use are

called monadic Kripke frames or simply MK-frames.

Definition

A monadic Kripke frame (MK-frame) is a triple (X ,R,E), where (X ,R)

is a Kripke frame, E is an equivalence relation on X , and the following

commutativity condition holds:

(∀x , y , z ∈ X )(x E y and x R z =⇒ ∃u ∈ X : y R u and u E z).

xy

zu
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Monadic Kripke frames

• In an MK-frame (X ,R,E), we interpret ♢ using the accessibility relation

R, and ∃ using the equivalence relation E .

• The commutativity condition is required so that the formula ∃♢p → ♢∃p
is valid.

• The axiom for commutativity needs to be included due to the fact that

∃x♢p(x) → ♢∃xp(x) is a theorem of any pm-logic.

• In Kripke semantics, the validity of the formula ∃x♢p(x) → ♢∃xp(x)
implies that domains of quantification increase across accessible worlds.

• The formula ∃x♢p(x) → ♢∃xp(x) is sometimes referred to as the converse

Barcan formula.
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MK-frames to Kripke bundles

An MK-frame looks like this:
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MK-frames to Kripke bundles

Each MK-frame (X ,R,E) gives rise to a Kripke bundle: define X0 = X/E and

R0 ⊆ X 2
0 by

[x ] R0 [y ] ⇐⇒ x ′ R y ′ for some x ′ ∈ [x ], y ′ ∈ [y ].

The canonical projection map π : (X ,R) → (X0,R0), is an onto p-morphism,

and we set B(X ,R,E) = ((X ,R), π, (X0.R0)).

This is an object level correspondence between MK-frames and Kripke bundles,

which extends to an equivalence of the corresponding categories.
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Monadic fragments

While mm-logics are certainly motivated by their natural reading as

one-variable fragments, it is not necessary that they all arise as such.

Definition

Let M be an mm-logic, and let Q be a pm-logic. Then M is the monadic

fragment of Q if

M ⊢ φ ⇐⇒ Q ⊢ φt .

The following result generalizes [Ono, Suzuki, 1988].

Theorem

Let M be an mm-logic and Q a pm-logic such that:

1. M ⊢ φ =⇒ Q ⊢ φt .

2. M is complete with respect to a class C of MK-frames.

3. Q is (strongly) sound with respect to the class {B(F) | F ∈ C}.

Then M is the monadic fragment of Q.
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Monadic fragments

• Among these conditions, the first and third are easier to verify.

• It is the second condition that is most non-trivial to verify.

• For instance, since both MK and MS4 are complete, we immediately

obtain that MK is the monadic fragment of QK and MS4 is the monadic

fragment of QS4.

• The above theorem yields many other examples of mm-logics that are

monadic fragments of the corresponding pm-logics.

• It is less clear whether an analogous result is true for MGrz and QGrz

since the completeness of MGrz is not so obvious.
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Grz

The Grzegorczyk logic (Grz) is one of the most studied systems in modal logic.

• Grz plays an important role in the study of intuitionistic logic, i.e., it is the

largest modal companion of the Intuitionistic Propositional Calculus (IPC)

[Esakia, 1976].

• Grz embeds into the Gödel-Löb logic (GL) via the splitting translation.

This is the so-called “KGB” theorem [Kuznetsov, Muravitsky, 1980;

Goldblatt, 1978; Boolos, 1980].

• It is a celebrated result of Solovay that GL formalizes provability in Peano

arithmetic [Solovay, 1976]. This shows that Grz has a provability

interpretation.

• Grz is characterized semantically as the logic of partially-ordered

Noetherian (conversely well-founded) Kripke frames.

Unfortunately, QGrz is not Kripke bundle complete [Isoda, 1997].

12



Grz

The Grzegorczyk logic (Grz) is one of the most studied systems in modal logic.

• Grz plays an important role in the study of intuitionistic logic, i.e., it is the

largest modal companion of the Intuitionistic Propositional Calculus (IPC)

[Esakia, 1976].
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MGrz

Our main result is:

Theorem

The monadic fragment of QGrz is Kripke bundle complete.

This is a consequence of the following:

Theorem

MGrz has the finite model property (fmp).

Corollary

1. MGrz is complete.

2. MGrz is decidable.

3. MGrz is the monadic fragment of QGrz.
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Selective filtration

Proving the fmp of MGrz involves an elaborate form of selective filtration.

It is a classic technique of Fine [Fine, 1974] to select maximal witnesses for

formulas of the form ♢ψ.

This approach has a few variations in the monadic setting [Grefe, 1998; Gabbay

et al, 2003; G. Bezhanishvili, Brantley, Ilin, 2023].

The construction we propose is a refinement of these and is based on the idea

of a “strongly maximal” point.

14



Selective filtration

Proving the fmp of MGrz involves an elaborate form of selective filtration.

It is a classic technique of Fine [Fine, 1974] to select maximal witnesses for

formulas of the form ♢ψ.

This approach has a few variations in the monadic setting [Grefe, 1998; Gabbay

et al, 2003; G. Bezhanishvili, Brantley, Ilin, 2023].

The construction we propose is a refinement of these and is based on the idea

of a “strongly maximal” point.

