The *E*-base of finite semidistributive lattices

K. Adaricheva Hofstra University, New York Joint work with: S. Vilmin Aix-Marseille Université

CNRS, LIS, Marseille, France

BLAST, University of Colorado (Boulder) May 21, 2025 In this talk we plan

- to give the definition of *E*-base as a subset of minimal covers in a lattice;
- discuss its relation to the D-base and the canonical base;
- present the main result: the *E*-base in semidistributive lattices;
- discuss the *E*-base in other classes.

Finite lattices and their join irreducibles

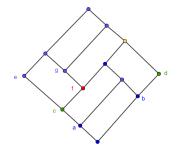


Figure: Finite lattice with seven join-irreducibles

A lattice

 $\langle L, \vee, \wedge \rangle$

Join irreducible

An element *j* of lattice such that $j = a \lor b$ implies j = a or j = b.

Example of a finite lattice

Relations on join irreducibles: $f \le g$, or $f \le c \lor d$

Finite lattice representation by ji-relations

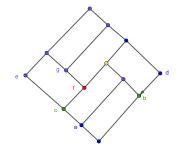


Figure: Relation $f \le c \lor b$ refines $f \le c \lor d$

OD-graph of a finite lattice

(I) Partially ordered set of join irreducibles.(II) Minimal *join-covers* of join irreducibles.

Example: part (I)

$$a \leq c \leq f \leq g, \, c \leq e, \, b \leq d$$

Example: part (II)

 $f \le c \lor d$ is a join-cover of f, but it is not a *minimal* cover, since there is $f \le c \lor b$, where $b \le d$ from (I)

OD-graph as finite lattice representation

J.B.Nation, *An approach to lattice varieties of finite height* Alg. Universalis (1990)

Lattice as a closure system

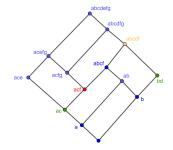


Figure: Closure system on $A = \{a, b, c, d, e, f, g\}$

Closure

Closure operator: $\phi : 2^A \longrightarrow 2^A$ $\phi(Y) = \{j \in Ji : j \leq \bigvee Y\}$ Closure system: $\mathcal{F} = \{\phi(Y) : Y \in 2^A\}$

Closure system perspective

Relation $f \leq g$ becomes: $f \in \phi(g)$, or the *implication* $g \rightarrow f$

Cover relation

Relation $f \le c \lor d$ becomes $f \in \phi(cd)$, or the *implication* $c\&d \to f$

Many uses of implicational bases:

- attribute implications in Formal Concept Analysis;
- functional dependencies in database theory;
- (pure) Horn formulas in propositional logic;
- defining relations of join irreducibles in lattice theory.

KA, J.B.Nation, R. Rand, *Ordered direct implicational basis of a finite closure system*, Disc. Appl. Math. (2013)

Definition

A set of implications Σ_D of a finite closure system on set *A* that comprises

- $g \rightarrow f, f \in \phi(g), g, f \in A;$
- $B \to f, f \in \phi(B)$, if $B \subseteq A$ is a *minimal* join cover of f.

J.L.Guigues, V. Duquenne, *Familles minimales d'implications informatives resultant d'un tableau de donnes binares*, Math. et Sci.Humaines (1986)

D. Maier, *Minimal covers in the relational database model*, J.Assoc.Comp. Machinery (1980)

Theorem

Let (A, \mathcal{F}) be a finite closure system with closure operator ϕ . (i) Then a minimum implicational base defining this system is $\Sigma_{DG} = \{P \rightarrow \phi(P) \setminus P : P \text{ is a critical set}\};$ (ii) For every other implicational base Σ defining the same system, and for every critical set P, there exists $S \rightarrow T$ in Σ such that $S \subseteq P$ and $\phi(S) = \phi(P)$.

Canonical base: example

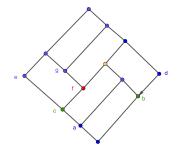


Figure: Implication $abc \rightarrow f$ from the Canonical base

Critical set

Set $P = \{a, b, c\} \subseteq A$ is critical. $\phi(abc) = abcf$

Implication for P in Σ_{DG}	J
abc ightarrow f	

Implication from the <i>D</i> -base	
bc ightarrow f	

KA, J.B.Nation, *Discovery of the D-basis in binary tables based on hypergraph dualization*, Theor. Comp. Sci. (2017)

- The *D*-base can be retrieved from the binary table using the algorithm of sub-exponential complexity.
- M. Babin, S. Kuznetsov, *Recognizing pseudo-intents is coNP-complete*, CLA Proceedings (2010)

KA, L. Nourine, S. Vilmin, *Computing the D-base and D-relation in finite closure systems* arxiv (2024)

 Further improvement of *D*-basis algorithm based on dualization in distributive lattices: K. Elbassioni (2022) KA, J.B.Nation, R. Rand, *Ordered direct implicational basis of a finite closure system*, Disc. Appl. Math. (2013)

Lemma

If L is a finite lower bounded lattice, then a subset of the D-base, called the E-base forms a valid and minimum base of the corresponding closure system.

