Complexity of Solving Promise Systems of Equations Over Algebras

Nick Jamesson BLAST 2025

May 20, 2025

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Constraint Satisfaction Problems (CSP)

Let
$$\mathbb{A} = (A; R_1^{\mathbb{A}}, \dots, R_n^{\mathbb{A}})$$
 be a relational structure.

Example

 $K_3=(\{1,2,3\};E_3)$ where $E_3=\{(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)\}$ the complete graph on three vertices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Constraint Satisfaction Problems (CSP)

Let $\mathbb{A} = (A; R_1^{\mathbb{A}}, \dots, R_n^{\mathbb{A}})$ be a relational structure.

Example

 $K_3 = (\{1, 2, 3\}; E_3)$ where $E_3 = \{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)\}$ the complete graph on three vertices.

$CSP(\mathbb{A})$

. . .

Input: List of constraints in the signature of \mathbb{A} $R_1(x, x, y)$ $R_2(x, y, z)$

Problem: Is there an assignment of variables to elements of A such that each constraint holds in \mathbb{A} ?

Constraint Satisfaction Problems (CSP)

Let $\mathbb{A} = (A; R_1^{\mathbb{A}}, \dots, R_n^{\mathbb{A}})$ be a relational structure.

Example

 $K_3 = (\{1, 2, 3\}; E_3)$ where $E_3 = \{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)\}$ the complete graph on three vertices.

$CSP(\mathbb{A})$

Input: List of constraints in the signature of \mathbb{A} $R_1(x, x, y)$ $R_2(x, y, z)$

Problem: Is there an assignment of variables to elements of A such that each constraint holds in \mathbb{A} ?

Example

 $CSP(K_3)$: is a given graph 3-colorable?

. . .

Promise Constraint Satisfaction Problems (PCSP)

Let $\mathbb{A} = (A; R_1^{\mathbb{A}}, \dots, R_n^{\mathbb{A}})$ and $\mathbb{B} = (B; R_1^{\mathbb{B}}, \dots, R_n^{\mathbb{B}})$ with a homomorphism $\mathbb{A} \to \mathbb{B}$.

$\mathrm{PCSP}(\mathbb{A},\mathbb{B})$

Input: List of constraints in the signature of \mathbb{A} and \mathbb{B} . $R_1(x, x, y)$ $R_2(x, y, z)$

Problem: Is there an assignment of variables to elements of A such that each constraint holds in \mathbb{A} , or not even such an assignment in \mathbb{B} ?

Promise Constraint Satisfaction Problems (PCSP)

Let $\mathbb{A} = (A; R_1^{\mathbb{A}}, \dots, R_n^{\mathbb{A}})$ and $\mathbb{B} = (B; R_1^{\mathbb{B}}, \dots, R_n^{\mathbb{B}})$ with a homomorphism $\mathbb{A} \to \mathbb{B}$.

$\mathrm{PCSP}(\mathbb{A},\mathbb{B})$

Input: List of constraints in the signature of \mathbb{A} and \mathbb{B} . $R_1(x, x, y)$ $R_2(x, y, z)$

Problem: Is there an assignment of variables to elements of A such that each constraint holds in \mathbb{A} , or not even such an assignment in \mathbb{B} ?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example

 $PCSP(K_3, K_5)$: is a given graph is 3-colorable, or not even 5-colorable?

The promise in promise constraint satisfaction

► The promise in PCSP(A, B) is that every instance *I* does in fact have either a solution in A (a YES instance) or no solution in B (a NO instance).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The promise in promise constraint satisfaction

- ► The promise in PCSP(A, B) is that every instance *I* does in fact have either a solution in A (a YES instance) or no solution in B (a NO instance).
- ► The existence of a homomorphism A → B guarantees an instance cannot be both a YES instance and a NO instance.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Promise systems of equations

Let $\mathbf{A} = (A; f_1^{\mathbf{A}}, \dots, f_n^{\mathbf{A}})$ and $\mathbf{B} = (B; f_1^{\mathbf{B}}, \dots, f_n^{\mathbf{B}})$ with a homomorphism $\mathbf{A} \to \mathbf{B}$.

