Varieties of MV-monoids and positive MV-algebras

Stefano Fioravanti

Charles University Prague

Joint work with M.Abbadini and P. Aglianò

BLAST2025 Boulder, USA Supported by the grant PRIMUS/24/SCI/008

An MV-monoid is an algebra $\langle A, \vee, \wedge, \oplus, \odot, 0, 1 \rangle$ where

- 1 $\langle A, \lor, \land, 0, 1 \rangle$ is a bounded distributive lattice;
- **2** $\langle A, \oplus, 0 \rangle$ and $\langle A, \odot, 1 \rangle$ are commutative monoids;
- $\mathbf{3} \oplus \mathsf{and} \odot \mathsf{distribute} \mathsf{over} \lor \mathsf{and} \land;$
- **4** for every $x, y, z \in A$,

 $\begin{aligned} (\mathbf{x} \oplus \mathbf{y}) \odot ((\mathbf{x} \odot \mathbf{y}) \oplus z) &= (\mathbf{x} \odot (\mathbf{y} \oplus z)) \oplus (\mathbf{y} \odot z); \\ (\mathbf{x} \odot \mathbf{y}) \oplus ((\mathbf{x} \oplus \mathbf{y}) \odot z) &= (\mathbf{x} \oplus (\mathbf{y} \odot z)) \odot (\mathbf{y} \oplus z); \\ (\mathbf{x} \odot \mathbf{y}) \oplus z &= ((\mathbf{x} \oplus \mathbf{y}) \odot ((\mathbf{x} \odot \mathbf{y}) \oplus z)) \lor z; \\ (\mathbf{x} \oplus \mathbf{y}) \odot z &= ((\mathbf{x} \odot \mathbf{y}) \oplus ((\mathbf{x} \oplus \mathbf{y}) \odot z)) \land z. \end{aligned}$

An MV-monoid is an algebra $\langle A, \vee, \wedge, \oplus, \odot, 0, 1 \rangle$ where

- 1 $\langle A, \lor, \land, 0, 1 \rangle$ is a bounded distributive lattice;
- **2** $\langle A, \oplus, 0 \rangle$ and $\langle A, \odot, 1 \rangle$ are commutative monoids;
- $\mathbf{3} \oplus \mathsf{and} \odot \mathsf{distribute} \mathsf{over} \lor \mathsf{and} \land;$
- **4** for every $x, y, z \in A$,

 $\begin{aligned} (\mathbf{x} \oplus \mathbf{y}) \odot ((\mathbf{x} \odot \mathbf{y}) \oplus z) &= (\mathbf{x} \odot (\mathbf{y} \oplus z)) \oplus (\mathbf{y} \odot z); \\ (\mathbf{x} \odot \mathbf{y}) \oplus ((\mathbf{x} \oplus \mathbf{y}) \odot z) &= (\mathbf{x} \oplus (\mathbf{y} \odot z)) \odot (\mathbf{y} \oplus z); \\ (\mathbf{x} \odot \mathbf{y}) \oplus z &= ((\mathbf{x} \oplus \mathbf{y}) \odot ((\mathbf{x} \odot \mathbf{y}) \oplus z)) \lor z; \\ (\mathbf{x} \oplus \mathbf{y}) \odot z &= ((\mathbf{x} \odot \mathbf{y}) \oplus ((\mathbf{x} \oplus \mathbf{y}) \odot z)) \land z. \end{aligned}$

A positive MV-algebra is a $\{\lor, \land, \oplus, \odot, 0, 1\}$ -subreduct of an MV-algebra.

An MV-monoid is an algebra $\langle A, \vee, \wedge, \oplus, \odot, 0, 1 \rangle$ where

- 1 $\langle A, \lor, \land, 0, 1 \rangle$ is a bounded distributive lattice;
- **2** $\langle A, \oplus, 0 \rangle$ and $\langle A, \odot, 1 \rangle$ are commutative monoids;
- $\mathbf{3} \oplus \mathsf{and} \odot \mathsf{distribute} \mathsf{over} \lor \mathsf{and} \land;$
- **4** for every $x, y, z \in A$,

