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Introduction

An MV-monoid is an algebra ⟨A,∨,∧,⊕,⊙, 0, 1⟩ where
1 ⟨A,∨,∧, 0, 1⟩ is a bounded distributive lattice;
2 ⟨A,⊕, 0⟩ and ⟨A,⊙, 1⟩ are commutative monoids;
3 ⊕ and ⊙ distribute over ∨ and ∧;
4 for every x, y, z ∈ A,

(x⊕ y)⊙ ((x⊙ y)⊕ z) = (x⊙ (y⊕ z))⊕ (y⊙ z);

(x⊙ y)⊕ ((x⊕ y)⊙ z) = (x⊕ (y⊙ z))⊙ (y⊕ z);

(x⊙ y)⊕ z = ((x⊕ y)⊙ ((x⊙ y)⊕ z))∨ z;

(x⊕ y)⊙ z = ((x⊙ y)⊕ ((x⊕ y)⊙ z))∧ z.

A positive MV-algebra is a {∨,∧,⊕,⊙, 0, 1}-subreduct of an
MV-algebra.
The class MV+ of positive MV-algebras is the proper
subquasivariety of MVM, axiomatized relatively to MVM by

(x⊕ z ≈ y⊕ z and x⊙ z ≈ y⊙ z) =⇒ x ≈ y.
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Introduction

A commutative ℓ-monoid is an algebra M = ⟨M,∨,∧,+, 0⟩ with
the following properties:

1 ⟨M,∨,∧⟩ is a distributive lattice;

2 ⟨M,+, 0⟩ is a commutative monoid;

3 + distributes over ∨ and ∧.

A unital commutative ℓ-monoid is an algebra ⟨M,∨,∧,+, 1, 0,−1⟩
with the following properties:

1 ⟨M,∨,∧,+, 0⟩ is a commutative ℓ-monoid;

2 −1+ 1 = 0;

3 −1 ≤ 0 ≤ 1;

4 for all x ∈ M there is n ∈ N such that

(−1) + · · ·+ (−1)︸ ︷︷ ︸
n times

≤ x ≤ 1+ · · ·+ 1︸ ︷︷ ︸
n times

.
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Introduction

For every unital commutative ℓ-monoid M, its unit interval can be
equipped with the structure of an MV-monoid:

Γ(M) = ⟨Γ(M),∨,∧,⊕,⊙, 0, 1⟩

where

Γ(M) := {x ∈ M | 0 ≤ x ≤ 1}

The assignment M 7→ Γ(M) can be extended to morphisms to
define a functor

Γ : uℓM → MVM

from the category uℓM of unital commutative ℓ-monoids to the
category MVM of MV-monoids (Cat. equivalence Abbadini ’21).
Theorem (Abbadini, Jipsen, Kroupa, Vannucci ’22)
Γ : uℓM → MVM restricts to an equivalence between cancellative
unital commutative ℓ-monoids and positive MV-algebras (MV+).
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Introduction

Examples:

•  L+
n , the reduct of the MV-algebra with universe

{0, 1
n , . . . ,

n−1
n , 1} (i.e. Γ( 1nZ) =  L+

n);

• C∆
2 , the unique MV-monoid on the 3-element chain 0 < ε < 1

satisfying ε⊕ ε = ε and ε⊙ ε = 0;

• C∇
2 , the dual of C∆

2 ;

• C∆
3 , the unique MV-monoid on 0 < ε < 2ε < 1 with

ε⊕ ε = 2ε and 2ε⊙ 2ε = 0 (not a positive MV-algebra).
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Subdirectly irreducible MV-monoids

Theorem (Abbadini, Aglianò, SF) Let M be a unital commutative
ℓ-monoid. TFAE:

1 M is totally ordered;

2 Γ(M) is totally ordered, and, for every x, y ∈ Γ(M), x⊕ y = 1

or x⊙ y = 0.

Theorem (Abbadini, Aglianò, SF) If an MV-monoid A is
subdirectly irreducible, then it is nontrivial, totally ordered, and
such that, for all x, y ∈ A, x⊕ y = 1 or x⊙ y = 0.
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The almost minimal varieties of MV-monoids

Theorem (Abbadini, Aglianò, SF) The almost minimal subvarieties
of MVM are precisely V(C∆

2 ), V(C∇
2 ) and V( L+

p ) (for p prime), and
they are all pairwise distinct.

· · ·

V( L+
1
)

V(C∇
2 )V(C∆

2 ) V( L+
2
) V( L+

3
) V( L+

5
)

Figure: The bottom part of Λ(MVM)
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Theorem (Abbadini, Aglianò, SF) The almost minimal subvarieties
of MVM are precisely V(C∆

2 ), V(C∇
2 ) and V( L+

p ) (for p prime), and
they are all pairwise distinct.

