Correspondence, Canonicity, and Model Theory for Monotonic Modal Logics

Kentarô Yamamoto

Group in Logic and the Methodology of Science University of California, Berkeley

BLAST 2019

Yamamoto (UC Berkeley)

Canonicity for Monotonic Modal Logics

BLAST 2019 1 / 11

• = • •

History

Theorem (Fine)

Suppose a variety V of Boolean algebras with operators (BAOs) is elementarily generated, i.e., generated by the duals of members of a class of Kripke frames definable in first-order logic. Then V is canonical, i.e., closed under canonical extensions.

Our goal is to extend this for monotonic Boolean expansions (BAMs).

Definition

A BAM (B, \Box) is a Boolean algebra B expanded with an operation $\Box: B \to B$ that is monotonic, i.e., for $x, y \in B$, $\Box x \leq \Box y$ whenever $x \leq y$.

< 回 ト < 三 ト < 三 ト

Complex Duality for BAMs

Definition

A monotonic neighborhood frame is a pair (F, N^F) of a set F and a neighborhood function $N^F : F \to \mathscr{P}(\mathscr{P}(F))$ s.t. for every $w \in F$ the family $N^F(w)$ is closed under supersets. A member of $N^F(w)$ is a neighborhood of w.

Definition

The underlying BAM ^a F^+ of a monotonic neighborhood frame F is the BAM ($\mathscr{P}(F), \Box^F$), where

$$\Box^F(X) = \{ w \in F \mid X \in N^F(w) \}$$

^aalso known as the dual or the complex algebra

くほと くほと くほと

A First-Order-Like Language for Nbhd Frames

Definition (Chang; Litak et al.)

The (empty) language $L_{=}$ of coalgebraic predicate logic (CPL) has equations and is closed under Boolean combinations, existential quantification, and formation of formulas of the form

 $x \, \Box_y \, \phi$

where $\phi \in L_{=}$, x is a term, and y is a variable. We define

$$F \models w \Box_y \phi(y) \iff \phi(F) \in N^F(w)$$

where

$$\phi(F) = \{ v \in F \mid F \models \phi(v) \}.$$

CPL is compact and admits the upward and downward Löwenheim-Skolem Theorems and the omitting type theorem.

イロト 不得下 イヨト イヨト 三日

A Topological Example

For a topological space $X = (X, \tau)$, we associate a monotonic neighborhood frame $X^* = (X, N)$ defined by

$$U \in N(w) \iff w \in U^{\circ}.$$

(X* is a topological neighborhood frame.) The specialization preorder of X is the preorder \leq on X defined by $x \leq y \iff x \in \overline{\{y\}}$. It is "definable" in $L_{=}$:

$$x \lesssim y \iff X^* \models \neg (x \Box_z z \neq y).$$

Hence, there is an $L_{=}$ -sentence ϕ s.t. for topological spaces X

$$X^* \models \phi \iff X \text{ is } \mathsf{T}_0$$

i.e., the *-image of the class of T_0 spaces is CPL-elementary relative to the class of topological neighborhood frames. The same goes for T_1 spaces.

ヘロト 不得下 不足下 不足下

Modal-Logical Examples

For an equation $\boldsymbol{\alpha}$ in the language of BAMs of the form

 $\langle \text{purely Boolean positive term} \rangle \rightarrow \langle \text{positive term} \rangle = 1$ (1)

there exists an $L_{=}$ -sentence ϕ (a correspondent of α) s.t. for monotonic neighborhood frames

$$\mathsf{F}^+ \models \alpha \iff \mathsf{F} \models \phi.$$

(One uses the "minimum valuation argument.") It follows from Hansen's result that such an α defines a complete variety of BAMs.

Canonicity

The notion of canonical extensions for BAOs has been generalized for BAMs in a couple of different ways.

Definition

Let $A = (A, \Box)$ be a BAM. The (lower) canonical extension $A^{\sigma} = (A^{\sigma}, \Box^{\sigma})$ of A is the canonical extension of the Boolean algebra A expanded by the function \Box^{σ} , where

$$\Box^{\sigma}(u) = \bigvee_{u \supseteq x \in K(A^{\sigma})} \bigwedge_{x \subseteq a \in A} \Box(a).$$

Definition

A variety of BAMs is canonical if it is closed under canonical extensions.

· · · · · · · · ·

Result

Theorem

Let \mathcal{K} be a class CPL-elementary relative to the class of monotonic neighborhood frames. The variety of BAMs generated by $\{F^+ \mid F \in \mathcal{K}\}$ is canonical.

There are several other classes relative to which \mathcal{K} can be CPL-elementary for the result to still obtain (e.g., the class of topological neighborhood frames).

A Consequence

Reconsider an arbitrary equation $\boldsymbol{\alpha}$ of the form

 $\langle \text{purely Boolean positive term} \rangle \rightarrow \langle \text{positive term} \rangle = 1$ (1)

and a correspondent ϕ of α :

$$\mathcal{K} := \{ F \mid F^+ \models \alpha \} = \{ F \mid F \models \phi \}.$$

Recall that the variety V of BAMs defined by α is generated by $\{F^+ \mid F \in \mathcal{K}\}$ (completeness of V). By the Theorem, such a variety is canonical.

Proof of the Theorem I

We use the following lemma,

an analogue of what van Benthem used to Fine's theorem:

Lemma

For a monotonic neighborhood frame F, there exists another G s.t.

- F and G satisfies the same $L_{=}$ sentences and
- there is an embedding $F^{+\sigma} \hookrightarrow G^+$.

One can impose more closure conditions on F and G; e.g., if F is a topological neighborhood frame, so is G.

Proof of the Theorem II

We basically follow van Benthem's model-theoretic proof.

Proof.

- Expand F by a predicate for each subset of F.
- **2** Obtain G by " \aleph_0 -saturating" F.
- **③** G may not even be a monotonic nbhd frame. So tweak G:
 - Remove indefinable neighborhoods from *G*.
 - 2 Close off each $N^{G}(w)$ by intersections of some sort.
 - Solution Close off each $N^{G}(w)$ upward.
- F and G will still satisfy the same $L_{=}$ -sentences.
- Solution Consider the (surjective) function that assigns to each $w \in G$ the "type" realized by w.
- The function induces an embedding F^{+σ} → G⁺ between the dual objects.