Pure Embeddings in Acts: Stability and Cofibrant Generation

Jonathan Feigert Joint with Sean Cox, Mark Kamsma, Marcos Mazari-Armida, and Jiří Rosický

Baylor University

BLAST 2025 May 21, 2025

- Abstract elementary classes (AECs) generalize first-order model theory.
- Research in AECs of modules has been very fruitful.
- Stability and cofibrant generation have been shown for modules with pure monomorphisms.
- Acts are a natural generalization of modules.

S-act

For a monoid S, an *S*-act is a set A together with a multiplication $S \times A \rightarrow A$ such that 1a = a and $(st)a = s(ta) \forall a \in A, s, t \in S$, i.e., "a module without additive structure."

S-act

For a monoid S, an *S*-act is a set A together with a multiplication $S \times A \rightarrow A$ such that 1a = a and $(st)a = s(ta) \ \forall a \in A, s, t \in S$, i.e., "a module without additive structure."

LO monoid

S is an LO monoid if, for every $s, t \in S$, either $s \in St$ or $t \in Ss$.

Examples: $(\mathbb{N}, +)$ is LO, but (\mathbb{Z}^+, \cdot) is not.

S-act

For a monoid S, an *S*-act is a set A together with a multiplication $S \times A \rightarrow A$ such that 1a = a and $(st)a = s(ta) \ \forall a \in A, \ s, t \in S$, i.e., "a module without additive structure."

LO monoid

S is an LO monoid if, for every $s, t \in S$, either $s \in St$ or $t \in Ss$.

Examples: $(\mathbb{N},+)$ is LO, but (\mathbb{Z}^+,\cdot) is not.

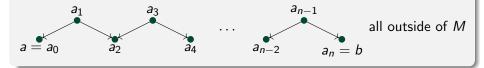
Theorem (Mustafin 1988)

Th(A) is stable for every S-act A if and only if S is LO.

This contrasts with module theory, where it is know that every first-order theory of modules is stable.

Connected Outside

For S-acts $M \subseteq A$, we say that $a, b \in A \setminus M$ are *connected outside* M if there are $a_0, \ldots, a_n \in A \setminus M$ such that $a = a_0, b = a_n$, and either $a_i \in Sa_{i+1}$ or $a_{i+1} \in Sa_i \forall 0 \le i \le n-1$.



Remark

 $C_M^A(a) = \{ b \in A \setminus M \mid a \text{ and } b \text{ are connected outside } M \}$ is an analogue of group orbits and partitions $A \setminus M$ into "connected components".

4/17

Pure Subact

For S-acts $A \subseteq B$, we say that A is a *pure* subact of B $(A \leq_p B)$ if every finite system of equations of the forms

(I)
$$sx = tx$$
 for $s, t \in S$

(II)
$$sx = ty$$
 for $s, t \in S$

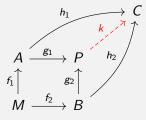
(III)
$$sx = a$$
 for $a \in A$

is solvable in B if and only if it is solvable in A.

- Example: If $S = (\mathbb{N}, +)$, then $\mathbb{N} \leq_p \mathbb{N} + \frac{1}{2}\mathbb{N}$ via $n \mapsto \lfloor n \rfloor$.
- Non-Example: If $S = (\mathbb{N}, +)$, then $\mathbb{N} \not\leq_{p} \mathbb{Z}$ because of 1 + x = 0.

Pushout

In a category \mathcal{K} , the *pushout* of a pair of arrows (f_1, f_2) is an object P together with arrows (g_1, g_2) such that $g_1f_1 = g_2f_2$ and, whenever (h_1, h_2) satisfy $h_1f_1 = h_2f_2$ there is a unique arrow $k : P \to C$ making the diagram commute.



In (S-Act, pure), we have $P = (A \coprod B) / \sim$ where \sim identifies the copies of M in A and B, respectively.

Preliminaries: Pushouts Cont.

Pushouts in (S-Act, pure)

For S-acts $M \leq_p A, B$,

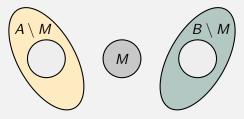
$$\mathcal{P} = (A \setminus M) \times \{1\} \cup M \times \{0\} \cup (B \setminus M) \times \{2\}$$

with

$$g_1(A) = (A \setminus M) \times \{1\} \cup M \times \{0\}$$

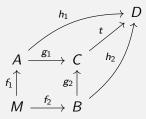
 and

$$g_2(B) = (B \setminus M) \times \{2\} \cup M \times \{0\}.$$



Independence Relation (Lieberman-Rosický-Vasey 2019)

An *independence relation* on a category \mathcal{K} is a set \bot of commutative squares of arrows in \mathcal{K} such that, for any commutative diagram



we have that $(f_1, f_2, g_1, g_2) \in \bigcup$ if and only if $(f_1, f_2, h_1, h_2) \in \bigcup$. In this case, we call (f_1, f_2, g_1, g_2) an *independent square*.

We write $A \underset{M}{\overset{C}{\downarrow}} B$ if and only if $(i_{MA}, i_{MB}, i_{AC}, i_{BC}) \in \downarrow$.

8/17

Some Independence Relations in (S-Act, pure)

Pure-Effective Squares \perp_p

$$A \bigcup_{\substack{p \\ M}}^{L} B$$
 if and only if k is a pure embedding:

$$A \longrightarrow P$$

$$\uparrow \qquad \uparrow$$

$$M \longrightarrow B$$

Disconnected Pullback Squares $igstyle _{dc}$

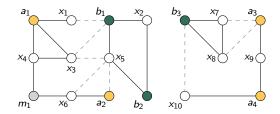
$$A \stackrel{C}{\downarrow}_{dc} B \text{ if and only if}
\bullet A \cap B = M, \text{ and}
\bullet C^{C}_{M}(A \setminus M) \cap C^{C}_{M}(B \setminus M) = \emptyset$$

Lemma

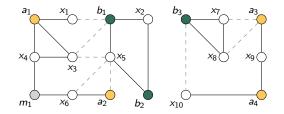
In (S-Act, pure), we have $igstype _{dc} \subseteq igstype _{p}$.

