Reductions on Equivalence Relations Generated by Universal Sets BLAST Conference 2019, University of Colorado

Ping Yu

Department of Mathematics University of North Texas

21 May 2019

(ロ) (部) (注) (注) [

Outline

2 Equivalence Relations Generated by Universal Sets

Reduction

Definition

Let E,F be two equivalence relations on X, Y respectively, a function $f:X \to Y$ is a **reduction** from E to F if

$$x_1 E x_2 \iff f(x_1) F f(x_2)$$

for all $x_1, x_2 \in X$.

Fact (**AC**)

The choice function $f: X/E \to X$ is a reduction from id(X/E) to E, and $E \leq F$ if and only if X/E embeds into Y/F.

Things become interesting when imposing the definability of the reduction function.

Reduction

Definition

Let E,F be two equivalence relations on X, Y respectively, a function $f: X \to Y$ is a **reduction** from E to F if

$$x_1 E x_2 \Longleftrightarrow f(x_1) F f(x_2)$$

for all $x_1, x_2 \in X$.

Fact (AC)

The choice function $f: X/E \to X$ is a reduction from id(X/E) to E, and $E \leq F$ if and only if X/E embeds into Y/F.

Things become interesting when imposing the definability of the reduction function.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Reduction

Definition

Let E,F be two equivalence relations on X, Y respectively, a function $f: X \to Y$ is a **reduction** from E to F if

$$x_1 E x_2 \Longleftrightarrow f(x_1) F f(x_2)$$

for all $x_1, x_2 \in X$.

Fact (**AC**)

The choice function $f: X/E \to X$ is a reduction from id(X/E) to E, and $E \leq F$ if and only if X/E embeds into Y/F.

Things become interesting when imposing the definability of the reduction function.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Polish space

Definition

Polish space: a separable, completely metrizable topological space.

From now on, X, Y are Polish spaces.

Example

 separable Banach spaces: Rⁿstd, l^p(1 ≤ p < ∞), (C[0,1], || · ||_{sup}).
 [0,1]std, (K([0,1]), d_H).

Polish space

Definition

Polish space: a separable, completely metrizable topological space.

From now on, X, Y are Polish spaces.

Example

 separable Banach spaces: Rⁿ_{std}, l^p(1 ≤ p < ∞), (C[0,1], || · ||_{sup}).
 [0,1]_{std}, (K([0,1]), d_H).

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Borel hierarchy

Definition

 $\mathbf{B}(X)$: Borel sets of X is the σ -algebra generated by the open sets of X.

$$\mathbf{\Sigma}_1^0=\mathsf{open},\quad \mathbf{\Pi}_1^0=\mathsf{closed};$$

for $1 \leq \alpha < \omega_1$,

$$\Sigma^{0}_{\alpha} = \{\bigcup_{n \in \omega} A_{n} : A_{n} \in \Pi^{0}_{\alpha_{n}}, \alpha_{n} < \alpha\};$$

$$oldsymbol{\Pi}^0_lpha=$$
 the complements of $oldsymbol{\Sigma}^0_lpha$ sets; $oldsymbol{\Delta}^0_lpha=oldsymbol{\Sigma}^0_lpha\capoldsymbol{\Pi}^0_lpha.$

Borel hierarchy

Definition

 $\mathbf{B}(X)$: Borel sets of X is the σ -algebra generated by the open sets of X.

$$\mathbf{\Sigma}_1^0 = \mathsf{open}, \quad \mathbf{\Pi}_1^0 = \mathsf{closed};$$

for $1 \leq \alpha < \omega_1$,

$$\boldsymbol{\Sigma}^{0}_{\alpha} = \{\bigcup_{n \in \omega} A_{n} : A_{n} \in \boldsymbol{\Pi}^{0}_{\alpha_{n}}, \alpha_{n} < \alpha\};$$

$$oldsymbol{\Pi}^0_lpha=$$
 the complements of $oldsymbol{\Sigma}^0_lpha$ sets; $oldsymbol{\Delta}^0_lpha=oldsymbol{\Sigma}^0_lpha\capoldsymbol{\Pi}^0_lpha.$

