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Recall . . .

We have the left rectangular band RON acting on End(ON)
by the left and right actions 1 7→ ϕR

left(1) and 1 7→ ϕR
left(ω)

where ϕR
left(1)(α) = ∂F (α) = 1 ·F α = o.t.(α⧸∼F ) and

ϕR
left(ω)(α) = ω ·F α.

Recall that we have the map ∂F acting on ω[ω]ωCNF , the
Cantor normal forms of ordinals of finite degree:

Suppose α is an ordinal of finite degree with Cantor normal
form Φ(α) = anω

n + an−1ω
n−1 + · · ·+ a1ω + a0, with n > 0.

Then (by abuse of notation, writing ∂F (α) for ∂F (Φ(α))):

∂F (α) = anω
n−1 + an−1ω

n−2 + · · ·+ a1 + cα

where cα = 0 if a0 = 0, and cα = 1 if a0 ̸= 0.
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Left multiplication by ω mod finite

Theorem

Let α ∈ ω[ω]ωCNF be an ordinal of finite degree with Cantor normal
form α = anω

n + an−1ω
n−1 + · · ·+ a1ω + a0. Then

ϕF
l (ω)(α) = ωn; that is, ϕF

l (ω)(α) = ωdeg(α).

Sketch of Proof:

For any n ∈ ω, ω
n+1

⧸∼F
∼= ωn.

If m < n < ω, then ωn begins with ω-many copies of ωm, and
there is a well-ordered set D such that as a linear order,
ωn ∼= ωωm + D.

If m < n < ω, then ωm + ωn ∼= ωn.
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Left multiplication by ω mod finite

If m < n < ω and a, b ∈ ω with a, b ̸= 0, then
aωm + bωn ∼= bωn.

Let α be an ordinal of finite degree with Cantor normal form
α = anω

n + · · ·+ a1ω + a0. Then for each k ∈ ω, kα is an
initial segment of (k + 1)anω

n.

Suppose α is an ordinal of finite degree and
α ∼= anω

n + · · ·+ a1ω + a0 in Cantor normal form. Then
ωα ∼= ωωn ∼= ωn+1.
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Left multiplication by ω mod finite

Now: Suppose α = anω
n + an−1ω

n−1 + · · ·+ a1ω + a0 is an
ordinal of degree n in Cantor normal form, for some n ∈ ω. By
an earlier lemma, ωα ∼= ωn+1. Then by another earlier lemma,

ϕF
l (ω)(α) = ω ·F α = o.t.(ωα⧸∼F )

∼= ωn+1
⧸∼F

∼= ωn.

Jennifer Brown (joint work with Ricardo Suárez) CSU Channel Islands
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Monic monomials

So, the map ϕF
left(ω) maps any ordinal α ∈ ω[ω]ωCNF to the

“monic monomial” ωdeg(α); the leading coefficient and the
lower terms are lost.

That is,

ϕF
left(ω) : ω[ω]

ω
CNF → MMonomials(ω[ω]ωCNF ).

Noting that MMonomials(ω[ω]ωCNF) can be identified with ω,
we have that ϕF

left(ω) can be identified with the degree map
on ω[ω]ωCNF .
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A remark

We have only defined ∂F on Cantor normal forms, and the
expression α+ β = anω

n + · · ·+ a0 + bm + · · ·+ b0 need not be in
Cantor normal form. For ease of notation, we will write “∂F (pα)”
and “∂F (α+ β)” for ∂F (Φ(pα)) and ∂F (Φ(α+ β)) respectively; it
will be understood that the argument of ∂F in such expressions is
put into Cantor normal form before the finite condensation
derivative is taken. For similar reasons, we will write
“∂F (α) + ∂F (β)” to mean Φ(∂F (α) + ∂F (β)).
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Pseudo-linearity

Proposition (B–S)

Let α = anω
n + · · ·+ a0 be an ordinal of finite degree, and let

p ∈ ω with p ≥ 1. Then
pα ∼= (p − 1)anω

n + α ∼= panω
n + an−1ω

n−1 + · · ·+ a0.

Proposition (B–S)

Let α = anω
n + · · ·+ a0 be an ordinal of finite degree n ≥ 1, and

let p ∈ ω with p > 0.

