The Constraint Satisfaction Dichotomy Theorem for Beginners Tutorial – Part 2

Ross Willard

University of Waterloo

BLAST 2019 CU Boulder, May 22, 2019

Recall:

An algebra $\mathbb{A} = (A, \mathcal{F})$ is:

- idempotent if every $f \in \mathcal{F}$ satisfies $(\forall x) f(x, x, ..., x) = x$.
- Taylor if it is idempotent and has a term operation $t(x_1, \ldots, x_n)$ satisfying identities of the form $(\forall x, y \ldots) t(vars) = t(vars')$ forcing t to not be a projection.

A (multi-sorted) <u>CSP instance compatible with \mathbb{A} consists of</u>

- a family (A_{xi} : 1 ≤ i ≤ n) of subalgebras of A (indexed by variables), and
- a set $\{C_t : 1 \le t \le m\}$ of "constraints" of the form $R_t(x_{i_1}, \ldots, x_{i_k})$ where

$$R_t \leq_{sd} \mathbb{A}_{x_{i_1}} \times \cdots \times \mathbb{A}_{x_{i_k}}.$$

Assuming Θ is a CSP instance compatible with a Taylor algebra \mathbb{A} and satisfying some level of local consistency,

How can Θ nonetheless be inconsistent?

One obvious way: if it encodes linear equations.

Plan for today: to explain in detail how compatible subdirect relations of Taylor algebras encode linear equations.

- In particular, the role of:
 - abelian congruences
 - critical rectangular relations
 - strands
 - similarity

I will explain by examples, using "Maltsev reducts of groups."

Definition

Given a group \mathbb{G} , its <u>Maltsev reduct</u> is the algebra $\mathbb{G}^{aff} = (G, xy^{-1}z)$.

Note:

- \mathbb{G}^{aff} is Taylor.
- **2** \mathbb{G} and \mathbb{G}^{aff} have the same congruences.
- Some of the relations compatible with G^{aff} are any cosets (left or right) of subgroups H ≤ G ×···×G.

Example 1: \mathbb{Z}_p

We've already seen $\mathbb{Z}_p^{aff} = (\mathbb{Z}_p, x-y+z).$

Norm
$$\mathbb{Z}_p = \int_{\{0\}}^{\mathbb{Z}_p} \operatorname{so} \operatorname{Con} \mathbb{Z}_p^{aff} = \int_{0}^{1} \operatorname{(abelian)}$$

A relation compatible with $\mathbb{Z}_2^{\textit{aff}}$ is

$$L_{111} = \{(x, y, z) \in (\mathbb{Z}_2)^3 : x + y + z = 1\}.$$

Observe that the relation L_{111} has the following properties:

- L₁₁₁ is subdirect.
- 2 L_{111} is "functional at every variable."
 - ► This is equivalent to L₁₁₁ being <u>fork-free</u>, where a <u>fork</u> is a pair of elements in the relation which disagree at exactly one coordinate.

Other properties of L_{111} :

- L_{111} is indecomposable: there is no partition of its coordinates such that L_{111} is the product of its projections onto the two subsets.
- L_{111} is maximal in the lattice of subuniverses of $\mathbb{Z}_2^{aff} \times \mathbb{Z}_2^{aff} \times \mathbb{Z}_2^{aff}$.

The unique strand of this relation is $\{0,1\} \times \{0,1\} \times \{0,1\}$.

Example 2: \mathbb{S}_3

Consider the symmetric group \mathbb{S}_3 of order 6:

$$S_3 = \langle a, b \mid a^3 = b^2 = 1, \ ab = ba^{-1} \rangle \\ = \{1, a, a^2\} \cup \{b, ba, ba^2\}.$$

Norm
$$\mathbb{S}_3 = \bigvee_{\{1\}}^{S_3}$$
 so $\operatorname{Con} \mathbb{S}_3^{aff} = \bigcup_{0}^{1} \equiv_N \text{ (abelian)}$

Let $R^* = \{(x, y, z) \in (S_3)^3 : x \equiv_N y \equiv_N z\}.$

For each $c, d \in \mathbb{Z}_3$ let

$$\begin{array}{rcl} R_{cd} & = & \{(a^i, a^j, a^k) \, : \, i+j+k = c \pmod{3}\} \\ & \cup & \{(ba^i, ba^j, ba^k) \, : \, i+j+k = d \pmod{3}\}. \end{array}$$

Observe that:

- R_{01} is subdirect, fork-free and indecomposable.
- R₀₁ supports two distinct (and disjoint) strands:

 $N \times N \times N$ and $N^c \times N^c \times N^c$.

Ross Willard (Waterloo)

$$\begin{array}{rcl} R_{01} & = & \{(a^{i},a^{j},a^{k}) \, : \, i+j+k=0 \; (\bmod \; 3)\} \\ & \cup & \{(ba^{i},ba^{j},ba^{k}) \, : \, i+j+k=1 \; (\bmod \; 3)\}. \end{array}$$

One more property:

• R_{01} is meet-irreducible in the subuniverse lattice of $\mathbb{S}_3^{aff} \times \mathbb{S}_3^{aff} \times \mathbb{S}_3^{aff}$.