◆□→ ◆□→ ◆注→ ◆注→ □注

Below Σ_2^1 and Π_2^1

Let
$$A \subseteq X$$
,

Definition

 $\begin{array}{l} \Sigma_1^1 \mbox{ set: } A \mbox{ is } \Sigma_1^1 \mbox{ if it is a continuous image of some Polish space.} \\ \Pi_1^1 \mbox{ set: } A \mbox{ is } \Pi_1^1 \mbox{ if } X \setminus A \mbox{ is } \Sigma_1^1. \\ \sigma(\Sigma_1^1) \mbox{ set: } the \mbox{ σ-algebra generated by the } \Sigma_1^1 \mbox{ set.} \\ \Sigma_2^1 \mbox{ set: } A \mbox{ is } \Sigma_2^1 \mbox{ if it is a continuous image of some } \Sigma_1^1 \mbox{ set.} \\ \Pi_2^1 \mbox{ set: } A \mbox{ is } \Pi_2^1 \mbox{ if } X \setminus A \mbox{ is } \Sigma_2^1. \\ \Pi_2^1 \mbox{ set: } A \mbox{ is } \Pi_2^1 \mbox{ if } X \setminus A \mbox{ is } \Sigma_2^1. \\ \Delta_2^1 \mbox{ set: } A \mbox{ is } \Delta_2^1 \mbox{ if it is both } \Sigma_2^1 \mbox{ and } \Pi_2^1. \end{array}$

Theorem (Suslin)

 $A\subseteq X$ is Borel iff it is both $\mathbf{\Sigma_1^1}$ and $\mathbf{\Pi_1^1}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Below Σ_2^1 and Π_2^1

Let
$$A \subseteq X$$
,

Definition

 $\begin{array}{l} \Sigma_1^1 \mbox{ set: } A \mbox{ is } \Sigma_1^1 \mbox{ if it is a continuous image of some Polish space.} \\ \Pi_1^1 \mbox{ set: } A \mbox{ is } \Pi_1^1 \mbox{ if } X \setminus A \mbox{ is } \Sigma_1^1. \\ \sigma(\Sigma_1^1) \mbox{ set: } the \mbox{ σ-algebra generated by the } \Sigma_1^1 \mbox{ set.} \\ \Sigma_2^1 \mbox{ set: } A \mbox{ is } \Sigma_2^1 \mbox{ if it is a continuous image of some } \Sigma_1^1 \mbox{ set.} \\ \Pi_2^1 \mbox{ set: } A \mbox{ is } \Pi_2^1 \mbox{ if } X \setminus A \mbox{ is } \Sigma_2^1. \\ \Pi_2^1 \mbox{ set: } A \mbox{ is } \Pi_2^1 \mbox{ if } X \setminus A \mbox{ is } \Sigma_2^1. \\ \Delta_2^1 \mbox{ set: } A \mbox{ is } \Delta_2^1 \mbox{ if it is both } \Sigma_2^1 \mbox{ and } \Pi_2^1. \end{array}$

Theorem (Suslin)

 $A \subseteq X$ is Borel iff it is both Σ_1^1 and Π_1^1 .

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

BP sets

$A \subseteq X$ is called: **nowhere dense**: if the closure of A has no interior, **meager**: if A is a countable union of nowhere dense sets.

Definition

BP sets: the σ -algebra generated by open sets and meager sets.

◆□ → ◆□ → ◆ 三 → ◆ □ → ◆ □ → ◆ ○ ◆

BP sets

$A \subseteq X$ is called: **nowhere dense**: if the closure of A has no interior, **meager**: if A is a countable union of nowhere dense sets.

Definition

BP sets: the σ -algebra generated by open sets and meager sets.

various reduction

Definition

Assume X, Y are Polish spaces, Γ is a pointclass on X, a function $f: X \to Y$ is called Γ -measurable if $f^{-1}(U) \in \Gamma$ for each open set $U \in \Gamma$.

Let E, F be equivalence relations on X, Y respectively. $E \leq_B F$: there is a Borel reduction from E to F; $E \leq_{\sigma(\Sigma_1^1)} F$: there is a $\sigma(\Sigma_1^1)$ -measurable reduction from Eto F;

 $E \leq_{\sigma(\mathbf{\Delta}_1^1)} F$: there is a $\sigma(\mathbf{\Delta}_1^1)$ -measurable reduction from E to F;

 $E \leq_{BP} F$: there is a Baire reduction from E to F.