 $\begin{array}{ll} \operatorname{PEqn}(\mathbf{A},\mathbf{B})\\ \operatorname{Input:} & \operatorname{System of equations in the signature of } \mathbf{A} \ \operatorname{and} \ \mathbf{B}\\ & f_1(x,y,,y) = f_1(f_2(x),z,y)\\ & f_5(z,z) = f_2(y) \end{array}$

Problem: Is there a solution to the system in **A**, or not even a solution in **B**?

Larrauri and Živný (2024) initiated the study of promise systems of equations with promise systems of equations over semigroups.

Use of PCSP results

Theorem (Larose, Zádori 2006) Let $\mathbf{A} = (A; f_1^{\mathbf{A}}, \dots, f_n^{\mathbf{A}})$. For a function f, let f° be its graph relation. Let \mathbb{A}° be the relational structure with domain A and with relations f_i° for all $f \in \{f_1^{\mathbf{A}}, \dots, f_n^{\mathbf{A}}\} \cup \{id\} \cup A$.

Then $SysPol(\mathbf{A})$ is the log space equivalent to $CSP(\mathbb{A}^{\circ})$.

The same argument can be used to restate a promise system of equations as a PCSP.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

What is the computational complexity of solving $PEqn(\mathbf{A}, \mathbf{B})$?

(ロ)、(型)、(E)、(E)、 E) の(()

What is the computational complexity of solving $PEqn(\mathbf{A}, \mathbf{B})$?

We assume all structures are finite with finite signature in the following.

(ロ)、(型)、(E)、(E)、 E) の(()

What is the computational complexity of solving $PEqn(\mathbf{A}, \mathbf{B})$?

- We assume all structures are finite with finite signature in the following.
- SysTerm(A) = PEqn(A, A) is either in P or is NP-complete by CSP dichotomy (Bulatov 2017, Zhuk 2017).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What is the computational complexity of solving $PEqn(\mathbf{A}, \mathbf{B})$?

- We assume all structures are finite with finite signature in the following.
- SysTerm(A) = PEqn(A, A) is either in P or is NP-complete by CSP dichotomy (Bulatov 2017, Zhuk 2017).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

For all known examples, PEqn(A, B) is either in P or is NP-hard.

What is the computational complexity of solving $PEqn(\mathbf{A}, \mathbf{B})$?

- We assume all structures are finite with finite signature in the following.
- SysTerm(A) = PEqn(A, A) is either in P or is NP-complete by CSP dichotomy (Bulatov 2017, Zhuk 2017).
- For all known examples, PEqn(A, B) is either in P or is NP-hard.
- For tractability, one technique is to find a tractable sandwich. That is, find an algebra C such that there are homomorphisms
 A → C → B and SysTerm(C) is in P. Note that PEqn(A, B) reduces to SysTerm(C) = PEqn(C, C).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

What is the computational complexity of solving $PEqn(\mathbf{A}, \mathbf{B})$?

- We assume all structures are finite with finite signature in the following.
- SysTerm(A) = PEqn(A, A) is either in P or is NP-complete by CSP dichotomy (Bulatov 2017, Zhuk 2017).
- For all known examples, PEqn(A, B) is either in P or is NP-hard.
- For tractability, one technique is to find a tractable sandwich. That is, find an algebra C such that there are homomorphisms
 A → C → B and SysTerm(C) is in P. Note that PEqn(A, B) reduces to SysTerm(C) = PEqn(C, C).
- For hardness, we need to show the set of polymorphisms from an algebra A to an algebra B is not sufficiently rich.

