Commuting degree of BCK-algebras

Matt Evans

Washington & Jefferson College

mevans@washjeff.edu

BLAST 2025 May 20, 2025

BCK-algebras

Commuting degree

New results for commuting degree

1 Inspiration

Ø BCK-algebras

Ommuting degree

4 New results for commuting degree

nspiration 00000	BCK-algebras	Commuting degree	New results for commuting degree

Theorem (Gustafson, 1973)

Let G be a finite a finite group. Choose $x, y \in G$ uniformly randomly with replacement. The probability that xy = yx is either

1 (if G is Abelian) or $\leq \frac{5}{8}$.

There is a gap in the possible probabilities.

One common notation for this probability is Pr(G), but I will use the notation cd(G), which stands for *commuting degree*.

nspiration ⊃●0000	BCK-algebras 00	Commuting degree	New results for commuting degree

This commuting probability is related to structural properties:

- If $cd(G) = \frac{5}{8}$, then G is nilpotent.
- If G is non-Abelian simple, then $cd(G) \leq \frac{1}{12}$.

There is a substantial literature about commuting probabilities in finite groups. There is a good survey by Das, Nath, and Pournaki (2013).

Commuting probabilities for other algebraic structures have also been studied:

- MacHale, 1976 If R is a finite non-commutative ring, then $cd(R) \leq \frac{5}{8}$.
- MacHale, 1990 Among finite semigroups, the commuting probability can be as close to 1 or 0 as you want.
- Givens, 2008

The set of all commuting probabilities for finite semigroups is dense in (0, 1].

• Ponomarenko & Selinski, 2012 The set of all commuting probabilities for finite semigroups is $(0,1]\cap\mathbb{Q}.$

What about equations other than xy = yx?

Probabilities for some commutator-like equations in groups were considered by

```
Lescot (1995)
Delizia, Jezernik, Moravec, et al (2020)
Kocsis (2020)
```

The primary inspiration for the present work is a recent paper of Bumpus and Kocsis (2024) which considers probability questions for equations over Heyting algebras.

Most general version of the question:

Given an *n*-tuple **a** from a finite algebraic structure **A**, what is the probability that **a** satisfies some given first-order formula φ ?

Inspiration 0000●0 BCK-algebras

Commuting degree

New results for commuting degree

Definition

Given a first-order language \mathcal{L} , a finite \mathcal{L} -structure **A**, and an \mathcal{L} -formula $\varphi(x_1, x_2, \dots x_n)$ in *n* variables, the quantity

$$\mathsf{ds}(arphi, \mathbf{A}) = rac{|\{\, \mathbf{a} \in \mathcal{A}^n \mid arphi(\mathbf{a})\,\}|}{|\mathcal{A}|^n}$$

is the *degree of satisfiability* of the formula φ for the structure **A**.

We say that φ has *finite satisfiability gap* ε if there is a constant $\varepsilon > 0$ such that, for every finite \mathcal{L} -structure **A**, either

 $egin{aligned} \mathsf{ds}(arphi,\mathbf{A}) &= 1 ext{ or } \ \mathsf{ds}(arphi,\mathbf{A}) &\leq 1-arepsilon \ . \end{aligned}$

Example

Gustafson's result can be rephrased as saying the equation xy = yx has finite satisfiability gap $\frac{3}{8}$ in the language of groups.

Theorem (Bumpus and Kocsis, 2024)

In the language of Heyting algebras,

- the equations $x = \top$ and $\neg x = \top$ have satisfiability gap $\frac{1}{2}$,
- the equation $x \vee \neg x = \top$ has satisfiability gap $\frac{1}{3}$.

These are the only formulas in one variable with finite satisfiability gap.

What can we say in the world of BCK-algebras?