Also, we denote $E <_{\Gamma} F$ if $E \leq_{\Gamma} F$ and $\neg (F \leq_{\Gamma} E)$, denote $E \sim_{\Gamma} F$ if $E \leq_{\Gamma} F$ and $F \leq_{\Gamma} E$, for pointclass Γ .

various reduction

Definition

Assume X, Y are Polish spaces, Γ is a pointclass on X, a function $f: X \to Y$ is called Γ -measurable if $f^{-1}(U) \in \Gamma$ for each open set $U \in \Gamma$.

Let E, F be equivalence relations on X, Y respectively. $E \leq_B F$: there is a Borel reduction from E to F; $E \leq_{\sigma(\Sigma_1^1)} F$: there is a $\sigma(\Sigma_1^1)$ -measurable reduction from Eto F;

 $E\leq_{\sigma({\bf \Delta}_1^1)}F: {\rm there \ is \ a}\ \sigma({\bf \Delta}_1^1){\rm -measurable\ reduction\ from\ }E {\rm to\ }F;$ to F;

 $E \leq_{BP} F$: there is a Baire reduction from E to F.

Also, we denote $E <_{\Gamma} F$ if $E \leq_{\Gamma} F$ and $\neg (F \leq_{\Gamma} E)$, denote $E \sim_{\Gamma} F$ if $E \leq_{\Gamma} F$ and $F \leq_{\Gamma} E$, for pointclass Γ .

various reduction

Definition

Assume X, Y are Polish spaces, Γ is a pointclass on X, a function $f: X \to Y$ is called Γ -measurable if $f^{-1}(U) \in \Gamma$ for each open set $U \in \Gamma$.

Let E, F be equivalence relations on X, Y respectively. $E \leq_B F$: there is a Borel reduction from E to F; $E \leq_{\sigma(\Sigma_1^1)} F$: there is a $\sigma(\Sigma_1^1)$ -measurable reduction from Eto F;

 $E \leq_{\sigma(\mathbf{\Delta}_1^1)} F: \text{ there is a } \sigma(\mathbf{\Delta}_1^1)\text{-measurable reduction from } E \text{ to } F;$ to F;

 $E \leq_{BP} F$: there is a Baire reduction from E to F.

Also, we denote $E <_{\Gamma} F$ if $E \leq_{\Gamma} F$ and $\neg (F \leq_{\Gamma} E)$, denote $E \sim_{\Gamma} F$ if $E \leq_{\Gamma} F$ and $F \leq_{\Gamma} E$, for pointclass Γ .

classical equvalence relations

Definition

E is a smooth equivalence relation if $E \leq_B id(\mathbb{R})$.

 E_0 on the Baire space ω^{ω} is defined by:

$$xE_0y \iff \exists n \forall m \ge n(x(m) = y(m))$$

Theorem (Harrington-Kechris-Louveau)

If E is a Borel equivalence relation on X, then exactly one of the following is true:

 $E \leq_B id(\mathbb{R}), \text{ or } E_0 \leq_B E$

・ロン ・回 と ・ ヨン ・ ヨン

classical equvalence relations

Definition

E is a smooth equivalence relation if $E \leq_B id(\mathbb{R})$.

 E_0 on the Baire space ω^ω is defined by:

$$xE_0y \iff \exists n \forall m \ge n(x(m) = y(m))$$

Theorem (Harrington-Kechris-Louveau)

If E is a Borel equivalence relation on X, then exactly one of the following is true:

 $E \leq_B id(\mathbb{R}), \text{ or } E_0 \leq_B E$

・ロン ・四 と ・ ヨ と ・ ヨ と

classical equvalence relations

Definition

E is a smooth equivalence relation if $E \leq_B id(\mathbb{R})$.

 E_0 on the Baire space ω^ω is defined by:

$$xE_0y \iff \exists n \forall m \ge n(x(m) = y(m))$$

Theorem (Harrington-Kechris-Louveau)

If E is a Borel equivalence relation on X, then exactly one of the following is true:

$$E \leq_B id(\mathbb{R}), \text{ or } E_0 \leq_B E$$

・ロン ・回 と ・ ヨ と ・ ヨ と …

э

It's trivial that:

$$E \leq_B F \Longrightarrow E \leq_{\sigma(\Sigma_1^1)} \Longrightarrow E \leq_{BP} F$$

But consider:

$$E \leq_B F \iff E \leq_{\sigma(\Sigma_1^1)} F?$$
$$E \leq_{\sigma(\Sigma_1^1)} \iff E \leq_{BP} F?$$

1st Example

Theorem (Harrington-Kechris-Louveau)