14



Selective filtration

Proving the fmp of MGrz involves an elaborate form of selective filtration.

It is a classic technique of Fine [Fine, 1974] to select maximal witnesses for

formulas of the form ♢ψ.

This approach has a few variations in the monadic setting [Grefe, 1998; Gabbay

et al, 2003; G. Bezhanishvili, Brantley, Ilin, 2023].

The construction we propose is a refinement of these and is based on the idea

of a “strongly maximal” point.

14



Selective filtration

Proving the fmp of MGrz involves an elaborate form of selective filtration.

It is a classic technique of Fine [Fine, 1974] to select maximal witnesses for

formulas of the form ♢ψ.

This approach has a few variations in the monadic setting [Grefe, 1998; Gabbay

et al, 2003; G. Bezhanishvili, Brantley, Ilin, 2023].

The construction we propose is a refinement of these and is based on the idea

of a “strongly maximal” point.

14



Strongly maximal points

Consider an MS4-frame (X ,R,E).

Given U ⊆ X , we say p ∈ U is maximal in U if (R[p]− {p}) ∩ U = ∅.

In other words, a proper R move from p leaves one outside of the set U.

U

p

But maximal points do not take E into account.

Definition

For an MS4-frame (X ,R,E) and U ⊆ X , a point p ∈ U is strongly

maximal if E [R[p]− {p}] ∩ U = ∅.

This means that a proper R move from p and moving “sideways” through E

leaves one out of U.
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Looking forward and sideways

Consider the following MS4-frame.

a b

c d

The red curve encloses a subset of the frame. The point a is maximal in the

indicated subset, but not strongly maximal. On the other hand, d is a strongly

maximal point.
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fmp of MGrz

To prove that MGrz has the fmp, suppose φ is a non-theorem.

Then φ is refuted in the canonical model of MGrz.

We select strongly maximal witnesses for subformulas of φ of the form ♢ψ and

∃ψ.

This construction terminates with a finite counter-model for φ.
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fmp of MGrz

∃-Step

♢-Step

Commutativity
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Consequences

Consider the following extension of MGrz,

Grzu = MGrz+ ♢p → ∃p.

This is the Grzegorczyk logic enriched with the universal modality [Goranko,

Passy, 1992].

A simplified version of our construction can be used to prove the following.

Corollary

Grzu has the fmp.

• The standard filtration of Goranko and Passy does not apply in the case of

Grzu, so the above cannot be obtained using their results.
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Consequences

Japaridze showed that Solovay’s results can be extended to the monadic

Gödel-Löb logic (MGL) [Japaridze, 1988].

Esakia proved that MGrz does not embed into MGL [Esakia, 1988].

To remedy this, he proposed the system Q+Grz by considering the Gödel

translation of Casari’s schema:

∀x [(p(x) → ∀xp(x)) → ∀xp(x)] → ∀xp(x).

Thus, we work with the following extensions:

M+Grz = MGrz+□∀(□(□p → □∀p) → □∀p) → □∀p,

Q+Grz = QGrz+□∀x(□(□p(x) → □∀xp(x)) → □∀xp(x)) → □∀xp(x).

From this perspective, M+Grz embeds into MGL, and thus has a provability

interpretation.
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Gödel-Löb logic (MGL) [Japaridze, 1988].

Esakia proved that MGrz does not embed into MGL [Esakia, 1988].

To remedy this, he proposed the system Q+Grz by considering the Gödel
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translation of Casari’s schema:

∀x [(p(x) → ∀xp(x)) → ∀xp(x)] → ∀xp(x).

Thus, we work with the following extensions:

M+Grz = MGrz+□∀(□(□p → □∀p) → □∀p) → □∀p,

Q+Grz = QGrz+□∀x(□(□p(x) → □∀xp(x)) → □∀xp(x)) → □∀xp(x).

From this perspective, M+Grz embeds into MGL, and thus has a provability

interpretation.

20



Consequences

Japaridze showed that Solovay’s results can be extended to the monadic
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Consequences

A straightforward application of our semantic criterion yields the following

result.

Corollary

1. M+Grz is the monadic fragment of Q+Grz.

2. MGL is the monadic fragment of QGL.

And our construction can be specialized to prove that the above systems also

have the fmp.

Corollary

1. M+Grz has the fmp.

2. MGL has the fmp.

This yields a unified approach to the results of [Japaridze, 1990] and [G.

Bezhanishvili, Brantley, Ilin, 2023].
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Future work

Many pm-logics feature the Barcan formula ♢∃xp(x) → ∃x♢p(x).

From the perspective of Kripke semantics, this formula forces domains of

quantification to be constant over all possible worlds.

Its monadic version ♢∃p → ∃♢p imposes a strong frame-theoretic condition:

(∀x , y , z ∈ X ) (x R z and y E z =⇒ ∃u ∈ X : u R y and u E x).

x

zy

u
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Future work

It is worth investigating whether the systems MGrzB,M+GrzB,MGLB

obtained by adding the Barcan formula to MGrz,M+Grz,MGL have the finite

model property.

The construction we have proposed needs an additional step where we close

under this “backwards commutativity”.

This can trigger a series of updates that need not terminate.

Our construction would thus require a significant revision to accommodate the

Barcan formula.
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Thank you!
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