Complexity of Solving Promise Systems of
Equations Over Algebras

Nick Jamesson
BLAST 2025

May 20, 2025

Constraint Satisfaction Problems (CSP)
Let A = (A; R, ..., RY) be a relational structure.

Example

Ks = ({1,2,3}; E3) where

E; ={(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)} the complete graph
on three vertices.

Constraint Satisfaction Problems (CSP)
Let A = (A; R, ..., RY) be a relational structure.

Example

Ks = ({1,2,3}; E3) where

Es =1{(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)} the complete graph
on three vertices.

CSP(A)
Input: List of constraints in the signature of A
Rl (X7 X, y)
Ra (X7) Z)

Problem: Is there an assignment of variables to elements of
A such that each constraint holds in A?

Constraint Satisfaction Problems (CSP)
Let A = (A; R, ..., RY) be a relational structure.

Example

Ks = ({1,2,3}; E3) where

Es =1{(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)} the complete graph
on three vertices.

CSP(A)
Input: List of constraints in the signature of A
Rl (X7 X, y)
Ra (X7) Z)

Problem: Is there an assignment of variables to elements of
A such that each constraint holds in A?

Example
CSP(K3): is a given graph 3-colorable?

Promise Constraint Satisfaction Problems (PCSP)

Let A= (AR, ...,RY) and B = (B; RE, ..., RP) with a
homomorphism A — B.

PCSP(A,B)
Input: List of constraints in the signature of A and B.
Rl(X7X7y)
R2(X7y7z)

Problem: Is there an assignment of variables to elements of
A such that each constraint holds in A, or not even
such an assignment in B?

Promise Constraint Satisfaction Problems (PCSP)

Let A= (AR, ...,RY) and B = (B; RE, ..., RP) with a
homomorphism A — B.

PCSP(A,B)
Input: List of constraints in the signature of A and B.
Rl(X7X7y)
R2(X7y7z)

Problem: Is there an assignment of variables to elements of
A such that each constraint holds in A, or not even
such an assignment in B?

Example
PCSP(K3, Ks): is a given graph is 3-colorable, or not even
5-colorable?

The promise in promise constraint satisfaction

» The promise in PCSP(A,B) is that every instance / does in
fact have either a solution in A (a YES instance) or no
solution in B (a NO instance).

The promise in promise constraint satisfaction

» The promise in PCSP(A,B) is that every instance / does in
fact have either a solution in A (a YES instance) or no
solution in B (a NO instance).

> The existence of a homomorphism A — B guarantees an
instance cannot be both a YES instance and a NO instance.

Promise systems of equations

Let A = (A flA, ...,fA and B = (B; le, ..., fB) with a
homomorphism A — B.

PEqgn(A, B)
Input: System of equations in the signature of A and B
fl(X7Y7 ay) = fl(f2(X),Z,y)
f5(Z, Z) = f2()/)

Problem: Is there a solution to the system in A,
or not even a solution in B?

Larrauri and 2ivn§/ (2024) initiated the study of promise systems of
equations with promise systems of equations over semigroups.

Use of PCSP results

Theorem (Larose, Zadori 2006)

Let A= (A fA,...,fA). For a function f, let f° be its graph
relation. Let A° be the relational structure with domain A and
with relations £ for all f € {fA, ... fAY U {id} UA.

Then SysPol(A) is the log space equivalent to CSP(A°).

The same argument can be used to restate a promise system of
equations as a PCSP.

Problem
What is the computational complexity of solving PEqn(A, B)?

Problem
What is the computational complexity of solving PEqn(A, B)?

> We assume all structures are finite with finite signature in the
following.

Problem
What is the computational complexity of solving PEqn(A, B)?

> We assume all structures are finite with finite signature in the
following.

» SysTerm(A) = PEqn(A, A) is either in P or is NP-complete
by CSP dichotomy (Bulatov 2017, Zhuk 2017).

Problem
What is the computational complexity of solving PEqn(A, B)?

> We assume all structures are finite with finite signature in the
following.

» SysTerm(A) = PEqn(A, A) is either in P or is NP-complete
by CSP dichotomy (Bulatov 2017, Zhuk 2017).

» For all known examples, PEqn(A, B) is either in P or is
NP-hard.

Problem
What is the computational complexity of solving PEqn(A, B)?

>

>

We assume all structures are finite with finite signature in the
following.

SysTerm(A) = PEqn(A, A) is either in P or is NP-complete
by CSP dichotomy (Bulatov 2017, Zhuk 2017).

For all known examples, PEqn(A, B) is either in P or is
NP-hard.

For tractability, one technique is to find a tractable sandwich.
That is, find an algebra C such that there are homomorphisms
A — C — B and SysTerm(C) is in P. Note that PEqn(A, B)
reduces to SysTerm(C) = PEqn(C, C).

