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Constraint Satisfaction Problems (CSP)
Let A = (A; RA

1 , . . . ,RA
n ) be a relational structure.

Example
K3 = ({1, 2, 3}; E3) where
E3 = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)} the complete graph
on three vertices.

CSP(A)
Input: List of constraints in the signature of A

R1(x , x , y)
R2(x , y , z)
. . .

Problem: Is there an assignment of variables to elements of
A such that each constraint holds in A?

Example
CSP(K3): is a given graph 3-colorable?
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Promise Constraint Satisfaction Problems (PCSP)

Let A = (A; RA
1 , . . . ,RA

n ) and B = (B; RB
1 , . . . ,RB

n ) with a
homomorphism A → B.

PCSP(A,B)
Input: List of constraints in the signature of A and B.

R1(x , x , y)
R2(x , y , z)
. . .

Problem: Is there an assignment of variables to elements of
A such that each constraint holds in A, or not even
such an assignment in B?

Example
PCSP(K3,K5): is a given graph is 3-colorable, or not even
5-colorable?
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The promise in promise constraint satisfaction

▶ The promise in PCSP(A,B) is that every instance I does in
fact have either a solution in A (a yes instance) or no
solution in B (a no instance).

▶ The existence of a homomorphism A → B guarantees an
instance cannot be both a yes instance and a no instance.
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Promise systems of equations

Let A = (A; f A
1 , . . . , f A

n ) and B = (B; f B
1 , . . . , f B

n ) with a
homomorphism A → B.

PEqn(A, B)
Input: System of equations in the signature of A and B

f1(x , y , , y) = f1(f2(x), z , y)
f5(z , z) = f2(y)
. . .

Problem: Is there a solution to the system in A,
or not even a solution in B?

Larrauri and Živný (2024) initiated the study of promise systems of
equations with promise systems of equations over semigroups.



Use of PCSP results

Theorem (Larose, Zádori 2006)
Let A = (A; f A

1 , . . . , f A
n ). For a function f , let f ◦ be its graph

relation. Let A◦ be the relational structure with domain A and
with relations f ◦

i for all f ∈ {f A
1 , . . . , f A

n } ∪ {id} ∪ A.

Then SysPol(A) is the log space equivalent to CSP(A◦).

The same argument can be used to restate a promise system of
equations as a PCSP.



Problem
What is the computational complexity of solving PEqn(A,B)?

▶ We assume all structures are finite with finite signature in the
following.

▶ SysTerm(A) = PEqn(A,A) is either in P or is NP-complete
by CSP dichotomy (Bulatov 2017, Zhuk 2017).

▶ For all known examples, PEqn(A,B) is either in P or is
NP-hard.

▶ For tractability, one technique is to find a tractable sandwich.
That is, find an algebra C such that there are homomorphisms
A → C → B and SysTerm(C) is in P. Note that PEqn(A,B)
reduces to SysTerm(C) = PEqn(C,C).

▶ For hardness, we need to show the set of polymorphisms from
an algebra A to an algebra B is not sufficiently rich.
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Polymorphisms

Definition
Let A and B be algebras of the same signature. A polymorphism p
from A to B is a homomorphism p : An → B for some n ∈ N.
Pol(A,B) := the set of polymorphisms from A to B.

1. Pol(A,A) determines the complexity of SysTerm(A).
2. Similarly Pol(A,B) determines the complexity of PEqn(A,B).
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First complexity result

For monoids, Larrauri and Živný proved the following:

Theorem (Larrauri, Živný 2024)
Let A and B be monoids possibly with additional constant (0-ary)
operations with a homomorphism A → B.

If there exists ψ : A → B such that ψ(A) is commutative and a
union of subgroups, then PEqn(A,B) is in P.

Otherwise PEqn(A,B) is NP-hard.



Extending the results for monoids

Theorem (NJ 2025)
Let A and B be algebras with a homomorphism A → B.

Let A be the reduct of A without constants.

Let e ∈ A be such that {e} ≤ A.

Let m be a term of A such that mA(x , e, e) = x = mA(e, e, x) for
all x ∈ A.

If there is a homomorphism ψ : A → B such that:

1. mψ(A)(x , ψ(e), y) is a polymorphism of ψ(A)
2. (ψ(A); mψ(A)(x , ψ(e), y)) is a union of subgroups

then PEqn(A,B) is in P. Otherwise PEqn(A,B) is NP-hard.
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Mal’cev algebras

Definition
A Mal’cev algebra A is an algebra with a term m satisfying the
identity mA(x , x , y) = y = mA(y , x , x).

Example
A group is a Mal’cev algebra with Mal’cev term
m(x , y , z) = xy−1z .

Theorem (NJ 2025)
Let A, B be Mal’cev algebras with a homomorphism A → B and
with at least one constant symbol in their signature.

If there is a homomorphism ψ : A → B such that ψ(A) is abelian,
then PEqn(A,B) is in P. Otherwise PEqn(A,B) is NP-hard.
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Function Minions

In general, polymorphisms from Pol(A,B) cannot be composed. So
although Pol(A,B) is not a clone (as Pol(A,A) is), it is a minion.

Definition
For g : Am → B and π : [m] → [n], we call

g (π)(x1, . . . , . . . xn) := g(xπ(1), . . . xπ(m))

a minor of g .

Definition
M ⊆ {f : An → B : n ≥ 1} is a minion from A to B if M is closed
under taking minors.
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A tool for proving hardness

Barto et al. (2021) describe several techniques for proving
NP-hardness of a PCSP. The previous results use the following:

Definition
Let M be a minion. Suppose there is a constant K and a function
I which for all m, n > 0 satisfies:

1. For each p ∈ M(n), we have I(p) ⊆ [n] satisfying |I(p)| < K
2. For each π : [m] → [n] and q ∈ M(m), we have
π(I(q)) ∩ I(q(π)) ̸= ∅.

Then I is a selection function for M with bound K .
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A tool for proving hardness

Theorem (Barto et al. 2021)
Let A and B be relational structures with a homomorphism
A → B. Let M = Pol(A,B). If there exists a selection function I
with bound K for M, then PCSP(A,B) is NP-hard.
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Algebraic approach to promise constraint satisfaction.
J. ACM, 68(4):Art. 28, 66, 2021.

Benoit Larose and László Zádori.
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