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Hilbert’s 1st problem

The Continuum Hypothesis (CH)
For any subset A ⊆ R either

1. A is countable; or

2. A is equipotent with R, i.e. |A| = 2ℵ0 .

Gödel’s constructibility axiom (V=L) shows that CH cannot be
refuted. (1940)

Cohen’s method of forcing showed that ¬CH cannot be refuted.
(1963)

Whether CH is solved or not is an endless dispute. Settling CH is still
one of the main motivation for current research on the foundation of
mathematics. ( E.g., Woodin’s V= Ultimate L program.)
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Vaught’s conjecture

Vaught’s conjecture (1961)
Let T be a first order complete theory in some countable language. Then
either

1. T has at most countably many models of size ℵ0 up to
isomorphism; or

2. continuum many.

Vaught’s conjecture is one of the most long-standing and elusive open
problems in mathematical logic.

Even though it was verified in some special cases, Vaught’s conjecture
remains open.
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Classification

Mathematical objects are usually organized in equivalence classes under
some notion of equivalence (or isomorphism).

Classifying a given collection of mathematical object means fully
understanding the relevant equivalence relation.

As the formulation of Vaught’s conjecture might suggest, this can be
done simply by counting equivalence classes.
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A BLAST... from the past

Theorem (approx. 300 B.C.)
There are exactly five convex regular polyhedra (i.e. Platonic solids).

Figure: Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron.
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Classifications beyond Vaught’s
conjecture
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o-minimality

LetM = (M,<, ...) be a first order structure, whereM is the domain,
< is a binary relation symbol interpreted by a total order onM — there
may be other symbols for relations, functions, or constants.

Definition
The above structure M is o-minimal if every definable subset ofM is a
finite union of singletons and open intervals (with endpoints in
M ∪ {∞,−∞}).

Example

1. (Q, <)
2. R = (R, <,+,−, ·, 0, 1) (Tarski QE)
3. (R, exp) (Wilkie 1996)
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Vaught’s conjecture: o-minimal case

Definition
A theory T is o-minimal theory if every model of T is o-minimal.

Theorem (Mayer 1988)
Let T be an o-minimal theory in a countable language. Either

1. T has 2ℵ0 countable models; or

2. T has exactly 6a3b countable models, where a, b ∈ N.
Moreover, for all a, b ∈ N there exists an o-minimal theory T such that T
has exactly 6a3b countable models.
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Back to classifications

Definition
Let E be an equivalence relation on X . A complete classification for
E is a map c : X → I such that for any x, y ∈ X ,

x E y ⇐⇒ c(x) = c(y).

The elements of I are called complete invariants for E.

Even in the presence of uncountably many E-classes, there might be a
satisfactory complete classification theory for E.

Example
Countable Abelian reduced p-groups are completely classified by their
Ulm invariants.
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The descriptive set theory view

As a matter of fact, many mathematical objects (including countable first
order structures) can be parametrized in a standard Borel space.

Given a countable relational language L = {Ri} with Ri of arity ai, an
enumerated L-structure is an L-structure

M = (N, RM
i ).

Note RM
i ⊆ Nai .

Definition

By identifying M with (RM
i | i ∈ I) we can define the standard Borel

space of (countably infinite) enumerated L-structures as

XL = {M | M is an enumerated L-structure} =
∏
i∈I

2N
ai .
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The descriptive set theory view (cont’d)

This trick of coding structures by (products of) “reals” extends to

Any countable language.

Models of countable first order theories.
XT = {M ∈ XL | M |= T}
Models of countable Lω1ω-theory.

Theorem (Lopez-Escobar)
A subset X ⊆ XL is Borel (in which case it admits a standard Borel
structure itself) if and only if X = Xφ for some Lω1ω sentence φ.

Church’s thesis for real mathematics
Borel = explicit

10 26



The descriptive set theory view (cont’d)

This trick of coding structures by (products of) “reals” extends to

Any countable language.

Models of countable first order theories.
XT = {M ∈ XL | M |= T}

Models of countable Lω1ω-theory.

Theorem (Lopez-Escobar)
A subset X ⊆ XL is Borel (in which case it admits a standard Borel
structure itself) if and only if X = Xφ for some Lω1ω sentence φ.

Church’s thesis for real mathematics
Borel = explicit

10 26



The descriptive set theory view (cont’d)

This trick of coding structures by (products of) “reals” extends to

Any countable language.

Models of countable first order theories.
XT = {M ∈ XL | M |= T}
Models of countable Lω1ω-theory.

Theorem (Lopez-Escobar)
A subset X ⊆ XL is Borel (in which case it admits a standard Borel
structure itself) if and only if X = Xφ for some Lω1ω sentence φ.

Church’s thesis for real mathematics
Borel = explicit

10 26



The descriptive set theory view (cont’d)

This trick of coding structures by (products of) “reals” extends to

Any countable language.