1 If α has degree n ≥ 2, then
∂F (pα) ∼= p∂F (α) ∼= (p − 1)anω

n−1 + ∂F (α).

2 If α has degree 1, then ∂F (pα) ∼= (p− 1)anω
n−1 + ∂F (α), and

p∂F (α) differs from (p − 1)anω
n−1 + ∂F (α) by at most a

constant.
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Pseudo-linearity

Proposition (B–S)

Let α and β be nonzero ordinals of finite degree in Cantor normal
form. Then we have ∂F (α+ β) ∼= ∂F (α) + ∂F (β) in the following
cases:

1 α is a limit ordinal; or

2 α is a successor ordinal and deg β ≥ 2.

In all other cases, we have ∂F (α+ β) + 1 ∼= ∂F (α) + ∂F (β).
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Pseudo-linearity

Corollary (B–S)

Suppose, for 1 ≤ i ≤ t, that αi is a limit ordinal of finite degree in
Cantor normal form. Then

∂F

(
t∑

i=1

αi

)
∼=

t∑
i=1

∂F (αi ).
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Pseudo-linearity

Theorem (B–S)

Let α = anω
n + · · ·+ a1ω and β = bmω

m + · · ·+ b1ω be limit ordinals of
finite degree at least 2 in Cantor normal form, and let p, q ∈ ω with
p, q > 0. Then ∂F (pα+ qβ) = p∂F (α) + q∂F (β).
Moreover, we have the following expressions for ∂F (pα+ qβ):

1 If deg(α) < deg(β), then
∂F (pα+ qβ) ∼= qbmω

m−1 + bm−1ω
m−2 + · · ·+ b2ω + b1;

2 If deg(α) = deg(β), then

∂F (pα+ qβ) ∼= (pan + qbn)ω
n−1 + bn−1ω

n−2 + · · ·+ b2ω + b1;

3 If deg(α) > deg(β), then ∂F (pα+ qβ)

∼= panω
n−1 + an−1ω

n−2 + · · ·
· · ·+ am+1ω

m + (am + qbm)ω
m−1 + bm−1ω

m−2 + · · ·+ b1.
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The dual map ∂⋆
F

Denote ∂⋆
F (α) := {β ∈ ω[ω]ωCNF : ∂F (β) = α}.

Proposition

Suppose α = anω
n + · · ·+ a0 is a nonzero ordinal of finite degree.

1 If a0 = 0, then ∂⋆
F (α) = {anωn+1 + · · ·+ a1ω

2}.
2 If a0 = 1, then ∂⋆

F (α) consists of anω
n+1 + · · ·+ a1ω

2 + ω
along with all ordinals of the form anω

n+1 + · · ·+ a1ω
2 + j for

j ∈ ω, j > 0.

3 If a0 > 1, then ∂⋆
F (α) consists of anω

n+1 + · · ·+ a1ω
2 + a0ω

along with all ordinals of the form
anω

n+1 + · · ·+ a1ω
2 + (a0 − 1)ω + j for j ∈ ω, j > 0.
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The lattice of ordinals of finite degree

Ordinals of the form aωn can be identified with points in the
2-dimensional lattice N× N, where the ordinal aωn is
associated with (a, n).

Acting on aωn by the map ∂F corresponds to moving the
point (a, n) down one unit in the lattice.

Acting on aωn by the map ∂⋆
F corresponds to moving the

point (a, n) up one unit in the lattice.

The map ϕF
left(ω) moves the point (a, n) corresponding to aωn

to the point (1, n).
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Future work

We plan to address the following questions.

1 Which of the properties of ∂F acting on ordinals of finite
degree remain true if we consider ∂F acting on countable
ordinals of degree at least ω?

2 If the finite condensation is replaced by another condensation,
and if we define a multiplication of linear orders based on that
condensation, what algebraic structures arise?

3 Given a condensation ∼, can we characterize the set of linear
orders L such that L⧸∼ ∼= 1?
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Thank-you!

Thank you to the organizers of BLAST for the opportunity to
speak today.
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A couple of references

Standard reference on linear orders:
J. Rosenstein, Linear Orderings, Academic Press, 1982.

Our paper associated with these slides:
J. Brown and R. Suárez, Algebraic structures arising from the
finite condensation on linear orders. (submitted; current
version [v3] available on arXiv after 27 May 2025)
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