Definition

A *BCK-algebra* is an algebra $\mathbf{A} = \langle A; \cdot, 0 \rangle$ of type (2,0) such that

1
$$[(x \cdot y) \cdot (x \cdot z)] \cdot (z \cdot y) = 0$$

2 $[x \cdot (x \cdot y)] \cdot y = 0$
3 $x \cdot x = 0$
4 $0 \cdot x = 0$
5 $x \cdot y = 0$ and $y \cdot x = 0$ imply $x = y$.
for all $x, y, z \in A$.

These algebras are partially ordered by: $x \le y$ iff $x \cdot y = 0$.

The element $x \wedge y := y \cdot (y \cdot x)$ is a lower bound for x and y.

If $x \wedge y = y \wedge x$ for all $x, y \in \mathbf{A}$, we say **A** is *commutative*.

A BCK-algebra **A** is *bounded* if there exists an element $1 \in A$ such that $x \cdot 1 = 0$ for all $x \in A$.

If **A** is bounded, we define the term operation $\neg x := 1 \cdot x$.

If A is bounded and commutative, we define the term operation

$$x \vee y := \neg (\neg x \wedge \neg y).$$

Theorem (E., 2023)

In the language of bounded commutative BCK-algebras,

- the equations x = 1 and $\neg x = 1$ have satisfiability gap $\frac{1}{2}$,
- the equation $x \vee \neg x = 1$ has satisfiability gap $\frac{1}{3}$.

In that same paper, I showed several other equations in the language of BCK-algebras do *not* have a finite satisfiability gap.

Today I'll focus on the commutativity equation $x \wedge y = y \wedge x$.

Let **A** be a BCK-algebra of order n and put

$$C(\mathbf{A}) = \{ (x, y) \in A^2 \mid x \land y = y \land x \}.$$

Then we define the *commuting degree* of **A** to be

$$\mathsf{cd}(\mathsf{A}) = rac{|C(\mathsf{A})|}{|\mathsf{A}|^2} = rac{|C(\mathsf{A})|}{n^2}.$$

Proposition (E., 2023)

Among non-commutative BCK-algebras **A** of order n, the following bounds are sharp:

$$\frac{3n-2}{n^2} \leq \operatorname{cd}(\mathbf{A}) \leq \frac{n^2-2}{n^2} \,.$$

000000	OO	
Let		

$$CD(n) = \left\{ \frac{n^2 - 2}{n^2}, \frac{n^2 - 4}{n^2}, \dots, \frac{3n}{n^2}, \frac{3n - 2}{n^2} \right\}.$$

This is the set of possible commuting degrees.

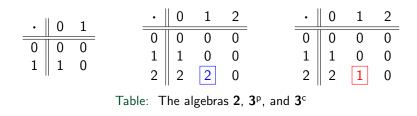
One can check that $|CD(n)| = T_{n-2}$, the $(n-2)^{nd}$ triangular number, and therefore we can rewrite CD(n) as:

$$\mathfrak{CD}(n) = \left\{ \frac{n^2 - 2}{n^2}, \frac{n^2 - 4}{n^2}, \dots, \frac{n^2 - 2T_{n-2}}{n^2} \right\} = \left\{ \frac{n^2 - 2k}{n^2} \right\}_{k=1}^{T_{n-2}}$$

Empirically, I observed that every value of CD(3), CD(4), and CD(5) was obtained by some algebra of the corresponding order.

Theorem (E., 2025)

For every $n \ge 3$, every commuting degree in CD(n) is achieved by an algebra of order n.



2 is the unique BCK-algebra of order 2. It is comm. and P.I.

 $\mathbf{3}^{\mathsf{p}}$ is positive implicative but not commutative

 $\mathbf{3}^{\mathsf{c}}$ is commutative but not positive implicative

 Given any BCK-algebra A of order n − 1, we construct a new BCK-algebra of order n by appending a new top element, call it ⊤, and extending the BCK-operation as follows:

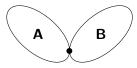
 $x \cdot \top = 0$ $\top \cdot \top = 0$ $\top \cdot x = \top$

for all $x \in \mathbf{A}$. This is known as *lséki's extension of* \mathbf{A} , which we will denote

 $\mathbf{A} \oplus \top \, .$

We note that $\mathbf{3}^{\mathsf{p}} \cong \mathbf{2} \oplus \top$.