Models of countable first order theories.
XT = {M ∈ XL | M |= T}
Models of countable Lω1ω-theory.

Theorem (Lopez-Escobar)
A subset X ⊆ XL is Borel (in which case it admits a standard Borel
structure itself) if and only if X = Xφ for some Lω1ω sentence φ.

Church’s thesis for real mathematics
Borel = explicit

10 26



The descriptive set theory view (cont’d)

This trick of coding structures by (products of) “reals” extends to

Any countable language.

Models of countable first order theories.
XT = {M ∈ XL | M |= T}
Models of countable Lω1ω-theory.

Theorem (Lopez-Escobar)
A subset X ⊆ XL is Borel (in which case it admits a standard Borel
structure itself) if and only if X = Xφ for some Lω1ω sentence φ.

Church’s thesis for real mathematics
Borel = explicit

10 26



The descriptive set theory view (cont’d)

This trick of coding structures by (products of) “reals” extends to

Any countable language.

Models of countable first order theories.
XT = {M ∈ XL | M |= T}
Models of countable Lω1ω-theory.

Theorem (Lopez-Escobar)
A subset X ⊆ XL is Borel (in which case it admits a standard Borel
structure itself) if and only if X = Xφ for some Lω1ω sentence φ.

Church’s thesis for real mathematics
Borel = explicit

10 26



Back to classifications (cont’d)

To perform a finer analysis of the classification problem for ∼=T ,
descriptive set theorist has developed the theory of Borel classification
(aka Borel cardinalities).

Definition
Let E,F be Borel equivalence relations on the Polish spaces X,Y
respectively. We say that:

E is Borel reducible to F (in symbols E ≤B F ) if and only if if
there exists a Borel map f : X → Y such that

x E y ⇐⇒ f(x) F f(y).

In this case, f is called a Borel reduction from E to F .

E ∼B F if and only if E ≤B F and F ≤B E.
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The Friedman-Stanley jump Hierarchy

Definition (Friedman–Stanley 1989)
Let E be an equivalence relation on a standard Borel space X .
For x = (xi : i ∈ N) and y = (yi : i ∈ N) in XN let

x E+ y ⇐⇒ {[xi]E : i ∈ N} = {[yi]E : i ∈ N}.

Starting from equality =R on the real numbers:

1. The first jump =+
R is defined on RN so that the map

(xi : i ∈ N) 7→ {xi : i ∈ N} ∈ P(R).

is a complete classification of =+
R by countable sets of reals.

2. The second jump =++
R is defined on (RN)N and admits a complete

classification by hereditarily countable set in P(P(R)).
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The Friedman-Stanley jump Hierarchy

We can iterate the jump operator transfinitely and have a proper
hierarchy.

=
(α+1)+
R := (=α+

R )+

=λ+
R :=

∏
α<λ

=α+
R for λ limit.

Proposition

For countable α < β, we have =α+
R <B =β+

R
Every Borel isomorphism relation is Borel reducible to =α+ for some
α < ω1.
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A dichotomy for o-minimal theories

Theorem (Rast–Sahota ’17)
Let T be a complete o-minimal theory in a countable language.

1. ∼=T ≤B =R.

2. ∼=T ∼B =+
R .

3. ∼=T is not Borel (in fact, ∼=T is maximal among isomorphisms).

14 26



Ordered divisible abelian groups

One of theories of maximal complexity is ODAG — the theory of
ordered divisible abelian groups.

It suffices to show ∼=LO ≤B
∼=ODAG.

Given a linear order L = (L,<L) consider the groupGL = (GL, <lex)
where

GL = {f : L→ Q | supp(f) is finite}
<lex is the reverse lexicographic order

For x, y ∈ GL we define

x ⪯ y ⇐⇒ ∃n ∈ Z ∖ {0} (x ≤lex ny)

x ≈ y ⇐⇒ x ⪯ y and y ⪯ x

The ≈-classes are maximal Archimedean subgroups. From the quotient
setGL/ ≈ it is possible to recover the order L, so that

GL
∼=ODAG GK =⇒ L ∼=LO K.
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LO groups and Archimedean orders

A (left-)order on a group (G, ·) is a total order on G such that

g < h =⇒ fg < fh.

Definition
A (left-)order < on G is Archimedean iff for all positive g, h ∈ G there
is n ∈ N such that g < hn.

The argument showing ∼=LO ≤B
∼=ODAG uses non-Archimedean groups.

What is the Borel complexity of the isomorphism relation ∼=ArGp

for countable ordered Archimedean groups?
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Hölder’s characterization

Definition
A (left-)order < on G is Archimedean iff for all positive g, h ∈ G there
is n ∈ N such that g < hn.

Theorem (Hölder 1901)
When G is countable, the following are equivalent:

G has an Archimedean order.