Problem
What is the computational complexity of solving PEqn(A, B)?

>

>

We assume all structures are finite with finite signature in the
following.

SysTerm(A) = PEqn(A, A) is either in P or is NP-complete
by CSP dichotomy (Bulatov 2017, Zhuk 2017).

For all known examples, PEqn(A, B) is either in P or is
NP-hard.

For tractability, one technique is to find a tractable sandwich.
That is, find an algebra C such that there are homomorphisms
A — C — B and SysTerm(C) is in P. Note that PEqn(A, B)
reduces to SysTerm(C) = PEqn(C, C).

For hardness, we need to show the set of polymorphisms from
an algebra A to an algebra B is not sufficiently rich.

Polymorphisms

Definition

Let A and B be algebras of the same signature. A polymorphism p
from A to B is a homomorphism p: A" — B for some n € N.
Pol(A, B) := the set of polymorphisms from A to B.

Polymorphisms

Definition

Let A and B be algebras of the same signature. A polymorphism p
from A to B is a homomorphism p: A" — B for some n € N.
Pol(A, B) := the set of polymorphisms from A to B.

1. Pol(A, A) determines the complexity of SysTerm(A).

Polymorphisms

Definition

Let A and B be algebras of the same signature. A polymorphism p
from A to B is a homomorphism p: A" — B for some n € N.
Pol(A, B) := the set of polymorphisms from A to B.

1. Pol(A, A) determines the complexity of SysTerm(A).
2. Similarly Pol(A, B) determines the complexity of PEqn(A, B).

First complexity result

For monoids, Larrauri and 2ivn§/ proved the following:

Theorem (Larrauri, Zivny 2024)

Let A and B be monoids possibly with additional constant (0-ary)
operations with a homomorphism A — B.

If there exists ¢ : A — B such that ¥(A) is commutative and a
union of subgroups, then PEqn(A, B) is in P.

Otherwise PEqn(A, B) is NP-hard.

Extending the results for monoids

Theorem (NJ 2025)
Let A and B be algebras with a homomorphism A — B.

Let A be the reduct of A without constants.
Let e € A be such that {e} < A.

Let m be a term of A such that m?(x, e, e) = x = mP(e, e, x) for
all x € A.

If there is a homomorphism ¢: A — B such that:

Extending the results for monoids

Theorem (NJ 2025)
Let A and B be algebras with a homomorphism A — B.

Let A be the reduct of A without constants.
Let e € A be such that {e} < A.

Let m be a term of A such that m?(x, e, e) = x = mP(e, e, x) for
all x € A.

If there is a homomorphism ¢: A — B such that:
1. m*®)(x,4(e),y) is a polymorphism of (A)

Extending the results for monoids

Theorem (NJ 2025)
Let A and B be algebras with a homomorphism A — B.

Let A be the reduct of A without constants.
Let e € A be such that {e} < A.

Let m be a term of A such that m?(x, e, e) = x = mP(e, e, x) for
all x € A.

If there is a homomorphism ¢: A — B such that:
1. m*®)(x,4(e),y) is a polymorphism of (A)
2. ((A); m*®)(x,4(e), y)) is a union of subgroups

Extending the results for monoids

Theorem (NJ 2025)
Let A and B be algebras with a homomorphism A — B.

Let A be the reduct of A without constants.
Let e € A be such that {e} < A.

Let m be a term of A such that m?(x, e, e) = x = mP(e, e, x) for
all x € A.

If there is a homomorphism ¢: A — B such that:
1. m*®)(x,4(e),y) is a polymorphism of (A)
2. ((A); m*®)(x,4(e), y)) is a union of subgroups

Extending the results for monoids

Theorem (NJ 2025)
Let A and B be algebras with a homomorphism A — B.

Let A be the reduct of A without constants.
Let e € A be such that {e} < A.

Let m be a term of A such that m?(x, e, e) = x = mP(e, e, x) for
all x € A.

If there is a homomorphism ¢: A — B such that:
1. m*®)(x,4(e),y) is a polymorphism of (A)
2. ((A); m*®)(x,4(e), y)) is a union of subgroups
then PEqn(A, B) is in P. Otherwise PEqn(A, B) is NP-hard.

Mal'cev algebras

Definition
A Mal'cev algebra A is an algebra with a term m satisfying the
identity mA(x, x,y) =y = m*(y, x, x).

Mal'cev algebras

Definition
A Mal'cev algebra A is an algebra with a term m satisfying the
identity mA(x, x,y) =y = m*(y, x, x).

Example

A group is a Mal'cev algebra with Mal'cev term

m(x,y,z) = xy"'z.

Mal'cev algebras

Definition
A Mal'cev algebra A is an algebra with a term m satisfying the
identity mA(x, x,y) =y = m*(y, x, x).