Proof sketch.

Recall
$$R^* = \{(x, y, z) \in (S_3)^3 : x \equiv_N y \equiv_N z\}.$$

Claim: R^* is the unique minimal subuniverse properly containing R_{01} . First, it's easy to see that R_{01} is maximal in R^* .

Suppose *B* is a subuniverse of $(\mathbb{S}_3^{aff})^3$ containing R_{01} and some $\mathbf{x} \notin R^*$. WLOG, $\mathbf{x} = (b, a, a^2)$. Also note that $(a, a, a) \in R_{01}$.

Then $(b, a, a^2)(a, a, a)^{-1}(b, a, a^2) = (a, a, 1) \in B \cap (R^* \setminus R_{01}).$

Using the R_{cd} 's, we can encode <u>two</u> systems of linear equations over \mathbb{Z}_3 on **parallel strands** through cosets of N.

From a CSP perspective, such parallel systems are easily solved.

Example 3: SL(2,5)

Let $\mathbb{G} = \mathbb{SL}(2,5)$ (the group of $M \in Mat_{2 \times 2}(\mathbb{Z}_5)$ with det(M) = 1).

|G| = 120, $Z(\mathbb{G}) = \{1, -1\}$, and $\mathbb{G}/Z(\mathbb{G}) \cong \mathbb{A}_5$. Let $N = \{1, -1\}$.

Norm
$$\mathbb{G} = \begin{bmatrix} SL(2,5) \\ N \\ \{1\} \end{bmatrix}$$
 so $\operatorname{Con} \mathbb{G}^{aff} = \begin{bmatrix} 1 \\ \mu \text{ (abelian)} \\ 0 \end{bmatrix}$

Let $G(\mu) = \{(x, y) \in G^2 : x \mu y\} \leq \mathbb{G}^2$. Define the map $h : G(\mu) \to \mathbb{Z}_2$ by

$$h((x,y)) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{otherwise (i.e., } x = -y). \end{cases}$$

It is a homomorphism $\mathbb{G}(\mu) \to \mathbb{Z}_2$ (because N is central).

Thus we can define

$$egin{array}{rcl} R^* &=& G(\mu)^3 \ R_0 &=& \{({f x},{f y},{f z})\in G(\mu)^3\,:\,h({f x})+h({f y})+h({f z})=0\} \ R_1 &=& \{({f x},{f y},{f z})\in G(\mu)^3\,:\,h({f x})+h({f y})+h({f z})=1\} \end{array}$$

all viewed as 6-ary relations compatible with $\mathbb{G}^{\textit{aff}}.$

Properties of R_0 and R_1 :

- **1** Each is subdirect, fork-free and indecomposable.
- 2 Each is meet-irreducible in the subuniverse lattice of $(\mathbb{G}^{aff})^6$. $R^* = G(\mu)^3$ is their common upper cover (exercise).
- Each supports 3,600 distinct strands, each of the form

 $A^2 \times B^2 \times C^2$

where A, B, C are μ -classes (cosets of N).

- **(**) Restricted to any strand, R_0 or R_1 defines a linear equation.
- Interstrands "cross" each other; CSPs do not parallelize this time.

This is the interesting situation; doesn't reduce to simpler scenarios.

It turns out that strands being "fully linked" (like this example) is connected to the commutator condition $[1, \mu] = 0$.

Summary of the 3 examples

 $\begin{array}{l} \bullet \quad L_{111} \leq \mathbb{Z}_2^{aff} \times \mathbb{Z}_2^{aff} \times \mathbb{Z}_2^{aff} \\ \bullet \quad R_{01} \leq \mathbb{S}_3^{aff} \times \mathbb{S}_3^{aff} \times \mathbb{S}_3^{aff} \\ \bullet \quad R_0 \leq \mathbb{G}^{aff} \times \mathbb{G}^{aff} \times \mathbb{G}^{aff} \times \mathbb{G}^{aff} \times \mathbb{G}^{aff} \times \mathbb{G}^{aff} \text{ where } \mathbb{G} = \mathbb{SL}(2,5). \end{array}$

 $\operatorname{Con} \mathbb{A} = \left(\bigvee_{\mu} \right)$

Common properties:

- Potatoes \mathbb{A} are subdirectly irreducible (SI).
- Relations R are compatible, subdirect.
- 8 Relations are fork-free.
- Relations are indecomposable and meet-irreducible (= <u>critical</u>).
- The minimal upper cover R^* of the relation R is the coordinatewise μ -closure of R (μ = the monolith).
- $\mathbf{0}~\mu$ is "abelian."

Centrality and the commutator

Let \mathbb{A} be any algebra. Let $\alpha, \beta \in \operatorname{Con} \mathbb{A}$.

There is a relation " α centralizes β " on congruences.

 $[\alpha,\beta] = \mathbf{0} \quad \iff \quad \alpha \text{ centralizes } \beta.$

 $\alpha \text{ is "abelian"} \quad \Longleftrightarrow \quad [\alpha, \alpha] = \mathbf{0}.$

For all β there is a largest α such that $[\alpha, \beta] = 0$.