 $\begin{aligned} (\mathbf{x} \oplus \mathbf{y}) \odot ((\mathbf{x} \odot \mathbf{y}) \oplus z) &= (\mathbf{x} \odot (\mathbf{y} \oplus z)) \oplus (\mathbf{y} \odot z); \\ (\mathbf{x} \odot \mathbf{y}) \oplus ((\mathbf{x} \oplus \mathbf{y}) \odot z) &= (\mathbf{x} \oplus (\mathbf{y} \odot z)) \odot (\mathbf{y} \oplus z); \\ (\mathbf{x} \odot \mathbf{y}) \oplus z &= ((\mathbf{x} \oplus \mathbf{y}) \odot ((\mathbf{x} \odot \mathbf{y}) \oplus z)) \lor z; \\ (\mathbf{x} \oplus \mathbf{y}) \odot z &= ((\mathbf{x} \odot \mathbf{y}) \oplus ((\mathbf{x} \oplus \mathbf{y}) \odot z)) \land z. \end{aligned}$

A positive MV-algebra is a { \lor , \land , \oplus , \odot , 0, 1}-subreduct of an MV-algebra. The class MV⁺ of positive MV-algebras is the proper subquasivariety of MVM, axiomatized relatively to MVM by $(x \oplus z \approx y \oplus z \text{ and } x \odot z \approx y \odot z) \implies x \approx y.$

A commutative $\ell\text{-monoid}$ is an algebra $\bm{M}=\langle M,\vee,\wedge,+,0\rangle$ with the following properties:

- $1 \ \langle M, \vee, \wedge \rangle$ is a distributive lattice;
- $\mathbf{2} \ \langle M, +, \mathbf{0} \rangle$ is a commutative monoid;
- $\mathbf{3} \ + \ \mathsf{distributes} \ \mathsf{over} \ \lor \ \mathsf{and} \ \land.$

A commutative ℓ -monoid is an algebra $\mathbf{M} = \langle M, \lor, \land, +, 0 \rangle$ with the following properties:

- $1 \hspace{.1in} \langle M, \vee, \wedge \rangle$ is a distributive lattice;
- 2 $\langle M, +, 0 \rangle$ is a commutative monoid;
- $\mathbf{3} + \mathsf{distributes} \ \mathsf{over} \lor \mathsf{and} \ \land.$

A unital commutative ℓ -monoid is an algebra $\langle M, \vee, \wedge, +, 1, 0, -1 \rangle$ with the following properties:

1 $\langle M, \lor, \land, +, 0 \rangle$ is a commutative ℓ -monoid;

$$2 -1 + 1 = 0;$$

- $\textbf{3} \ -1 \leq \textbf{0} \leq 1;$
- 4 for all $x \in M$ there is $n \in \mathbb{N}$ such that

$$\underbrace{(-1)+\dots+(-1)}_{n \text{ times}} \leq x \leq \underbrace{1+\dots+1}_{n \text{ times}}.$$

For every unital commutative ℓ -monoid **M**, its unit interval can be equipped with the structure of an MV-monoid:

$$\Gamma(\mathsf{M}) = \langle \Gamma(\mathsf{M}), \lor, \land, \oplus, \odot, 0, 1 \rangle$$

where

 $\Gamma(\mathbf{M}) \coloneqq \{ x \in \mathbf{M} \mid \mathbf{0} \le x \le 1 \}$

For every unital commutative ℓ -monoid **M**, its unit interval can be equipped with the structure of an MV-monoid:

$$\Gamma(\mathsf{M}) = \langle \Gamma(\mathsf{M}), \lor, \land, \oplus, \odot, 0, 1 \rangle$$

where

$$\Gamma(\mathbf{M}) \coloneqq \{ x \in \mathbf{M} \mid 0 \le x \le 1 \}$$

The assignment $\bm{M} \mapsto \Gamma(\bm{M})$ can be extended to morphisms to define a functor

 $\Gamma: \mathfrak{u}\ell M \to MVM$

from the category $u\ell M$ of unital commutative ℓ -monoids to the category MVM of MV-monoids (Cat. equivalence Abbadini '21).

For every unital commutative ℓ -monoid **M**, its unit interval can be equipped with the structure of an MV-monoid:

$$\Gamma(\mathsf{M}) = \langle \Gamma(\mathsf{M}), \lor, \land, \oplus, \odot, 0, 1 \rangle$$

where

$$\Gamma(\textbf{M}) \coloneqq \{ x \in M \mid 0 \le x \le 1 \}$$

The assignment $\bm{M} \mapsto \Gamma(\bm{M})$ can be extended to morphisms to define a functor

 $\Gamma \colon \mathfrak{u}\ell M \to \mathsf{MVM}$

from the category ull of unital commutative l-monoids to the category MVM of MV-monoids (Cat. equivalence Abbadini '21). Theorem (Abbadini, Jipsen, Kroupa, Vannucci '22) $\Gamma: ull \rightarrow MVM$ restricts to an equivalence between cancellative unital commutative l-monoids and positive MV-algebras (MV⁺).