Proof.

Let Σ be a system of equations in variables $\{x_1, \ldots, x_n\}$ with constants from P and solution $\{c_1, \ldots, c_n\}$ in C. Associate to Σ a graph G with vertices $P \cup \{x_1, \ldots, x_n\}$.



Key Lemma Cont.



Since $C_M^C(A \setminus M) \cap C_M^C(B \setminus M) = \emptyset$, no $a \in A \setminus M$ and $b \in B \setminus M$ are in the same connected component. For equations $(s_\ell x_{i_\ell} = t_\ell x_{j_\ell}) \in \Sigma$ with x_{i_ℓ} connected to $A \setminus M$ in G and x_{j_ℓ} not, we know x_{i_ℓ} and x_{j_ℓ} are not in the same connected component of G. Thus this is one of the edges we removed, and so $s_\ell c_{i_\ell} = t_\ell c_{j_\ell} = m_\ell \in M$. Define the new systems of equations

$$\begin{array}{ll} \Delta_{\mathcal{A}} = & \{ \varphi \in \Sigma \mid \mathsf{var}(\varphi) \text{ are connected to } \mathcal{A} \setminus \mathcal{M} \text{ in } \mathcal{G} \} \\ \cup & \{ s_{\ell} x_{i_{\ell}} = m_{\ell} \mid 1 \leq \ell \leq k \} \end{array}$$

and

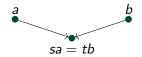
$$\begin{split} \Delta_B = & \{ \varphi \in \Sigma \mid \mathsf{var}(\varphi) \text{ is not connected to } A \setminus M \text{ in } G \} \\ \cup & \{ t_\ell x_{j_\ell} = m_\ell \mid 1 \le \ell \le k \}. \end{split}$$

Since $A \to C$ and $B \to C$ are pure, Δ_A and Δ_B have solutions $\bar{a} \in A$ and $\bar{b} \in B$, respectively. Then $\bar{a} \cup \bar{b} \in P$ is a solution to Σ since, either $\varphi \in \Delta_A \cup \Delta_B$ or $\varphi = (s_\ell x_{i_\ell} = t_\ell x_{j_\ell})$ and so $s_\ell a_{i_\ell} = m_\ell = t_\ell b_{j_\ell}$.

Corollary

If S is LO, then $\perp_{dc} = \perp_p$.

Proof. When S is LO, every connecting path from a to b reduces to sa = tb for some $s, t \in S$.



Thus $A \cap B = M$ implies that $C_M^C(A \setminus M) \cap C_M^C(B \setminus M) = \emptyset$ while $A \cap B = M$ follows from the injectivity of k.

Properties of Independence Relations

Stable Independence Relation (Lieberman-Rosický-Vasey 2019)

We say that igside is a *stable* independence relation if it has:

- Existence: Every span A ← M → B can be completed into an independent square.
- Uniqueness: Every span has a unique (up to equivalence) independent square.
- Symmetry: Independent squares can be reflected across the positive diagonal.
- Transitivity: Independent squares are closed under composition.
- Local Character: Given $A \rightarrow C \leftarrow B$, there is a small S-act that creates an independent square.
- Witness Property: A commutative square can be verified to be independent using only small sets.

Main Result

Theorem

The following are equivalent:

- S is LO.

The following are equivalent:

- S is LO.
- (S-Act, \leq_p) is stable.
 - Key model theoretic dividing line bounding number of types

The following are equivalent:

- S is LO.
- (S-Act, \leq_p) is stable.
 - Key model theoretic dividing line bounding number of types

Remark

• $(R-Mod, \leq_p)$ is always stable.

The following are equivalent:

- S is LO.
- (S-Act, \leq_p) is stable.
 - Key model theoretic dividing line bounding number of types
- Pure embeddings are cofibrantly generated in S-Act.
 - All arrows can be generated from a set.

Remark

• $(R-Mod, \leq_p)$ is always stable.

15/17

The following are equivalent:

- S is LO.
- $(S-Act, \leq_p)$ is stable.
 - Key model theoretic dividing line bounding number of types
- Pure embeddings are cofibrantly generated in S-Act.
 - All arrows can be generated from a set.

Remark

- $(R-Mod, \leq_p)$ is always stable.
- Pure embeddings are always cofibrantly generated in *R*-Mod.

Summary and Future Work

Summary

- S-Act and R-Mod have fundamental differences with regards to pure embeddings.
- Cofibrant generation of pure embeddings implies there are enough pure injectives.
- Everything we've done generalizes to presheaf categories.

Future Work

- $(S-\operatorname{Act}, \leq_p)$ as an AEC
 - Stability Cardinals
 - Superstability
 - Galois Types
- Other classes of Acts
- Applications in Acts Theory

THANK YOU!

- S. Cox, J. Feigert, M. Kamsma, M. Mazari-Armida and J. Rosický, Cofibrant generation of pure monomorphisms in presheaf categories, (In Progress)
- M. Lieberman, J. Rosický and S. Vasey, *Forking independence from a categorical point of view*, Adv. Math. **346** (2019), 719–722
- T.G. Mustafin, Stability of the theory of polygons, Tr. Inst. Mat. Sib. Akad. Nauk SSSR 8 (1988), 92–108 (in Russian); translated in Model Theory and Applications, American Math. Soc. Transl. 295 (1999), 205–223