Let E be a Borel equivalence relation, then

 $E \leq_B id(\mathbb{R}) \iff E \leq_{\sigma(\Sigma_1^1)} id(\mathbb{R}),$

 $E_0 \leq_B E \iff E_0 \leq_{\sigma(\Sigma_1^1)} E$

It's trivial that:

$$E \leq_B F \Longrightarrow E \leq_{\sigma(\Sigma_1^1)} \Longrightarrow E \leq_{BP} F$$

But consider:

$$E \leq_B F \iff E \leq_{\sigma(\Sigma_1^1)} F?$$
$$E \leq_{\sigma(\Sigma_1^1)} \iff E \leq_{BP} F?$$

1st Example

Theorem (Harrington-Kechris-Louveau)

Let E be a Borel equivalence relation, then

 $E \leq_B id(\mathbb{R}) \iff E \leq_{\sigma(\Sigma_1^1)} id(\mathbb{R}),$

 $E_0 \leq_B E \iff E_0 \leq_{\sigma(\Sigma_1^1)} E$

It's trivial that:

$$E \leq_B F \Longrightarrow E \leq_{\sigma(\Sigma_1^1)} \Longrightarrow E \leq_{BP} F$$

But consider:

$$E \leq_B F \iff E \leq_{\sigma(\Sigma_1^1)} F?$$
$$E \leq_{\sigma(\Sigma_1^1)} \iff E \leq_{BP} F?$$

1st Example

Theorem (Harrington-Kechris-Louveau)

Let E be a Borel equivalence relation, then

$$E \leq_B id(\mathbb{R}) \iff E \leq_{\sigma(\Sigma_1^1)} id(\mathbb{R}),$$

$$E_0 \leq_B E \iff E_0 \leq_{\sigma(\Sigma_1^1)} E$$

2nd example

Recall that $E_\infty \subseteq 2^{\mathbb{F}_2} \times 2^{\mathbb{F}_2}$ is the equivalence relation defined by:

$$xE_{\infty}y \iff \exists z \in \mathbb{F}_2(x=zy)$$

Fact

 E_{∞} is a universal countable equivalence relation and $E_0 <_B E_{\infty}$.

Theorem (Sullivan-Weiss-Wright)

 $E_0 \sim_{BP} E_\infty$

(日) (종) (종) (종) (종)

2nd example

Recall that $E_\infty \subseteq 2^{\mathbb{F}_2} \times 2^{\mathbb{F}_2}$ is the equivalence relation defined by:

$$xE_{\infty}y \iff \exists z \in \mathbb{F}_2(x=zy)$$

Fact

 E_{∞} is a universal countable equivalence relation and $E_0 <_B E_{\infty}$.

Theorem (Sullivan-Weiss-Wright)

 $E_0 \sim_{BP} E_\infty$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

2nd example

Recall that $E_\infty \subseteq 2^{\mathbb{F}_2} \times 2^{\mathbb{F}_2}$ is the equivalence relation defined by:

$$xE_{\infty}y \iff \exists z \in \mathbb{F}_2(x=zy)$$

Fact

 E_{∞} is a universal countable equivalence relation and $E_0 <_B E_{\infty}$.

Theorem (Sullivan-Weiss-Wright)

$$E_0 \sim_{BP} E_\infty$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

3rd example

Given an equivalence relation E on X, the Friedman-Stanley jump E^+ on X^ω is defined by:

 $xE^+y \Longleftrightarrow \forall n \exists m[x(n)Ey(m)] \land \forall i \exists j[x(j)Ey(i)].$

Theorem (Friedman-Stanley)

If E is Borel and has more than one equivalence classes, then $E <_B E^+$.

$$E <_{\sigma(\Sigma_{1}^{1})} E^{+}? E <_{BP} E^{+}?$$

3rd example

Given an equivalence relation E on X, the Friedman-Stanley jump E^+ on X^ω is defined by:

 $xE^+y \Longleftrightarrow \forall n \exists m[x(n)Ey(m)] \land \forall i \exists j[x(j)Ey(i)].$

Theorem (Friedman-Stanley)

If E is Borel and has more than one equivalence classes, then $E <_B E^+$.

