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Theorem (Gustafson, 1973)

Let G be a finite a finite group. Choose x , y ∈ G uniformly
randomly with replacement. The probability that xy = yx is either

1 (if G is Abelian) or ≤ 5

8
.

There is a gap in the possible probabilities.

One common notation for this probability is Pr(G ), but I will use
the notation cd(G ), which stands for commuting degree.
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This commuting probability is related to structural properties:

• If cd(G ) = 5
8 , then G is nilpotent.

• If G is non-Abelian simple, then cd(G ) ≤ 1
12 .

There is a substantial literature about commuting probabilities in
finite groups. There is a good survey by Das, Nath, and Pournaki
(2013).
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Commuting probabilities for other algebraic structures have also
been studied:

• MacHale, 1976
If R is a finite non-commutative ring, then cd(R) ≤ 5

8 .

• MacHale, 1990
Among finite semigroups, the commuting probability can be
as close to 1 or 0 as you want.

• Givens, 2008
The set of all commuting probabilities for finite semigroups is
dense in (0, 1].

• Ponomarenko & Selinski, 2012
The set of all commuting probabilities for finite semigroups is
(0, 1] ∩Q.
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What about equations other than xy = yx?

Probabilities for some commutator-like equations in groups were
considered by

Lescot (1995)

Delizia, Jezernik, Moravec, et al (2020)

Kocsis (2020)

The primary inspiration for the present work is a recent paper of
Bumpus and Kocsis (2024) which considers probability questions
for equations over Heyting algebras.

Most general version of the question:

Given an n-tuple a from a finite algebraic structure A, what is the
probability that a satisfies some given first-order formula φ?
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Definition

Given a first-order language L, a finite L-structure A, and an
L-formula φ(x1, x2, . . . xn) in n variables, the quantity

ds(φ,A) =
| { a ∈ An | φ(a) }|

|A|n

is the degree of satisfiability of the formula φ for the structure A.

We say that φ has finite satisfiability gap ε if there is a constant
ε > 0 such that, for every finite L-structure A, either

ds(φ,A) = 1 or

ds(φ,A) ≤ 1− ε .

Example

Gustafson’s result can be rephrased as saying the equation xy = yx
has finite satisfiability gap 3

8 in the language of groups.
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Theorem (Bumpus and Kocsis, 2024)

In the language of Heyting algebras,

• the equations x = ⊤ and ¬x = ⊤ have satisfiability gap 1
2 ,

• the equation x ∨ ¬x = ⊤ has satisfiability gap 1
3 .

These are the only formulas in one variable with finite satisfiability
gap.

What can we say in the world of BCK-algebras?
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Definition

A BCK-algebra is an algebra A = ⟨A; ·, 0⟩ of type (2, 0) such that

1
[
(x · y) · (x · z)

]
· (z · y) = 0

2
[
x · (x · y)

]
· y = 0

3 x · x = 0

4 0 · x = 0

5 x · y = 0 and y · x = 0 imply x = y .

for all x , y , z ∈ A.

These algebras are partially ordered by: x ≤ y iff x · y = 0.

The element x ∧ y := y · (y · x) is a lower bound for x and y .

If x ∧ y = y ∧ x for all x , y ∈ A, we say A is commutative.

A BCK-algebra A is bounded if there exists an element 1 ∈ A such
that x · 1 = 0 for all x ∈ A.
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If A is bounded, we define the term operation ¬x := 1 · x .

If A is bounded and commutative, we define the term operation

x ∨ y := ¬(¬x ∧ ¬y) .

Theorem (E., 2023)

In the language of bounded commutative BCK-algebras,

• the equations x = 1 and ¬x = 1 have satisfiability gap 1
2 ,

• the equation x ∨ ¬x = 1 has satisfiability gap 1
3 .

In that same paper, I showed several other equations in the
language of BCK-algebras do not have a finite satisfiability gap.

Today I’ll focus on the commutativity equation x ∧ y = y ∧ x .
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Let A be a BCK-algebra of order n and put

C (A) = { (x , y) ∈ A2 | x ∧ y = y ∧ x } .

Then we define the commuting degree of A to be

cd(A) =
|C (A)|
|A|2

=
|C (A)|
n2

.

Proposition (E., 2023)

Among non-commutative BCK-algebras A of order n, the following
bounds are sharp:

3n − 2

n2
≤ cd(A) ≤ n2 − 2

n2
.
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Let

CD(n) =
{ n2 − 2

n2
,
n2 − 4

n2
, . . . ,

3n

n2
,
3n − 2

n2

}
.

This is the set of possible commuting degrees.

One can check that |CD(n)| = Tn−2 , the (n − 2)nd triangular
number, and therefore we can rewrite CD(n) as:

CD(n) =
{ n2 − 2

n2
,
n2 − 4

n2
, . . . ,

n2 − 2Tn−2

n2

}
=

{ n2 − 2k

n2

}Tn−2

k=1
.

Empirically, I observed that every value of CD(3), CD(4), and
CD(5) was obtained by some algebra of the corresponding order.
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Theorem (E., 2025)

For every n ≥ 3, every commuting degree in CD(n) is achieved by
an algebra of order n.