Examples:

• \mathbf{L}_{n}^{+} , the reduct of the MV-algebra with universe $\{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}$ (i.e. $\Gamma(\frac{1}{n}\mathbb{Z}) = \mathbf{L}_{n}^{+}$);

Examples:

- \mathbf{t}_{n}^{+} , the reduct of the MV-algebra with universe $\{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}$ (i.e. $\Gamma(\frac{1}{n}\mathbb{Z}) = \mathbf{t}_{n}^{+}$);
- C^Δ₂, the unique MV-monoid on the 3-element chain 0 < ε < 1 satisfying ε ⊕ ε = ε and ε ⊙ ε = 0;

Examples:

- \mathbf{t}_{n}^{+} , the reduct of the MV-algebra with universe $\{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}$ (i.e. $\Gamma(\frac{1}{n}\mathbb{Z}) = \mathbf{t}_{n}^{+}$);
- C^Δ₂, the unique MV-monoid on the 3-element chain 0 < ε < 1 satisfying ε ⊕ ε = ε and ε ⊙ ε = 0;
- C_2^{∇} , the dual of C_2^{Δ} ;

Examples:

- \mathbf{t}_{n}^{+} , the reduct of the MV-algebra with universe $\{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}$ (i.e. $\Gamma(\frac{1}{n}\mathbb{Z}) = \mathbf{t}_{n}^{+}$);
- C^Δ₂, the unique MV-monoid on the 3-element chain 0 < ε < 1 satisfying ε ⊕ ε = ε and ε ⊙ ε = 0;
- C_2^{∇} , the dual of C_2^{Δ} ;
- C_3^{Δ} , the unique MV-monoid on $0 < \varepsilon < 2\varepsilon < 1$ with $\varepsilon \oplus \varepsilon = 2\varepsilon$ and $2\varepsilon \odot 2\varepsilon = 0$ (not a positive MV-algebra).

Subdirectly irreducible MV-monoids

Theorem (Abbadini, Aglianò, SF) Let M be a unital commutative ℓ -monoid. TFAE:

- 1 M is totally ordered;
- **2** $\Gamma(\mathbf{M})$ is totally ordered, and, for every $x, y \in \Gamma(\mathbf{M})$, $x \oplus y = 1$ or $x \odot y = 0$.

Subdirectly irreducible MV-monoids

Theorem (Abbadini, Aglianò, SF) Let M be a unital commutative ℓ -monoid. TFAE:

- 1 M is totally ordered;
- **2** $\Gamma(\mathbf{M})$ is totally ordered, and, for every $x, y \in \Gamma(\mathbf{M})$, $x \oplus y = 1$ or $x \odot y = 0$.

Theorem (Abbadini, Aglianò, SF) If an MV-monoid **A** is subdirectly irreducible, then it is nontrivial, totally ordered, and such that, for all $x, y \in A$, $x \oplus y = 1$ or $x \odot y = 0$.

The almost minimal varieties of MV-monoids

Theorem (Abbadini, Aglianò, SF) The almost minimal subvarieties of MVM are precisely $\mathcal{V}(\mathbf{C}_2^{\Delta})$, $\mathcal{V}(\mathbf{C}_2^{\nabla})$ and $\mathcal{V}(\mathbf{t}_p^+)$ (for p prime), and they are all pairwise distinct.

The almost minimal varieties of MV-monoids

Theorem (Abbadini, Aglianò, SF) The almost minimal subvarieties of MVM are precisely $\mathcal{V}(\mathbf{C}_2^{\Delta})$, $\mathcal{V}(\mathbf{C}_2^{\nabla})$ and $\mathcal{V}(\mathbf{L}_p^+)$ (for p prime), and they are all pairwise distinct.