Example
A group is a Mal'cev algebra with Mal'cev term

m(x,y,z) = xy"'z.

Theorem (NJ 2025)

Let A, B be Mal'cev algebras with a homomorphism A — B and
with at least one constant symbol in their signature.

If there is a homomorphism 1) : A — B such that ¥(A) is abelian,
then PEqn(A, B) is in P. Otherwise PEqn(A, B) is NP-hard.

Function Minions

In general, polymorphisms from Pol(A, B) cannot be composed. So
although Pol(A, B) is not a clone (as Pol(A, A) is), it is a minion.

Definition
For g: A" — B and 7: [m] — [n], we call

g (xt, .y xn) = &(Xr(1)s - - - Xn(m))

a minor of g.

Function Minions

In general, polymorphisms from Pol(A, B) cannot be composed. So
although Pol(A, B) is not a clone (as Pol(A, A) is), it is a minion.

Definition
For g: A" — B and 7: [m] — [n], we call

g (xt, .y xn) = &(Xr(1)s - - - Xn(m))
a minor of g.

Definition
MCA{f: A" — B:n>1} is a minion from A to B if M is closed
under taking minors.

A tool for proving hardness

Barto et al. (2021) describe several techniques for proving
NP-hardness of a PCSP. The previous results use the following:
Definition

Let M be a minion. Suppose there is a constant K and a function
I which for all m, n > 0 satisfies:

A tool for proving hardness

Barto et al. (2021) describe several techniques for proving
NP-hardness of a PCSP. The previous results use the following:

Definition
Let M be a minion. Suppose there is a constant K and a function
I which for all m, n > 0 satisfies:

1. For each p € M(", we have I(p) C [n] satisfying |/(p)| < K

A tool for proving hardness

Barto et al. (2021) describe several techniques for proving
NP-hardness of a PCSP. The previous results use the following:
Definition
Let M be a minion. Suppose there is a constant K and a function
I which for all m, n > 0 satisfies:
1. For each p € M(", we have I(p) C [n] satisfying |/(p)| < K
2. For each 7 : [m] — [n] and g € M(™), we have

©(1(q)) N 1(q™)) # 0.

A tool for proving hardness

Barto et al. (2021) describe several techniques for proving
NP-hardness of a PCSP. The previous results use the following:
Definition
Let M be a minion. Suppose there is a constant K and a function
I which for all m, n > 0 satisfies:
1. For each p € M(", we have I(p) C [n] satisfying |/(p)| < K
2. For each 7 : [m] — [n] and g € M(™), we have

©(1(q)) N 1(q™)) # 0.

A tool for proving hardness

Barto et al. (2021) describe several techniques for proving
NP-hardness of a PCSP. The previous results use the following:

Definition
Let M be a minion. Suppose there is a constant K and a function
I which for all m, n > 0 satisfies:

1. For each p € M(", we have I(p) C [n] satisfying |/(p)| < K
2. For each 7 : [m] — [n] and g € M(™), we have

©(1(q)) N 1(q™)) # 0.

Then I is a selection function for M with bound K.

A tool for proving hardness

Theorem (Barto et al. 2021)

Let A and B be relational structures with a homomorphism

A — B. Let M = Pol(A,B). If there exists a selection function /
with bound K for M, then PCSP(A,B) is NP-hard.

References

ﬁ Libor Barto, Jakub Bulin, Andrei Krokhin, and Jakub Oprsal.
Algebraic approach to promise constraint satisfaction.
J. ACM, 68(4):Art. 28, 66, 2021.

https://arxiv.org/abs/2402.08434

References

ﬁ Libor Barto, Jakub Bulin, Andrei Krokhin, and Jakub Oprsal.
Algebraic approach to promise constraint satisfaction.
J. ACM, 68(4):Art. 28, 66, 2021.

[d Benoit Larose and Lészl6 Zadori.
Taylor terms, constraint satisfaction and the complexity of
polynomial equations over finite algebras.
Internat. J. Algebra Comput., 16(3):563-581, 2006.

https://arxiv.org/abs/2402.08434

References

ﬁ Libor Barto, Jakub Bulin, Andrei Krokhin, and Jakub Oprsal.
Algebraic approach to promise constraint satisfaction.
J. ACM, 68(4):Art. 28, 66, 2021.

[d Benoit Larose and Lészl6 Zadori.
Taylor terms, constraint satisfaction and the complexity of
polynomial equations over finite algebras.
Internat. J. Algebra Comput., 16(3):563-581, 2006.

[§ Alberto Larrauri and Stanislav 2ivn§/.
Solving promise equations over monoids and groups.
https://arxiv.org/abs/2402.08434, 2024.

https://arxiv.org/abs/2402.08434