2. Given two BCK-algebras **A** and **B**, we build their *BCK-union*, denoted $\mathbf{A} \sqcup \mathbf{B}$, by identifying $\mathbf{0}_{\mathbf{A}}$ and $\mathbf{0}_{\mathbf{B}}$ but keeping them otherwise disjoint.



The operation is defined by
$$x \cdot y = \begin{cases} x \cdot_{\mathbf{A}} y & \text{if } x, y \in A \\ x \cdot_{\mathbf{B}} y & \text{if } x, y, \in B \\ x & \text{otherwise} \end{cases}$$

Note that if **A** has order n - 1, then **A** \sqcup **2** has order n.

BCK-algebra

Commuting degree

New results for commuting degree

Obtaining values in $\mathcal{CD}(n)$

Proposition (E., 2023)

If **A** is a BCK-algebra of order *n* with $cd(\mathbf{A}) = \frac{k}{n^2}$, then

 $\mathsf{cd}(\mathsf{A}\oplus \top) = rac{k+3}{(n+1)^2}$ $\mathsf{cd}(\mathsf{A}\sqcup \mathsf{2}) = rac{k+2n+1}{(n+1)^2}$

From the algebras **2**, **3**^p, and **3**^c, we can obtain all values of CD(n) by applications of $-\oplus \top$ and $-\sqcup \mathbf{2}$.

cd(2) = 1 since 2 is commutative cd(3^p) = cd(2 \oplus \top) = $\frac{7}{9}$, which is the only value in CD(3).

 $egin{array}{cccc} rac{10}{16} & rac{12}{16} & rac{14}{16} \ \mathbf{3}^{\mathrm{p}} \oplus oldsymbol{ op} & \mathbf{3}^{\mathrm{c}} \oplus oldsymbol{ op} & \mathbf{3}^{\mathrm{p}} \sqcup \mathbf{2} \end{array}$

Obtaining values in CD(4) and CD(5)

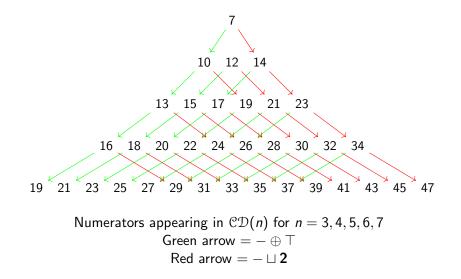
New results for commuting degree

BCK-algebra

Commuting degree

New results for commuting degree

Obtaining values in CD(n)



Theorem (E., 2025)

For every $n \ge 3$, every commuting degree in CD(n) is achieved by an algebra of order n.

Sketch.

Induct on n.

Referring to the above diagram: at level n, there are T_{n-2} -many algebras.

- Apply − ⊕ ⊤ to each algebra on level *n*, increasing the numerators of their commuting degrees by 3.
- Apply − ⊔ 2 to only the last n − 1 algebras on level n, increasing the numerators of their commuting degrees by 2n + 1.

The above procedure builds $T_{n-2} + (n-1) = T_{n-1}$ algebras.

Tedious computation shows this yields every commuting degree on level n + 1.

In general, each commuting degree can be obtained in several ways, with one exception: the minimum.

Define a family of algebras:

$$\mathbf{M}_3 = \mathbf{3}^{\mathsf{p}}$$

 $\mathbf{M}_n = \mathbf{M}_{n-1} \oplus \top$

for n > 3.

Theorem (E., 2025)

Up to isomorphism, the algebra \mathbf{M}_n is the unique BCK-algebra of order *n* with commuting degree $\frac{3n-2}{n^2}$, the minimum value in $\mathcal{CD}(n)$.

Theorem (E., 2025)

Every rational in (0,1) is the commuting degree for some finite non-commutative BCK-algebra. That is,

$$\bigcup_{n=3}^{\infty} \mathbb{CD}(n) = \mathbb{Q} \cap (0,1).$$

Sketch.