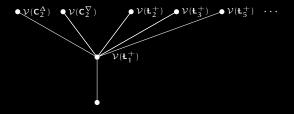


Figure: The bottom part of $\overline{\Lambda}(MVM)$

MV-monoids of small cardinalities

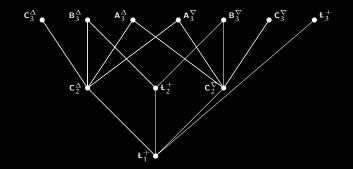


Figure: Subdirectly irreducible MV-monoids with cardinality ≤ 4 ordered by: $A\leq B$ iff $A\in HS(B)$

MV-monoids of small cardinalities

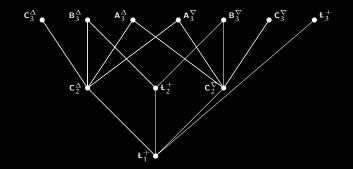


Figure: Subdirectly irreducible MV-monoids with cardinality ≤ 4 ordered by: $A\leq B$ iff $A\in HS(B)$

Theorem (Abbadini, Aglianò, SF) The ideal of Λ (MVM) consisting of all varieties generated by MV-monoids with at most 4 elements is isomorphic to the lattice of downward-closed subsets of the previous poset.

Theorem (Abbadini, Aglianò, SF) For a finite positive MV-algebra **A**, TFAE:

- 1 A is subdirectly irreducible;
- $\textbf{2} \ \textbf{A} \cong \textbf{L}_n^+ \text{ for some } n \in \mathbb{N} \setminus \{\textbf{0}\};$
- **3** A is nontrivial, totally ordered and, for all $x, y \in A$, either $x \oplus y = 1$ or $x \odot y = 0$.

Theorem (Abbadini, Aglianò, SF) For a finite positive MV-algebra **A**, TFAE:

- 1 A is subdirectly irreducible;
- $\label{eq:alpha} \textbf{2} \ \textbf{A} \cong \textbf{L}_n^+ \text{ for some } n \in \mathbb{N} \setminus \{\textbf{0}\};$
- **3** A is nontrivial, totally ordered and, for all $x, y \in A$, either $x \oplus y = 1$ or $x \odot y = 0$.

Theorem (Abbadini, Aglianò, SF) The varieties of positive MV-algebras are precisely the varieties generated by a finite subset of $\{\mathbf{t}_n^+ \mid n \in \mathbb{N} \setminus \{0\}\}$.

We call divisor-closed finite set a finite subset I of $\mathbb{N} \setminus \{0\}$ such that, for every $n \in I$ and $k \in \mathbb{N} \setminus \{0\}$, if k divides n, then $k \in I$.

We call divisor-closed finite set a finite subset I of $\mathbb{N} \setminus \{0\}$ such that, for every $n \in I$ and $k \in \mathbb{N} \setminus \{0\}$, if k divides n, then $k \in I$.

For a divisor-closed finite set I, we set

 $\mathcal{K}_{I} \coloneqq \{ \mathbf{L}_{n}^{+} \in \mathsf{MV}^{+} \mid n \in I \}.$

We call divisor-closed finite set a finite subset I of $\mathbb{N} \setminus \{0\}$ such that, for every $n \in I$ and $k \in \mathbb{N} \setminus \{0\}$, if k divides n, then $k \in I$.

For a divisor-closed finite set I, we set

$$\mathcal{K}_{\mathrm{I}} \coloneqq \{\mathbf{L}_{\mathrm{n}}^+ \in \mathsf{MV}^+ \mid \mathrm{n} \in \mathrm{I}\}.$$

Theorem (Abbadini, Aglianò, SF) The set $\Lambda(MV^+)$ of varieties of positive MV-algebras is in bijection with the set \mathcal{J} of divisor-closed finite sets, as witnessed by:

$$\begin{array}{ll} f\colon \mathcal{J} \longrightarrow \Lambda(\mathsf{MV}^+) & \quad g\colon \Lambda(\mathsf{MV}^+) \longrightarrow \mathcal{J} \\ I\longmapsto \mathcal{V}(\mathcal{K}_I) & \quad \mathcal{V}\longmapsto \{n\in\mathbb{N}\setminus\{0\} \,|\, \textbf{L}_n^+\in\mathcal{V}\}. \end{array}$$

$$\tau_{0,k}(x) \coloneqq \begin{cases} 1 & \text{if } k \leq -1, \\ 0 & \text{if } k \geq 0. \end{cases}$$

The inductive case is as follows:

$$\tau_{n+1,k}(x) = \tau_{n,k-1}(x) \odot (x \oplus \tau_{n,k}(x)),$$

$$\tau_{0,k}(x) \coloneqq \begin{cases} 1 & \text{if } k \leq -1, \\ 0 & \text{if } k \geq 0. \end{cases}$$