G acts freely on R by orientation preserving.

G is isomorphic to a subgroup of (R,+) equipped with the natural
ordering on R.
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Hion’s lemma

Rather than working on the space of eneumerated models XArGp, it is
more convenient to work on the standard Borel space of countable
subgroups of A and the isomorphism relation ∼=A defined there.

Theorem (C.-Marker–Motto Ros–Shani 2023)
There is a continuous map XArGp → A showing ∼=ArGp ≤B

∼=A.

Lemma (Hion 54’)
Suppose that A and B are two subgroups of R and h : A→ B is an order
preserving homomorphism. Then, there exists λ ∈ R+ such that
h(a) = λa, for every a ∈ A.
In fact, such λ is computed as the ratio h(a)

a , for any nonzero a ∈ A.
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An upper bound

If G is a nontrivial subgroup of R let

AG :=

{{
g

r
: g ∈ G

}
︸ ︷︷ ︸

G/r

: r ∈ G∖ {0}
}
.

Proposition
Let G and H be non-trivial subgroups of R. Then

G and H are order isomorphic ⇐⇒ AG = AH .

Therefore, ∼=ArGp ≤B =++
R .

Note that for r ̸= s, the sets G/r and G/s are not at odds with each
other.
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The case for a finer hierarchy

(Hjorth–Kechris–Louveau 1998) defined a refinement of the
Friedman–Satanley hierarchy. In particular,

=+ <B
∼=∗

3,0 <B
∼=∗

3,1 <B =++

An invariant for ∼=∗
3,1 is a hereditarily countable set A ∈ P2(R) (i.e., a

=++-invariant) together with

a ternary relation R ⊆ A×A× R, definable from A, such that
given any a ∈ A, R(a,−,−) is an injective function from A to R.
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Main theorem

Theorem (C.–Marker–Motto Ros–Shani 2023)

=+ <B
∼=ArGp <B =++

In fact,
∼=ArGp ≤B

∼=∗
3,1;

∼=ArGp ̸≤B
∼=∗

3,0.

We cannot use countable sets of reals to classify ∼=ArGp.
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Circular orders

A circular order on a set X is defined by a cyclic orientation cocycle,
i.e., a function c : X3 → {±1, 0} satisfying:

1. c−1(0) = ∆(X), where
∆(X) := {(x1, x2, x3) ∈ X3 : xi = xj , for some i ̸= j},

2. c(x2, x3, x4)− c(x1, x3, x4) + c(x1, x2, x4)− c(x1, x2, x3) = 0 for
all x1, x2, x3, x4 ∈ X .

Definition
A group G is circularly orderable if it admits a circular order c which is
left-invariant in the sense that c(g1, g2, g3) = c(hg1, hg2, hg3) for all
g1, g2, g3, h ∈ G.
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Archimedean circularly ordered groups

Definition
A circularly ordered group (G, c) is said to be Archimedean if there are
no elements g, h ∈ G such that c(1G, gn, h) = 1 for all n ≥ 1.

A well-known example of Archimedean circularly ordered group is S1

with the obvious circular order.

There is a classical functorial construction that starting from a circular
order group (G, c) produces a corresponding ordered group (G̃,<)
called central extension. (Želeva)
This can be used to show that

∼=ArCO ≤B
∼=ArGp.
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No Borel converse to central extensions

We also showed the following:

Theorem (C.–Marker–Motto Ros–Shani 2023)
∼=ArCO ≤B =+

R .

There is NO Borel (explicit) converse to the central extension
functor because ∼=ArCO <B

∼=ArGp.
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Enter set theory

The proof of ∼=ArGp ̸≤B
∼=∗

3,0 is highly nonelementary and requires the
analysis of the complete invariants of ∼=ArGp and ∼=∗

3,0 in choiceless
models of set theory.

Definition
Suppose A is a set in some generic extension of V . Let V (A) be the
minimal transitive model of ZF containing V and A, denoted by
V (A).

For any set X , there is some formula ψ, parameters ā ∈ tc(A) and
v ∈ V such that X is the unique set satisfying ψ(X,A, ā, v).
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Interdefinable invariants

We use the following powerful technique:

Theorem (essentially Shani 2018)
Suppose E is a Borel equivalence relation on a standard Borel spaceX , and
x 7→ Ax is an absolute classification of E by hereditarily countable sets.

Let x be an element of X in some generic extension of V .
If E ≤B

∼=∗
3,0, then there is a set of sets of reals B ∈ V (Ax) so that:

B is definable from Ax and parameters in V ,

B is countable in V (Ax),

V (Ax) = V (B).

Proof of the main theorem: Over the Cohen model, we force the
existence of a generic subgroup G of R so that every set of reals
B ∈ V (AG) which is definable from AG and parameters in V alone, we
have V (B) ̸= V (AG).
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Thank You!
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