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History

Theorem (Fine)

Suppose a variety V of Boolean algebras with operators (BAOs) is
elementarily generated, i.e., generated by the duals of members of a class
of Kripke frames definable in first-order logic.
Then V is canonical, i.e., closed under canonical extensions.

Our goal is to extend this for monotonic Boolean expansions (BAMs).

Definition

A BAM (B,�) is a Boolean algebra B expanded with an operation
� : B → B that is monotonic, i.e., for x , y ∈ B, �x ≤ �y whenever
x ≤ y .
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Complex Duality for BAMs

Definition

A monotonic neighborhood frame is a pair (F ,NF ) of a set F and a
neighborhood function NF : F →P(P(F )) s.t. for every w ∈ F the
family NF (w) is closed under supersets. A member of NF (w) is a
neighborhood of w .

Definition

The underlying BAM a F+ of a monotonic neighborhood frame F is the
BAM (P(F ),�F ), where

�F (X ) = {w ∈ F | X ∈ NF (w)}
aalso known as the dual or the complex algebra
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A First-Order-Like Language for Nbhd Frames

Definition (Chang; Litak et al.)

The (empty) language L= of coalgebraic predicate logic (CPL) has
equations and is closed under Boolean combinations, existential
quantification, and formation of formulas of the form

x �y φ

where φ ∈ L=, x is a term, and y is a variable.
We define

F |= w �y φ(y) ⇐⇒ φ(F ) ∈ NF (w)

where
φ(F ) = {v ∈ F | F |= φ(v)}.

CPL is compact and admits the upward and downward
Löwenheim-Skolem Theorems and the omitting type theorem.
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A Topological Example

For a topological space X = (X , τ), we associate a monotonic
neighborhood frame X ∗ = (X ,N) defined by

U ∈ N(w) ⇐⇒ w ∈ U◦.

(X ∗ is a topological neighborhood frame.)
The specialization preorder of X is the preorder . on X defined by
x . y ⇐⇒ x ∈ {y}. It is “definable” in L=:

x . y ⇐⇒ X ∗ |= ¬(x �z z 6= y).

Hence, there is an L=-sentence φ s.t. for topological spaces X

X ∗ |= φ ⇐⇒ X is T0

i.e., the ∗-image of the class of T0 spaces is CPL-elementary relative to the
class of topological neighborhood frames. The same goes for T1 spaces.
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Modal-Logical Examples

For an equation α in the language of BAMs of the form

〈purely Boolean positive term〉 → 〈positive term〉 = 1 (1)

there exists an L=-sentence φ (a correspondent of α) s.t. for monotonic
neighborhood frames

F+ |= α ⇐⇒ F |= φ.

(One uses the “minimum valuation argument.”)
It follows from Hansen’s result that such an α defines a complete variety
of BAMs.
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Canonicity

The notion of canonical extensions for BAOs has been generalized for
BAMs in a couple of different ways.

Definition

Let A = (A,�) be a BAM. The (lower) canonical extension
Aσ = (Aσ,�σ) of A is the canonical extension of the Boolean algebra A
expanded by the function �σ, where

�σ(u) =
∨

u⊇x∈K(Aσ)

∧
x⊆a∈A

�(a).

Definition

A variety of BAMs is canonical if it is closed under canonical extensions.
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Result

Theorem

Let K be a class CPL-elementary relative to the class of monotonic
neighborhood frames. The variety of BAMs generated by {F+ | F ∈ K} is
canonical.

There are several other classes relative to which K can be CPL-elementary
for the result to still obtain (e.g., the class of topological neighborhood
frames).
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A Consequence

Reconsider an arbitrary equation α of the form

〈purely Boolean positive term〉 → 〈positive term〉 = 1 (1)

and a correspondent φ of α:

K := {F | F+ |= α} = {F | F |= φ}.

Recall that the variety V of BAMs defined by α is generated by
{F+ | F ∈ K} (completeness of V ).
By the Theorem, such a variety is canonical.
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Proof of the Theorem I

We use the following lemma,
an analogue of what van Benthem used to Fine’s theorem:

Lemma

For a monotonic neighborhood frame F , there exists another G s.t.

F and G satisfies the same L= sentences and

there is an embedding F+σ ↪→ G+.

One can impose more closure conditions on F and G ;
e.g., if F is a topological neighborhood frame, so is G .
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Proof of the Theorem II

We basically follow van Benthem’s model-theoretic proof.

Proof.
1 Expand F by a predicate for each subset of F .

2 Obtain G by “ℵ0-saturating” F .
3 G may not even be a monotonic nbhd frame. So tweak G :

1 Remove indefinable neighborhoods from G .
2 Close off each NG (w) by intersections of some sort.
3 Close off each NG (w) upward.

4 F and G will still satisfy the same L=-sentences.

5 Consider the (surjective) function
that assigns to each w ∈ G the “type” realized by w .

6 The function induces an embedding F+σ ↪→ G+

between the dual objects.
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