$E <_{\sigma(\Sigma_1^1)} E^+? E <_{BP} E^+?$

3rd example

Given an equivalence relation E on X, the Friedman-Stanley jump E^+ on X^ω is defined by:

$$xE^+y \iff \forall n \exists m[x(n)Ey(m)] \land \forall i \exists j[x(j)Ey(i)].$$

Theorem (Friedman-Stanley)

If E is Borel and has more than one equivalence classes, then $E <_B E^+$.

$$E <_{\sigma(\Sigma_1^1)} E^+? E <_{BP} E^+?$$

Outline

2 Equivalence Relations Generated by Universal Sets

Universal Set

Definition

Let Γ be a pointclass of Y, and $A \subseteq X \times Y$. We say A is *universal* for Γ if $\Gamma = \{A_x : x \in X\}$.

If also $x \neq y$ implies $A_x \neq A_y$, we say A is uniquely universal for Γ .

Theorem (folklore)

Every Borel pointclass $\Sigma^0_{\mathcal{E}}$ ($\Pi^0_{\mathcal{E}}$) has a Borel universal.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Universal Set

Definition

Let Γ be a pointclass of Y, and $A \subseteq X \times Y$. We say A is *universal* for Γ if $\Gamma = \{A_x : x \in X\}$.

If also $x \neq y$ implies $A_x \neq A_y$, we say A is uniquely universal for Γ .

Theorem (folklore)

Every Borel pointclass Σ^0_{ξ} (Π^0_{ξ}) has a Borel universal.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Complexity of E_A

For
$$A \subseteq X \times Y$$
, denote $A_x = \{y : (x, y) \in A\}$.

Definition

For any set $A \subseteq X \times Y$, define an equivalence relation E_A on X as

$$xE_Ax' \iff A_x = A_{x'}.$$

Theorem

Let $A \subseteq X \times Y$ be a Σ_n^1 set universal for all nonempty closed subsets of Y. Then E_A is Π_{n+1}^1 and $E_A \leq_{\sigma(\Sigma_n^1)} \operatorname{id}(2^{\omega})$. If A is Borel, then E_A is Π_1^1 .

・ロン ・回 と ・ヨン ・ヨン

Complexity of E_A

For
$$A \subseteq X \times Y$$
, denote $A_x = \{y : (x, y) \in A\}$.

Definition

For any set $A \subseteq X \times Y$, define an equivalence relation E_A on X as

$$xE_Ax' \iff A_x = A_{x'}.$$

Theorem

Let $A \subseteq X \times Y$ be a Σ_n^1 set universal for all nonempty closed subsets of Y. Then E_A is Π_{n+1}^1 and $E_A \leq_{\sigma(\Sigma_n^1)} \operatorname{id}(2^{\omega})$. If A is Borel, then E_A is Π_1^1 .

Complexity of E_A

For
$$A \subseteq X \times Y$$
, denote $A_x = \{y : (x, y) \in A\}$.

Definition

For any set $A \subseteq X \times Y$, define an equivalence relation E_A on X as

$$xE_Ax' \iff A_x = A_{x'}.$$

Theorem

Let $A \subseteq X \times Y$ be a Σ_n^1 set universal for all nonempty closed subsets of Y. Then E_A is Π_{n+1}^1 and $E_A \leq_{\sigma(\Sigma_n^1)} \operatorname{id}(2^{\omega})$. If A is Borel, then E_A is Π_1^1 .

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Complexity of E_A

Fact

There exists a Borel set universal for all the countable subsets of Polish space \boldsymbol{X}

Let $A \subseteq X \times Y$ be universal for countable subsets of Y.

Theorem

(1) A is Σ_1^1 , then E_A is $\sigma(\Sigma_1^1)$, $E_A \leq_{\sigma(\Sigma_1^1)} =^+$ and $=^+ \leq_{\Delta_2^1} E_A$. (2) A is Borel then E_A is Borel $E_A \leq_{B} =^+$ and $=^+ \leq_{\sigma(\Sigma_1^1)} E_A$.

 $=^+ \leq_B E_A? \qquad =^+ \leq_{BP} E_A?$

Complexity of E_A

Fact

There exists a Borel set universal for all the countable subsets of Polish space \boldsymbol{X}

Let $A \subseteq X \times Y$ be universal for countable subsets of Y.

Theorem

(1) A is Σ_1^1 , then E_A is $\sigma(\Sigma_1^1)$, $E_A \leq_{\sigma(\Sigma_1^1)} =^+$ and $=^+ \leq_{\Delta_2^1} E_A$. (2) A is Borel, then E_A is Borel, $E_A \leq_B =^+$ and $=^+ \leq_{(\Sigma_1^1)} E_A$.

$$=^+ \leq_B E_A? \qquad =^+ \leq_{BP} E_A?$$

Complexity of E_A

Fact

There exists a Borel set universal for all the countable subsets of Polish space \boldsymbol{X}

Let $A \subseteq X \times Y$ be universal for countable subsets of Y.