- *Lower bounded lattice*: a lower bounded homomorphic image of a free lattice ↔ lattice without *D*-cycles.
- Valid part of Lemma follows from Theorem 2.51, *Free lattices*, by R. Freese, J. Jezek, J.B.Nation (1995)

The *E*-base: example

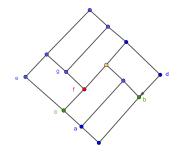


Figure: Implication $bc \rightarrow f$ in the *E*-base

Implication from the *E*-base

bc
ightarrow f

Implication from the *D*-base, not in the *E*-base

 $\textit{ad} \rightarrow \textit{f}$

How to decide

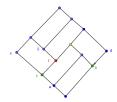
 $\phi(bc) \subset \phi(ad)$ and $\phi(bc)$ is minimal among all minimal covers for *f*

The *E*-base

Definition

A set of implications $\Sigma_E \subseteq \Sigma_D$ is called the *E*-base:

• $C \to x$ is in the *E*-base iff $\phi(C)$ is a minimal closed set among $\{\phi(B) : B \to x \text{ in } D\text{-base}\}$



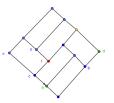


Figure: $bc \rightarrow f$ in the *E*-base

Figure: $ad \rightarrow f$ not in the *E*-base

J.L.Guigues, V. Duquenne, *Familles minimales d'implications informatives resultant d'un tableau de donnes binares*, Math. et Sci.Humaines (1986)

Definition

If $P \rightarrow \phi(P)$ is an implications from the canonical basis, then $\phi(P)$ is called *essential*.

Definition

If $P \rightarrow \phi(P) \setminus P$ is an implications from the canonical basis, then $\phi(P)$ is called essential.

KA, J.B.Nation *On implicational bases of closure systems with unique critical sets*, Disc. Appl. Math. (2017)

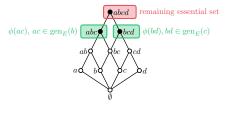
•
$$SD_j$$
 law: $x \lor y = x \lor z \longrightarrow x \lor y = x \lor (y \land z)$

Theorem

- For every finite SD_j lattice there is only one implication P → φ(P) in the Canonical basis, for every essential set φ(P).
- If L is a finite lower bounded lattice and φ(P) is essential, there exists B → x in the E-base such that φ(B) = φ(P).
- Lower bounded lattices are SD_j

E-base may not be a valid base

In general, the *E*-base may not have enough implications to represent the closure system.



- $ad \rightarrow bc$ is in the canonical base;
- no implication in the *E*-base accounts for essential set *abcd*.

A property of the E-base

Lemma (KA and S.Vilmin, 2025+)

For every $B \rightarrow x$ in the *E*-base, $\phi(B)$ is essential.

Proof.

Take
$$P = \phi(B) \setminus \{y \in A : x \in \phi(y)\}.$$

• $\phi(P) = \phi(B)$.

Need to check: If Q ⊂ P and φ(Q) ⊂ φ(P), then φ(Q) ⊂ P.

- Fact. Critical sets are exactly minimal sets with this property in their closure class.
- Indeed, x ∉ φ(Q), since φ(B) is the minimal closed set with x ∈ φ(B) \ B.
- If *P* is not minimal, we could find *P*' ⊂ *P* with this property and such that φ(*P*') = φ(*P*) = φ(*B*). Then *P*' is critical.

Semidistributive lattices

Definition

Lattice is semidistributive, if it satisfies SD_j and the dual law SD_m .

Important example: free lattices are semidistributive.

Theorem (KA, S. Vilmin, 2025+)

E-basis is valid and minimum in any finite semidstributive lattice.

Proof.

- Let *E* = φ(*P*) be essential set with unique critical set *P*, due to *SD_j*.
- Let *B* be the canonical join representation of *E*, due to *SD_j*.
- Let B' be the canonical join representation of $E' \prec E$, and let $x \in B' \setminus P$.
- Use SD_m to show that $B \rightarrow x$ is in the *E*-base.

E-base divide in the hierarchy of classes

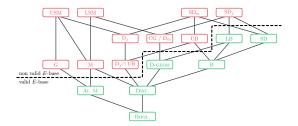


Figure: Some classes identified on the divide

More classes confirmed for the divide:

- Atomistic modular lattice have the valid *E*-base.
- *SD_j*, *SD_m* (even upper bounded), geometric lattices and modular lattices in general do not have the valid *E*-base.

Open question: *D*-cycles and the *E*-base

Do implications for elements from *D*-cycles always appear in the *E*-base?

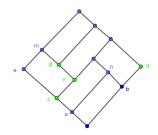


Figure: D-cycle in SD lattice

D-cycle

Sequence of join irreducibles: *g D f D c D d D g*

Minimal covers

$$egin{aligned} egin{aligned} egi$$

Implications from the *E*-base

$$fe
ightarrow g, bc
ightarrow f, ad
ightarrow c, bg
ightarrow d$$



Thank you!