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Introduction

An MV-monoid is an algebra (A,V, A\, ®,®,0,1) where
1 (A,V,/\,0,1) is a bounded distributive lattice;
2 (A,®,0) and (A,®, 1) are commutative monoids;
3 @ and © distribute over V and A;
4 for every x,y,z € A,

xey)o((xoyez)=xo(yez)®(yoz)
xoyo((xoyoz)=xe(yoz)olyoz)
xoyldz=((xoy)o((xoy)®z))Vyz
xeyoz=((xoy) e (xey) ©z) Az
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The class MV™ of positive MV-algebras is the proper
subquasivariety of MVM, axiomatized relatively to MVM by

(x®zry®zandxOzrYyOz) = XX Y.
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Introduction

A commutative {-monoid is an algebra M = (M, V/,/\, +,0) with
the following properties:

1 (M,V,A) is a distributive lattice;

2 (M, +,0) is a commutative monoid;

3 + distributes over V and A.
A unital commutative {-monoid is an algebra (M, V, A, +,1,0,—1)
with the following properties:

1 (M,V,/A,+,0) is a commutative {-monoid;

2 —14+1=0;

3-1<0<T;

4 for all x € M there is n € N such that

(D 4+ (=) <x<T4---+1.
~—

n times n times
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For every unital commutative {-monoid M, its unit interval can be
equipped with the structure of an MV-monoid:

F(M) = <F(M))\/a/\) D, ®)O> ]>

where

'M)={xeM|0<x<1}

The assignment M +— T'(M) can be extended to morphisms to
define a functor
I': ulM — MVM

from the category ufM of unital commutative {-monoids to the
category MVM of MV-monoids (Cat. equivalence Abbadini '21).
Theorem (Abbadini, Jipsen, Kroupa, Vannucci '22)

I': ulM — MVM restricts to an equivalence between cancellative
unital commutative {-monoids and positive MV-algebras (MV ™).
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Introduction

Examples:

o L1 the reduct of the MV-algebra with universe
{O>n> > n )1} ('e r( ) LTt);

e C%, the unique MV-monoid on the 3-element chain 0 < ¢ < 1
satisfying e e =¢c¢and e ® ¢ =0;

e CY, the dual of C5;

e C2, the unique MV-monoid on 0 < & < 2¢ < 1 with
e ®e=2¢and 2¢ ® 2¢ =0 (not a positive MV-algebra).



Subdirectly irreducible MV-monoids

Theorem (Abbadini, Agliano, SF) Let M be a unital commutative
{-monoid. TFAE:

1 M is totally ordered;

2 T'(M) is totally ordered, and, for every x,y € '(M), x®y =1
orx®y=0.



Subdirectly irreducible MV-monoids

Theorem (Abbadini, Agliano, SF) Let M be a unital commutative
{-monoid. TFAE:

1 M is totally ordered;

2 T'(M) is totally ordered, and, for every x,y € '(M), x®y =1
orx®y=0.

Theorem (Abbadini, Agliano, SF) If an MV-monoid A is
subdirectly irreducible, then it is nontrivial, totally ordered, and
such that, for all x,y € A, x@y=Torx®y=0.



The almost minimal varieties of MV-monoids

Theorem (Abbadini, Agliano, SF) The almost minimal subvarieties
of MVM are precisely V(Cf), V(CZV) and V(t;’) (for p prime), and
they are all pairwise distinct.
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Theorem (Abbadini, Agliano, SF) The almost minimal subvarieties
of MVM are precisely V(Cf), V(CZV) and V(t;’) (for p prime), and
they are all pairwise distinct.
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Figure: The bottom part of A(MVM)



MV-monoids of small cardinalities

Figure: Subdirectly irreducible MV-monoids with cardinality < 4 ordered
by: A < B iff A € HS(B)
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Figure: Subdirectly irreducible MV-monoids with cardinality < 4 ordered
by: A < B iff A € HS(B)

Theorem (Abbadini, Agliano, SF) The ideal of A(MVM) consisting
of all varieties generated by MV-monoids with at most 4 elements
is isomorphic to the lattice of downward-closed subsets of the
previous poset.



Positive MV-algebras

Theorem (Abbadini, Agliano, SF) For a finite positive MV-algebra
A, TFAE:

1 A is subdirectly irreducible;
2 A=t for somen € N\ {0}

3 A is nontrivial, totally ordered and, for all x,y € A, either
x®y=lorx®y=0.



Positive MV-algebras

Theorem (Abbadini, Agliano, SF) For a finite positive MV-algebra
A, TFAE:

1 A is subdirectly irreducible;
2 A=t for somen € N\ {0}

3 A is nontrivial, totally ordered and, for all x,y € A, either
x®y=lorx®y=0.

Theorem (Abbadini, Agliano, SF) The varieties of positive
MV-algebras are precisely the varieties generated by a finite subset

of fbF [ e N\ {0}}.
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We call divisor-closed finite set a finite subset I of N\ {0} such
that, for every n € I and k € N\ {0}, if k divides n, then k € L.
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Positive MV-algebras

We call divisor-closed finite set a finite subset I of N\ {0} such
that, for every n € I and k € N\ {0}, if k divides n, then k € L.