Take $\frac{p}{q} \in \mathbb{Q} \cap (0, 1)$.

Set
$$n = 2q$$
 and $k = 2q(q - p)$.

Check that
$$k \in \{1, 2, ..., T_{n-2}\}$$
.

Then
$$\frac{p}{q} = \frac{n^2 - 2k}{n^2} \in \mathcal{CD}(n).$$

Example

Suppose we want a BCK-algebra with commuting degree $\frac{2}{5}$.

We need to consider algebras of order n = 2q = 10.

From the proof of earlier theorem, there are three algebras with this commuting degree:

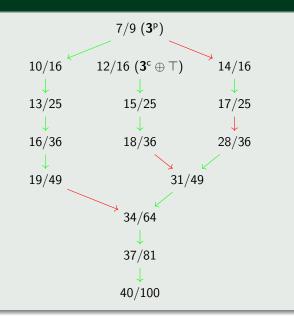
 $\begin{array}{c} ((((((3^{p} \oplus \top) \oplus \top) \oplus \top) \oplus \top) \oplus \top) \sqcup 2) \oplus \top) \oplus \top \\ ((((((3^{c} \oplus \top) \oplus \top) \oplus \top) \oplus \top) \sqcup 2) \oplus \top) \oplus \top) \oplus \top \\ (((((((3^{p} \sqcup 2) \oplus \top) \sqcup 2) \oplus \top) \oplus \top) \oplus \top) \oplus \top) \end{array}$

BCK-algebras

Commuting degree

New results for commuting degree

Example



BCK-algebras

Commuting degree

New results for commuting degree

Closing questions

Questions

- Can commuting degree (or satisfiability degree of other equations) tell us structural information about the algebra?
- Which equations in one variable have finite satisfiability degree?
- Are there any equations in two variables with finite satisfiability degree?
- Can we generalize to infinite algebras?

Thanks!

BCK-algebras

Commuting degree

References I

Basnet, Dutta, and Nath On commuting probability of finite rings

Indag. Math., 28 (2017), 372-382.

Bumpus and Kocsis

Degree of Satisfiability in Heyting Algebras J. Symbolic Logic, DOI: 10.1017/jsl.2024.2, (2024), 1–19

Buckley

Minimal order semigroups with specified commuting probability Semigroup Forum, **88** (2014), 523–528.

Buckley and MacHale

Contrasting the commuting probabilities of groups and rings https://archive.maths.nuim.ie/staff/sbuckley/Papers/bm_g-vs-r.pdf (2013).

Buckley, MacHale, and Ní Shé Finite rings with many commuting pairs of elements https://archive.maths.nuim.ie/staff/sbuckley/Papers/bms.pdf (2013).

BCK-algebras

Commuting degree

References II

Delizia, Jezernik, Moravec, et al Gaps in probabilities of satisfying some commutator-like identities Isr. J. Math., **237** (2020), 115–140.

Das, Nath, and Pournaki

A survey on the estimation of commutativity in finite groups Southeast Asian Bull. Math., **37** (2013), 161–180.

Evans

Satisfiability degree in BCK-algebras Sci. Math. Jap., **36** (2023), article 1.

Givens

The probability that two semigroup elements commute can be almost anything Coll. Math. J., **39** (2008), 399–400.

Gustafson

What is the probability that two group elements commute? Amer. Math. Monthly, **80** (1973), 1031–1034.

Iseki, Tanaka

An introduction to the theory of BCK-algebras Mathematica Japonica, 23 (1978), 1-26.

BCK-algebras

Commuting degree

References III

MacHale

Commutativity in finite rings Amer. Math. Monthly, 83 (1976), 30–32.

MacHale

Probability in finite semigroups Ir. Math. Soc. Bull., **25** (1990), 64–68.

Ponomarenko, Selinski

Two semigroup elements can commute with any positive rational probability Coll. Math. J., **43** (2012), 334–336.