Polymorphisms

Definition

Let **A** and **B** be algebras of the same signature. A *polymorphism* p from **A** to **B** is a homomorphism $p: \mathbf{A}^n \to \mathbf{B}$ for some $n \in \mathbb{N}$. Pol(**A**, **B**) := the set of polymorphisms from **A** to **B**.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Polymorphisms

Definition

Let **A** and **B** be algebras of the same signature. A *polymorphism* p from **A** to **B** is a homomorphism $p: \mathbf{A}^n \to \mathbf{B}$ for some $n \in \mathbb{N}$. Pol(**A**, **B**) := the set of polymorphisms from **A** to **B**.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

1. $\operatorname{Pol}(A, A)$ determines the complexity of $\operatorname{SysTerm}(A)$.

Polymorphisms

Definition

Let **A** and **B** be algebras of the same signature. A *polymorphism* p from **A** to **B** is a homomorphism $p: \mathbf{A}^n \to \mathbf{B}$ for some $n \in \mathbb{N}$. Pol(**A**, **B**) := the set of polymorphisms from **A** to **B**.

- 1. $Pol(\mathbf{A}, \mathbf{A})$ determines the complexity of $SysTerm(\mathbf{A})$.
- 2. Similarly $Pol(\mathbf{A}, \mathbf{B})$ determines the complexity of $PEqn(\mathbf{A}, \mathbf{B})$.

First complexity result

For monoids, Larrauri and Živný proved the following:

Theorem (Larrauri, Živný 2024)

Let ${\bf A}$ and ${\bf B}$ be monoids possibly with additional constant (0-ary) operations with a homomorphism ${\bf A} \to {\bf B}.$

If there exists $\psi : \mathbf{A} \to \mathbf{B}$ such that $\psi(\mathbf{A})$ is commutative and a union of subgroups, then $\operatorname{PEqn}(\mathbf{A}, \mathbf{B})$ is in P.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Otherwise $PEqn(\mathbf{A}, \mathbf{B})$ is NP-hard.

Theorem (NJ 2025)

Let **A** and **B** be algebras with a homomorphism $\mathbf{A} \rightarrow \mathbf{B}$.

Let $\overline{\mathbf{A}}$ be the reduct of \mathbf{A} without constants.

Let $e \in A$ be such that $\{e\} \leq \overline{\mathbf{A}}$.

Let *m* be a term of $\overline{\mathbf{A}}$ such that $m^{\mathbf{A}}(x, e, e) = x = m^{\mathbf{A}}(e, e, x)$ for all $x \in A$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

If there is a homomorphism $\psi : \mathbf{A} \to \mathbf{B}$ such that:

Theorem (NJ 2025)

Let **A** and **B** be algebras with a homomorphism $\mathbf{A} \rightarrow \mathbf{B}$.

Let $\overline{\mathbf{A}}$ be the reduct of \mathbf{A} without constants.

Let $e \in A$ be such that $\{e\} \leq \overline{\mathbf{A}}$.

Let *m* be a term of $\overline{\mathbf{A}}$ such that $m^{\mathbf{A}}(x, e, e) = x = m^{\mathbf{A}}(e, e, x)$ for all $x \in A$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

If there is a homomorphism $\psi \colon \mathbf{A} \to \mathbf{B}$ such that:

1. $m^{\psi(\mathbf{A})}(x,\psi(e),y)$ is a polymorphism of $\psi(\overline{\mathbf{A}})$

Theorem (NJ 2025)

Let **A** and **B** be algebras with a homomorphism $\mathbf{A} \rightarrow \mathbf{B}$.

Let $\overline{\mathbf{A}}$ be the reduct of \mathbf{A} without constants.

Let $e \in A$ be such that $\{e\} \leq \overline{\mathbf{A}}$.

Let *m* be a term of $\overline{\mathbf{A}}$ such that $m^{\mathbf{A}}(x, e, e) = x = m^{\mathbf{A}}(e, e, x)$ for all $x \in A$.

(日)((1))

If there is a homomorphism $\psi : \mathbf{A} \to \mathbf{B}$ such that:

m^{ψ(A)}(x, ψ(e), y) is a polymorphism of ψ(A)
(ψ(A); m^{ψ(A)}(x, ψ(e), y)) is a union of subgroups

Theorem (NJ 2025)

Let **A** and **B** be algebras with a homomorphism $\mathbf{A} \rightarrow \mathbf{B}$.