· 0 1

0 0 0
1 1 0

· 0 1 2

0 0 0 0
1 1 0 0

2 2 2 0

· 0 1 2

0 0 0 0
1 1 0 0

2 2 1 0

Table: The algebras 2, 3p, and 3c

2 is the unique BCK-algebra of order 2. It is comm. and P.I.

3p is positive implicative but not commutative

3c is commutative but not positive implicative
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Two constructions

1. Given any BCK-algebra A of order n − 1, we construct a new
BCK-algebra of order n by appending a new top element, call
it ⊤, and extending the BCK-operation as follows:

x ·⊤ = 0

⊤ ·⊤ = 0

⊤ · x = ⊤

for all x ∈ A.
This is known as Iséki’s extension of A, which we will denote

A⊕⊤ .

We note that 3p ∼= 2⊕⊤.
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Two constructions

2. Given two BCK-algebras A and B, we build their BCK-union,
denoted A ⊔ B, by identifying 0A and 0B but keeping them
otherwise disjoint.

A B

The operation is defined by x · y =


x ·A y if x , y ∈ A

x ·B y if x , y ,∈ B

x otherwise

.

Note that if A has order n − 1, then A ⊔ 2 has order n.
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Obtaining values in CD(n)

Proposition (E., 2023)

If A is a BCK-algebra of order n with cd(A) = k
n2
, then

cd(A⊕⊤) = k+3
(n+1)2

cd(A ⊔ 2) = k+2n+1
(n+1)2

From the algebras 2, 3p, and 3c, we can obtain all values of CD(n)
by applications of −⊕⊤ and − ⊔ 2.

cd(2) = 1 since 2 is commutative

cd(3p) = cd(2⊕⊤) = 7
9 , which is the only value in CD(3).
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Obtaining values in CD(4) and CD(5)

10
16

12
16

14
16

3p ⊕⊤ 3c ⊕⊤ 3p ⊔ 2

13

25

15

25

17

25

19

25

21

25

23

25

(3p ⊕⊤)⊕⊤ (3c ⊕⊤)⊕⊤ (3p ⊔ 2)⊕⊤ (3p ⊕⊤) ⊔ 2 (3c ⊕⊤) ⊔ 2 (3p ⊔ 2) ⊔ 2
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Obtaining values in CD(n)

7

10 12 14

13 15 17 19 21 23

16 18 20 22 24 26 28 30 32 34

19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Numerators appearing in CD(n) for n = 3, 4, 5, 6, 7
Green arrow = −⊕⊤
Red arrow = − ⊔ 2



Inspiration BCK-algebras Commuting degree New results for commuting degree

Theorem (E., 2025)

For every n ≥ 3, every commuting degree in CD(n) is achieved by
an algebra of order n.

Sketch.

Induct on n.

Referring to the above diagram: at level n, there are
Tn−2-many algebras.

• Apply −⊕⊤ to each algebra on level n, increasing the
numerators of their commuting degrees by 3.

• Apply − ⊔ 2 to only the last n − 1 algebras on level n,
increasing the numerators of their commuting degrees by
2n + 1.

The above procedure builds Tn−2 + (n − 1) = Tn−1 algebras.

Tedious computation shows this yields every commuting
degree on level n + 1.
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In general, each commuting degree can be obtained in several
ways, with one exception: the minimum.

Define a family of algebras:

M3 = 3p

Mn = Mn−1 ⊕⊤

for n > 3.

Theorem (E., 2025)

Up to isomorphism, the algebra Mn is the unique BCK-algebra of
order n with commuting degree 3n−2

n2
, the minimum value in

CD(n).
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Theorem (E., 2025)

Every rational in (0, 1) is the commuting degree for some finite
non-commutative BCK-algebra. That is,

∞⋃
n=3

CD(n) = Q ∩ (0, 1) .

Sketch.

Take p
q ∈ Q ∩ (0, 1).

Set n = 2q and k = 2q(q − p).

Check that k ∈ {1, 2, . . . ,Tn−2}.

Then p
q = n2−2k

n2
∈ CD(n).
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Example

Suppose we want a BCK-algebra with commuting degree 2
5 .

We need to consider algebras of order n = 2q = 10.

From the proof of earlier theorem, there are three algebras with
this commuting degree:

((((((3p ⊕⊤)⊕⊤)⊕⊤)⊕⊤) ⊔ 2)⊕⊤)⊕⊤
((((((3c ⊕⊤)⊕⊤)⊕⊤) ⊔ 2)⊕⊤)⊕⊤)⊕⊤
((((((3p ⊔ 2)⊕⊤) ⊔ 2)⊕⊤)⊕⊤)⊕⊤)⊕⊤
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Example

7/9 (3p)

10/16 12/16 (3c ⊕⊤) 14/16

13/25 15/25 17/25

16/36 18/36 28/36

19/49 31/49

34/64

37/81

40/100
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Closing questions

Questions

• Can commuting degree (or satisfiability degree of other
equations) tell us structural information about the algebra?

• Which equations in one variable have finite satisfiability
degree?

• Are there any equations in two variables with finite
satisfiability degree?

• Can we generalize to infinite algebras?

Thanks!
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