The inductive case is as follows:

$$\tau_{n+1,k}(x)=\tau_{n,k-1}(x)\odot(x\oplus\tau_{n,k}(x))$$
 Computing the terms $\tau_{n,k}(x)$ for $n\in\{1,2\}$ we get:

$$\tau_{1,k}(x) = \begin{cases} 1 & \text{if } k \leq -1, \\ x & \text{if } k = 0, \\ 0 & \text{if } k \geq 1, \end{cases}$$

$$\tau_{0,k}(x) \coloneqq \begin{cases} 1 & \text{if } k \leq -1, \\ 0 & \text{if } k \geq 0. \end{cases}$$

The inductive case is as follows:

$$\tau_{n+1,k}(x)=\tau_{n,k-1}(x)\odot(x\oplus\tau_{n,k}(x))$$
 Computing the terms $\tau_{n,k}(x)$ for $n\in\{1,2\}$ we get:

$$au_{1,k}(x) = egin{cases} 1 & \mbox{if } k \leq -1, \ x & \mbox{if } k = 0, \ 0 & \mbox{if } k \geq 1, \end{cases}$$

and

$$\tau_{2,k}(x) = \begin{cases} 1 & \text{if } k \leq -1, \\ x \oplus x & \text{if } k = 0, \\ x \odot x & \text{if } k = 1, \\ 0 & \text{if } k \geq 2, \end{cases}$$

For $n \in \mathbb{N}$, let Φ_n be the following set of equations:

$$\begin{split} \tau_{n,k}(x) \oplus \tau_{n,k}(x) &\approx \tau_{n,k}(x) \tag{1} \\ \tau_{n,k}(x) \odot \tau_{n,k}(x) &\approx \tau_{n,k}(x). \end{split}$$
 with $k \in \{0, \dots, n-1\}$ (i.e. $\tau_{n,k}(x)$ is idempotent).

12

For $n \in \mathbb{N}$, let Φ_n be the following set of equations:

$$\begin{split} \tau_{n,k}(x) \oplus \tau_{n,k}(x) &\approx \tau_{n,k}(x) \\ \tau_{n,k}(x) \odot \tau_{n,k}(x) &\approx \tau_{n,k}(x). \end{split} \tag{1}$$

with $k \in \{0, \dots, n-1\}$ (i.e. $\tau_{n,k}(x)$ is idempotent).

Given a divisor-closed set I with maximum m (set m = 0 if $I = \emptyset$). We define Σ_I as:

$$(m+1)x \approx mx \tag{2}$$

union

$$\mathfrak{m}((k-1)x)^k \approx (kx)^\mathfrak{m} \tag{3}$$

for all $1 \le k \le m$ with $k \notin I$.

For $n \in \mathbb{N}$, let Φ_n be the following set of equations:

$$\begin{split} \tau_{n,k}(x) \oplus \tau_{n,k}(x) &\approx \tau_{n,k}(x) \\ \tau_{n,k}(x) \odot \tau_{n,k}(x) &\approx \tau_{n,k}(x). \end{split} \tag{1}$$

with $k \in \{0,\ldots,n-1\}$ (i.e. $\tau_{n,k}(x)$ is idempotent).

Given a divisor-closed set I with maximum m (set m = 0 if $I = \emptyset$). We define Σ_I as:

$$(m+1)x \approx mx \tag{2}$$

union

$$\mathfrak{m}((k-1)x)^k \approx (kx)^{\mathfrak{m}} \tag{3}$$

for all $1 \le k \le m$ with $k \notin I$.

Theorem (Abbadini, Aglianò, SF) Let I be a divisor-closed finite set; then $\mathcal{V}(\mathcal{K}_I)$ is axiomatized by $\Phi_{lcm(I)} \cup \Sigma_I$ relatively to the variety of MV-monoids.

Example: Let $I = \{1, 2, 3\}$ and $J = \{1, 2, 3, 6\}$. $\mathcal{V}(\mathcal{K}_I)$ axioms: $\mathsf{MVM} \cup \Phi_6 \cup \{4x \approx 3x\};$ $\mathcal{V}(\mathcal{K}_J)$ axioms: $\mathsf{MVM} \cup \Phi_6 \cup \{7x \approx 6x, 6(3x)^4 \approx (4x)^6, 6(4x)^5 \approx (5x)^6\}.$ Note that the failure of $4x \approx 3x$ in \mathbf{t}_6^+ is witnessed by $\frac{1}{6}$.