Theorem

(1) A is
$$\Sigma_1^1$$
, then E_A is $\sigma(\Sigma_1^1)$, $E_A \leq_{\sigma(\Sigma_1^1)} =^+$ and $=^+ \leq_{\Delta_2^1} E_A$.
(2) A is Borel, then E_A is Borel, $E_A \leq_B =^+$ and $=^+ \leq_{\sigma(\Sigma_1^1)} E_A$.

$=^+ \leq_B E_A? \qquad =^+ \leq_{BP} E_A?$

Complexity of E_A

Fact

There exists a Borel set universal for all the countable subsets of Polish space \boldsymbol{X}

Let $A \subseteq X \times Y$ be universal for countable subsets of Y.

Theorem

(1) A is
$$\Sigma_1^1$$
, then E_A is $\sigma(\Sigma_1^1)$, $E_A \leq_{\sigma(\Sigma_1^1)} =^+$ and $=^+ \leq_{\Delta_2^1} E_A$.
(2) A is Borel, then E_A is Borel, $E_A \leq_B =^+$ and $=^+ \leq_{\sigma(\Sigma_1^1)} E_A$.

$$=^+ \leq_B E_A? \qquad =^+ \leq_{BP} E_A?$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Independent Results on Δ_2^1 -reduction of E_A

Fact

Assume V = L. If $E \subseteq X \times X$ is a Δ_2^1 equivalence relation, then $E \leq \Delta_2^1 id(\mathbb{R})$

Let $A \subseteq X \times Y$ be a Σ_1^1 set universal for countable sets of Y.

Corollary

Assume
$$V = L$$
. Then $E_A \leq_{\Delta_2^1} id(\mathbb{R})$.

Theorem

Assume that every Δ_2^1 set has BP. If E is a Σ_3^0 equivalence relation(say, $id(\mathbb{R})$, E_0 , E_1 , E_{∞}),then $E_A \not\leq_{\Delta_2^1} E$.

End!

Independent Results on Δ_2^1 -reduction of E_A

Fact

Assume V = L. If $E \subseteq X \times X$ is a Δ_2^1 equivalence relation, then $E \leq_{\Delta_2^1} id(\mathbb{R})$

Let $A \subseteq X \times Y$ be a Σ_1^1 set universal for countable sets of Y.

Corollary

Assume
$$V = L$$
. Then $E_A \leq_{\Delta_2^1} id(\mathbb{R})$.

Theorem

Assume that every Δ_2^1 set has BP. If E is a Σ_3^0 equivalence relation(say, $id(\mathbb{R})$, E_0 , E_1 , E_{∞}),then $E_A \not\leq_{\Delta_2^1} E$.

End!

Independent Results on Δ_2^1 -reduction of E_A

Fact

Assume V = L. If $E \subseteq X \times X$ is a Δ_2^1 equivalence relation, then $E \leq_{\Delta_2^1} id(\mathbb{R})$

Let $A \subseteq X \times Y$ be a Σ_1^1 set universal for countable sets of Y.

Corollary

Assume
$$V = L$$
. Then $E_A \leq_{\Delta_2^1} id(\mathbb{R})$.

Theorem

Assume that every Δ_2^1 set has BP. If E is a Σ_3^0 equivalence relation(say, $id(\mathbb{R})$, E_0 , E_1 , E_{∞}), then $E_A \nleq_{\Delta_2^1} E$.

End!

Independent Results on Δ_2^1 -reduction of E_A

Fact

Assume V = L. If $E \subseteq X \times X$ is a Δ_2^1 equivalence relation, then $E \leq_{\Delta_2^1} id(\mathbb{R})$

Let $A \subseteq X \times Y$ be a Σ_1^1 set universal for countable sets of Y.

Corollary

Assume
$$V = L$$
. Then $E_A \leq_{\Delta_2} id(\mathbb{R})$.

Theorem

Assume that every Δ_2^1 set has BP. If E is a Σ_3^0 equivalence relation(say, $id(\mathbb{R})$, E_0 , E_1 , E_{∞}), then $E_A \nleq_{\Delta_2^1} E$.

End!