· · ·

V( L+
1
)

V(C∇
2 )V(C∆

2 ) V( L+
2
) V( L+

3
) V( L+

5
)

Figure: The bottom part of Λ(MVM)

7



MV-monoids of small cardinalities

 L+
1

C∇
2C∆

2
 L+
2

 L+
3B∇

3B∆
3C∆

3 C∇
3A∇

3A∆
3

Figure: Subdirectly irreducible MV-monoids with cardinality ≤ 4 ordered
by: A ≤ B iff A ∈ HS(B)

Theorem (Abbadini, Aglianò, SF) The ideal of Λ(MVM) consisting
of all varieties generated by MV-monoids with at most 4 elements
is isomorphic to the lattice of downward-closed subsets of the
previous poset.
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Positive MV-algebras

Theorem (Abbadini, Aglianò, SF) For a finite positive MV-algebra
A, TFAE:

1 A is subdirectly irreducible;

2 A ∼=  L+
n for some n ∈ N \ {0};

3 A is nontrivial, totally ordered and, for all x, y ∈ A, either
x⊕ y = 1 or x⊙ y = 0.

Theorem (Abbadini, Aglianò, SF) The varieties of positive
MV-algebras are precisely the varieties generated by a finite subset
of { L+

n | n ∈ N \ {0}}.
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Positive MV-algebras

We call divisor-closed finite set a finite subset I of N \ {0} such
that, for every n ∈ I and k ∈ N \ {0}, if k divides n, then k ∈ I.

For a divisor-closed finite set I, we set

KI := { L+
n ∈ MV+ | n ∈ I}.

Theorem (Abbadini, Aglianò, SF) The set Λ(MV+) of varieties of
positive MV-algebras is in bijection with the set J of divisor-closed
finite sets, as witnessed by:

f : J −→ Λ(MV+) g : Λ(MV+) −→ J
I 7−→ V(KI) V 7−→ {n ∈ N \ {0} |  L+

n ∈ V}.
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Axiomatizations

τ0,k(x) :=

{
1 if k ≤ −1,

0 if k ≥ 0.

The inductive case is as follows:

τn+1,k(x) = τn,k−1(x)⊙ (x⊕ τn,k(x)),

Computing the terms τn,k(x) for n ∈ {1, 2} we get:

τ1,k(x) =


1 if k ≤ −1,

x if k = 0,

0 if k ≥ 1,

and

τ2,k(x) =


1 if k ≤ −1,

x⊕ x if k = 0,

x⊙ x if k = 1,

0 if k ≥ 2,
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Axiomatizations

For n ∈ N, let Φn be the following set of equations:

τn,k(x)⊕ τn,k(x) ≈ τn,k(x) (1)

τn,k(x)⊙ τn,k(x) ≈ τn,k(x).

with k ∈ {0, . . . , n− 1} (i.e. τn,k(x) is idempotent).

Given a divisor-closed set I with maximum m (set m = 0 if I = ∅).
We define ΣI as:

(m+ 1)x ≈ mx (2)

union
m((k− 1)x)k ≈ (kx)m (3)

for all 1 ≤ k ≤ m with k /∈ I.

Theorem (Abbadini, Aglianò, SF) Let I be a divisor-closed finite
set; then V(KI) is axiomatized by Φlcm(I) ∪ ΣI relatively to the
variety of MV-monoids.
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Axiomatizations

Example: Let I = {1, 2, 3} and J = {1, 2, 3, 6}.

V(KI) axioms: MVM ∪Φ6 ∪ {4x ≈ 3x};

V(KJ) axioms:
MVM ∪Φ6 ∪ {7x ≈ 6x, 6(3x)4 ≈ (4x)6, 6(4x)5 ≈ (5x)6}.

Note that the failure of 4x ≈ 3x in  L+
6 is witnessed by 1

6 .

Variety Axiomatization

V(C∆
2 ) x⊕ x ≈ x

V(C∇
2 ) x⊙ x ≈ x

V(L+
1 ) x⊕ x ≈ x and x⊙ x ≈ x

V( L+
n) τn,k(x)⊕ τn,k(x) ≈ τn,k(x) (for 0 ≤ k ≤ n− 1)

τn,k(x)⊙ τn,k(x) ≈ τn,k(x) (for 0 ≤ k ≤ n− 1)

V({ L+
n | n ∈ I}) (setting l : : lcm I and m : : max I)

(I div.-closed fin. set) τl,k(x)⊕ τl,k(x) ≈ τl,k(x) (for 0 ≤ k ≤ l− 1)
τl,k(x)⊙ τl,k(x) ≈ τl,k(x) (for 0 ≤ k ≤ l− 1)
(m+ 1)x ≈ mx

m((k− 1)x)k ≈ (kx)m (for 1 ≤ k ≤ m s.t. k /∈ I)
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Hölder’s theorem for unital commutative ℓ-monoids

Theorem (Abbadini, Aglianò, SF) Let M be a nontrivial totally
ordered unital commutative ℓ-monoid. There is a unique
homomorphism from M to R.

A unital commutative ℓ-monoid M is Archimedean provided that,
for all x, y ∈ M, if for all n ∈ N we have nx ≤ ny+ 1, then x ≤ y.

Theorem (Abbadini, Aglianò, SF) [Hölder’s theorem for unital
commutative ℓ-monoids] Let M be an Archimedean nontrivial
totally ordered unital commutative ℓ-monoid. The unique
homomorphism from M to R is injective, thus M is isomorphic to
a subalgebra of R.

14
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A unital commutative ℓ-monoid M is Archimedean provided that,
for all x, y ∈ M, if for all n ∈ N we have nx ≤ ny+ 1, then x ≤ y.
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