Example: Let $I = \{1, 2, 3\}$ and $J = \{1, 2, 3, 6\}$.

 $\mathcal{V}(\mathcal{K}_{I})$ axioms: MVM $\cup \Phi_{6} \cup \{4x \approx 3x\};$

 $\mathcal{V}(\mathcal{K}_{I})$ axioms:

 $\mathsf{MVM} \cup \Phi_6 \cup \{7x \approx 6x, 6(3x)^4 \approx (4x)^6, 6(4x)^5 \approx (5x)^6\}.$

Note that the failure of $4x \approx 3x$ in \mathbf{L}_6^+ is witnessed by $\frac{1}{6}$.

Variety	Axiomatization	
$\mathcal{V}(\mathbf{C}_2^{\Delta})$	$x \oplus x \approx x$	
$\mathcal{V}(\mathbf{C}_2^{\nabla})$	$\mathbf{x} \odot \mathbf{x} pprox \mathbf{x}$	
$\mathcal{V}(L_1^+)$	$x\oplus xpprox x$ and $x\odot xpprox x$	
$\mathcal{V}(\mathbf{L}_{n}^{+})$	$ au_{n,k}(x) \oplus au_{n,k}(x) pprox au_{n,k}(x)$	$(\text{for } 0 \leq k \leq n-1)$
	$\tau_{n,k}(x) \odot \tau_{n,k}(x) \approx \tau_{n,k}(x)$	$(\text{for } 0 \leq k \leq n-1)$
$\mathcal{V}(\{\mathbf{L}_{n}^{+} \mid n \in I\})$	(setting l: $: \operatorname{lcm} I$ and $\mathfrak{m}: : \operatorname{max} I$)	
(I divclosed fin. set)	$ au_{l,k}(x) \oplus au_{l,k}(x) pprox au_{l,k}(x)$	$(\text{for } 0 \leq k \leq l-1)$
	$\tau_{l,k}(x) \odot \tau_{l,k}(x) \approx \tau_{l,k}(x)$	$(\text{for } 0 \leq k \leq l-1)$
	$(m+1)x \approx mx$	
	$\mathfrak{m}((k-1)x)^k \approx (kx)^{\mathfrak{m}} \text{ (for } 1 \leq k \leq \mathfrak{m} \text{ s.t. } k \notin I)$	

Hölder's theorem for unital commutative *l*-monoids

Theorem (Abbadini, Aglianò, SF) Let **M** be a nontrivial totally ordered unital commutative ℓ -monoid. There is a unique homomorphism from **M** to \mathbb{R} .

Hölder's theorem for unital commutative *l*-monoids

Theorem (Abbadini, Aglianò, SF) Let **M** be a nontrivial totally ordered unital commutative ℓ -monoid. There is a unique homomorphism from **M** to \mathbb{R} .

A unital commutative ℓ -monoid **M** is Archimedean provided that, for all $x, y \in M$, if for all $n \in \mathbb{N}$ we have $nx \leq ny + 1$, then $x \leq y$.

Hölder's theorem for unital commutative *l*-monoids

Theorem (Abbadini, Aglianò, SF) Let **M** be a nontrivial totally ordered unital commutative ℓ -monoid. There is a unique homomorphism from **M** to \mathbb{R} .

A unital commutative ℓ -monoid **M** is Archimedean provided that, for all $x, y \in M$, if for all $n \in \mathbb{N}$ we have $nx \leq ny + 1$, then $x \leq y$.

Theorem (Abbadini, Aglianò, SF) [Hölder's theorem for unital commutative ℓ -monoids] Let **M** be an Archimedean nontrivial totally ordered unital commutative ℓ -monoid. The unique homomorphism from **M** to \mathbb{R} is injective, thus **M** is isomorphic to a subalgebra of \mathbb{R} .

Bibliography

 M. Abbadini, P. Aglianò, and SF, Varieties of MV-monoids and positive MV-algebras, Journal of Algebra, V. 677, pp. 690-744 (2025);

Bibliography

 M. Abbadini, P. Aglianò, and SF, Varieties of MV-monoids and positive MV-algebras, Journal of Algebra, V. 677, pp. 690-744 (2025);

Thank you for your attention