Let $\overline{\mathbf{A}}$ be the reduct of \mathbf{A} without constants.

Let $e \in A$ be such that $\{e\} \leq \overline{\mathbf{A}}$.

Let *m* be a term of $\overline{\mathbf{A}}$ such that $m^{\mathbf{A}}(x, e, e) = x = m^{\mathbf{A}}(e, e, x)$ for all $x \in A$.

If there is a homomorphism $\psi : \mathbf{A} \to \mathbf{B}$ such that:

m^{ψ(A)}(x, ψ(e), y) is a polymorphism of ψ(A)
(ψ(A); m^{ψ(A)}(x, ψ(e), y)) is a union of subgroups

Theorem (NJ 2025)

Let **A** and **B** be algebras with a homomorphism $\mathbf{A} \rightarrow \mathbf{B}$.

Let $\overline{\mathbf{A}}$ be the reduct of \mathbf{A} without constants.

Let $e \in A$ be such that $\{e\} \leq \overline{\mathbf{A}}$.

Let *m* be a term of $\overline{\mathbf{A}}$ such that $m^{\mathbf{A}}(x, e, e) = x = m^{\mathbf{A}}(e, e, x)$ for all $x \in A$.

If there is a homomorphism $\psi : \mathbf{A} \to \mathbf{B}$ such that:

m^{ψ(A)}(x, ψ(e), y) is a polymorphism of ψ(A)
(ψ(A); m^{ψ(A)}(x, ψ(e), y)) is a union of subgroups
then PEqn(A, B) is in P. Otherwise PEqn(A, B) is NP-hard.

Mal'cev algebras

Definition

A *Mal'cev algebra* **A** is an algebra with a term *m* satisfying the identity $m^{\mathbf{A}}(x, x, y) = y = m^{\mathbf{A}}(y, x, x)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Mal'cev algebras

Definition

A *Mal'cev algebra* **A** is an algebra with a term *m* satisfying the identity $m^{\mathbf{A}}(x, x, y) = y = m^{\mathbf{A}}(y, x, x)$.

Example

A group is a Mal'cev algebra with Mal'cev term $m(x, y, z) = xy^{-1}z$.

Mal'cev algebras

Definition

A *Mal'cev algebra* **A** is an algebra with a term *m* satisfying the identity $m^{\mathbf{A}}(x, x, y) = y = m^{\mathbf{A}}(y, x, x)$.

Example

A group is a Mal'cev algebra with Mal'cev term $m(x, y, z) = xy^{-1}z$.

Theorem (NJ 2025)

Let $A,\,B$ be Mal'cev algebras with a homomorphism $A\to B$ and with at least one constant symbol in their signature.

If there is a homomorphism $\psi : \mathbf{A} \to \mathbf{B}$ such that $\psi(\mathbf{A})$ is abelian, then $\operatorname{PEqn}(\mathbf{A}, \mathbf{B})$ is in P. Otherwise $\operatorname{PEqn}(\mathbf{A}, \mathbf{B})$ is NP-hard.

Function Minions

In general, polymorphisms from $\operatorname{Pol}(A, B)$ cannot be composed. So although $\operatorname{Pol}(A, B)$ is not a clone (as $\operatorname{Pol}(A, A)$ is), it is a *minion*.

Definition

For $g \colon A^m \to B$ and $\pi \colon [m] \to [n]$, we call

$$g^{(\pi)}(x_1,\ldots,\ldots,x_n) := g(x_{\pi(1)},\ldots,x_{\pi(m)})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

a minor of g.

Function Minions

In general, polymorphisms from $\operatorname{Pol}(A, B)$ cannot be composed. So although $\operatorname{Pol}(A, B)$ is not a clone (as $\operatorname{Pol}(A, A)$ is), it is a *minion*.

Definition For $g: A^m \to B$ and $\pi: [m] \to [n]$, we call

$$g^{(\pi)}(x_1,\ldots,\ldots,x_n):=g(x_{\pi(1)},\ldots,x_{\pi(m)})$$

a *minor* of g.