For a divisor-closed finite set I, we set

Ki={&eMV'|nel.

Theorem (Abbadini, Agliano, SF) The set A(MV™) of varieties of
positive MV-algebras is in bijection with the set 7 of divisor-closed
finite sets, as witnessed by:

f: 7 — AMVT)  g: AMVT) — T
I—s V(K)) Vi— meN\{0} |t eV}

10
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Axiomatizations

1 ifk< 1,
Tk =00 ks 0

The inductive case is as follows:
Tn+1,k(x) = Tn k-1 (X) O] (X S Tn,k(x)))

Computing the terms T, (x) for n € {1, 2} we get:

1 ifk <1,
T]»k(x): X ifk:(),
0 ifk>1,
and
1 if k <-—1,
_ Jx@x ifk=0,
T2klx) = xOx ifk=1,

0 if k > 2,
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Axiomatizations

For n € N, let ®,, be the following set of equations:

Tn,k(x) @ Tnk
Tn,k(x) © Tnk

x) & Tk (x)
X) & Tnk(X).

with k € {0,...,n — 1} (i.e. Tox(x) is idempotent).

(
(
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Axiomatizations

For n € N, let ®,, be the following set of equations:

X) & Tnk(x) (1)
X) & Tnk(X).

with k € {0,...,n — 1} (i.e. Tox(x) is idempotent).

Tn,k(x) @ Tnk
Tn,k(x) © Tnk

(
(

Given a divisor-closed set I with maximum m (set m =0 if I = ().
We define X as:
(m+1)x =~ mx (2)
union
m{(k—1)x)* = (k)™ ©)
forall T <k <mwith k ¢ .
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Axiomatizations

For n € N, let ®,, be the following set of equations:

X) & Tnk(x) (1)
X) & Tnk(X).

with k € {0,...,n — 1} (i.e. Tox(x) is idempotent).

Tn,k(x) @ Tnk
Tn,k(x) © Tnk

(
(

Given a divisor-closed set I with maximum m (set m =0 if I = ().
We define X as:
(Mm+1)x =~ mx (2)
union
m{(k—1)x)* = (k)™ ©)
forall T <k <mwith k ¢ .

Theorem (Abbadini, Agliano, SF) Let I be a divisor-closed finite
set; then V(Ky) is axiomatized by @y, (1) U Iy relatively to the
variety of MV-monoids. 12



Axiomatizations

Example: Let I ={1,2,3} and ] ={1,2,3,6}.

V(K1) axioms: MVM U @g U {4x =~ 3x};

V(Ky) axioms:

MVM U ¢ U {7x ~ 6x, 6(3x)* ~ (4x)°, 6(4x)> ~ (5x)°}.
Note that the failure of 4x ~ 3x in £ is witnessed by 1.
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Example: Let I ={1,2,3} and ] ={1,2,3,6}.

V(K1) axioms: MVM U @g U {4x =~ 3x};

V(Ky) axioms:

MVM U ¢ U {7x ~ 6x, 6(3x)* ~ (4x)°, 6(4x)> ~ (5x)°}.
Note that the failure of 4x ~ 3x in £ is witnessed by 1.

Variety Axiomatization

V(C%) XOXRX

V(sz) XOXAX

V(L) xXOx~xand x©x ~ x

V(L)) Tk (X) & T (x) ® Tak(x)  (for0<k<n—T)
Tn,k(x) © Tn,k(x) ~ Tn,k(x) (for 0<k<n-— ])

VL, Inel}) (setting 1: :lem 1 and m: : max)

(I div.-closed fin. set) | Ty k(x) ® TLk(x) = TyK(x) (foro<k<1-1)
Tk (X) © Tk (x) =~ Tyi(x) (for0<k<1-1)
(m+1)x =~ mx
m((k—1)x)* = (kx)™ (for 1 <k<mst k¢l
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Holder’s theorem for unital commutative {-monoids

Theorem (Abbadini, Agliano, SF) Let M be a nontrivial totally
ordered unital commutative {-monoid. There is a unique
homomorphism from M to R.
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Holder’s theorem for unital commutative {-monoids

Theorem (Abbadini, Agliano, SF) Let M be a nontrivial totally
ordered unital commutative {-monoid. There is a unique
homomorphism from M to R.

A unital commutative £-monoid M is Archimedean provided that,
for all x,y € M, if for all n € N we have nx < ny+1, then x <.

Theorem (Abbadini, Agliano, SF) [Holder's theorem for unital
commutative {-monoids| Let M be an Archimedean nontrivial
totally ordered unital commutative £-monoid. The unique
homomorphism from M to R is injective, thus M is isomorphic to
a subalgebra of R.
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