Definition

 $\mathcal{M} \subseteq \{f : A^n \to B : n \ge 1\}$ is a *minion* from A to B if \mathcal{M} is closed under taking minors.

Barto et al. (2021) describe several techniques for proving NP-hardness of a PCSP. The previous results use the following:

Definition

Let M be a minion. Suppose there is a constant K and a function I which for all m, n > 0 satisfies:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Barto et al. (2021) describe several techniques for proving NP-hardness of a PCSP. The previous results use the following:

Definition

Let M be a minion. Suppose there is a constant K and a function I which for all m, n > 0 satisfies:

1. For each $p \in \mathcal{M}^{(n)}$, we have $I(p) \subseteq [n]$ satisfying |I(p)| < K

Barto et al. (2021) describe several techniques for proving NP-hardness of a PCSP. The previous results use the following:

Definition

Let M be a minion. Suppose there is a constant K and a function I which for all m, n > 0 satisfies:

1. For each $p \in \mathcal{M}^{(n)}$, we have $I(p) \subseteq [n]$ satisfying |I(p)| < K

2. For each $\pi : [m] \to [n]$ and $q \in \mathcal{M}^{(m)}$, we have $\pi(I(q)) \cap I(q^{(\pi)}) \neq \emptyset$.

Barto et al. (2021) describe several techniques for proving NP-hardness of a PCSP. The previous results use the following:

Definition

Let M be a minion. Suppose there is a constant K and a function I which for all m, n > 0 satisfies:

1. For each $p \in \mathcal{M}^{(n)}$, we have $I(p) \subseteq [n]$ satisfying |I(p)| < K

2. For each $\pi : [m] \to [n]$ and $q \in \mathcal{M}^{(m)}$, we have $\pi(I(q)) \cap I(q^{(\pi)}) \neq \emptyset$.

Barto et al. (2021) describe several techniques for proving NP-hardness of a PCSP. The previous results use the following:

Definition

Let M be a minion. Suppose there is a constant K and a function I which for all m, n > 0 satisfies:

1. For each $p \in \mathcal{M}^{(n)}$, we have $I(p) \subseteq [n]$ satisfying |I(p)| < K

2. For each $\pi : [m] \to [n]$ and $q \in \mathcal{M}^{(m)}$, we have $\pi(I(q)) \cap I(q^{(\pi)}) \neq \emptyset$.

Then I is a selection function for \mathcal{M} with bound K.

Theorem (Barto et al. 2021)

Let \mathbb{A} and \mathbb{B} be relational structures with a homomorphism $\mathbb{A} \to \mathbb{B}$. Let $\mathcal{M} = \operatorname{Pol}(\mathbb{A}, \mathbb{B})$. If there exists a selection function I with bound K for \mathcal{M} , then $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ is NP-hard.

References

Libor Barto, Jakub Bulín, Andrei Krokhin, and Jakub Opršal.
Algebraic approach to promise constraint satisfaction.
J. ACM, 68(4):Art. 28, 66, 2021.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

References

Libor Barto, Jakub Bulín, Andrei Krokhin, and Jakub Opršal. Algebraic approach to promise constraint satisfaction. J. ACM, 68(4):Art. 28, 66, 2021.

Benoit Larose and László Zádori.

Taylor terms, constraint satisfaction and the complexity of polynomial equations over finite algebras. *Internat. J. Algebra Comput.*, 16(3):563–581, 2006.

References

Libor Barto, Jakub Bulín, Andrei Krokhin, and Jakub Opršal.
Algebraic approach to promise constraint satisfaction.
J. ACM, 68(4):Art. 28, 66, 2021.

Benoit Larose and László Zádori. Taylor terms, constraint satisfaction and the complexity of polynomial equations over finite algebras. *Internat. J. Algebra Comput.*, 16(3):563–581, 2006.

Alberto Larrauri and Stanislav Živný. Solving promise equations over monoids and groups. https://arxiv.org/abs/2402.08434, 2024.