This largest α is denoted (0 : β) and called the <u>annihilator</u> of β .

Examples:

Theorem (comb. of Kearnes & Szendrei and Freese & McKenzie)

Suppose $\mathbb{A}_1, \ldots, \mathbb{A}_n$ are finite algebras in an idempotent congruence modular variety with $n \geq 3$. Assume $R \leq_{sd} \mathbb{A}_1 \times \cdots \times \mathbb{A}_n$ and R is critical and fork-free, and let R^* be its unique upper cover.

- **Q** Each \mathbb{A}_i is subdirectly irreducible with abelian monolith μ_i .
- **2** R^* is the $\mu_1 \times \cdots \times \mu_n$ -closure of R.

3
$$\mathbb{A}_i/(0:\mu_i) \cong \mathbb{A}_j/(0:\mu_j)$$
 for all i, j .

- There exists a prime p such that each µ_i-class (for any i) has size a power of p.
- If $(0: \mu_i) = 1$ for some (equivalently all) *i*, then:
 - All μ_i -classes (for all *i*) have the same fixed size p^k .
 - 2 Each μ_i-class can be identified with a k-dimensional vector space over Z_p, and with respect to these identifications, R restricted to any strand encodes k linear equations over Z_p.
 - Let A₁(µ₁) = µ₁ considered as a subalgebra of A₁ × A₁. There exists a simple affine algebra M with |M| = p^k, and a surjective homomorphism A₁(µ₁) → M such that 0_{A1} is a kernel-class.

Almost the same thing can be proved in Taylor varieties.

Theorem (TCT + last-minute help from Keith (thanks!))

Suppose $\mathbb{A}_1, \ldots, \mathbb{A}_n$ are finite algebras in an (idempotent) Taylor variety with $n \geq 3$. Assume $R \leq_{sd} \mathbb{A}_1 \times \cdots \times \mathbb{A}_n$ and R is critical and fork-free, and let R^* be its unique upper cover.

Q Each \mathbb{A}_i is subdirectly irreducible with abelian monolith μ_i .

2)
$$R^*$$
 is the $\mu_1 imes \cdots imes \mu_n$ -closure of R .

3
$$\mathbb{A}_i/(0:\mu_i) \cong \mathbb{A}_j/(0:\mu_j)$$
 for all i, j .

There exists a prime p such that each µ_i-class (for any i) has size a power of p.

If
$$(0: \mu_i) = 1$$
 for some (equivalently all) *i*, then:

- All μ_i -classes (for all *i*) have the same fixed size p^k .
- ② Coordinatization? (Conjecture: something nice is true.)
- There exists a simple affine algebra \mathbb{M} with $|M| = p^m$, and a surjective homomorphism $\mathbb{A}_1(\mu_1) \to \mathbb{M}$, such that 0_{A_1} is a kernel-class.

Added May 24: see Lecture 3 for an improved statement.

Relativizing to quotients

Suppose $\mathbb{A}_1, \ldots, \mathbb{A}_n$ are finite algebras, and for each *i* we have a meet-irreducible congruence $\delta_i \in \text{Con } \mathbb{A}_i$.

For each *i* let $\overline{\mathbb{A}}_i = \mathbb{A}_i / \delta_i$. $\overline{\mathbb{A}}_i$ is SI.

Every $\overline{R} \leq \overline{\mathbb{A}}_1 \times \cdots \times \overline{\mathbb{A}}_n$ naturally pulls back to a $\delta_1 \times \cdots \times \delta_n$ -closed relation $R \leq \mathbb{A}_1 \times \cdots \times \mathbb{A}_n$. (*R* can "encode" whatever \overline{R} encodes.)

 $\overline{\mathbb{A}}_i = \mathbb{A}_i / \delta_i.$

 $\overline{R} \leq \overline{\mathbb{A}}_1 \times \cdots \times \overline{\mathbb{A}}_n, \quad R \leq \mathbb{A}_1 \times \cdots \times \mathbb{A}_n \text{ is the natural pull-back}.$

Observe that:	If \overline{R} is	then	<i>R</i> is	
	subdirect		subdirect	
	critical		critical	
	fork-free		rectangular	

(When R is rectangular, the δ_i and fork-free \overline{R} are uniquely determined.)

Take-away: the last two theorems have versions relativized to meet-irreducible congruences; "fork-free" is replaced by "rectangular."

Ross Willard (Waterloo)

CSP Dichotomy Theorem

Similarity

Suppose, in some CSP instance, we have a variable x whose potato has more than one meet-irreducible congruence.

If we have two constraints $R(x, y_1, z_1), R'(x, y_2, z_2)$ (as in the theorem) both mentioning x, then their corresponding congruences $\delta_x^R, \delta_x^{R'}$ at the coordinate x may be the same or different.

If δ^R_x = δ^{R'}_x, then the linear equations encoded by the two constraints are both defined on the same quotient of A_x (so are "connected").
What if δ^R_x ≠ δ^{R'}_x?

For example, suppose $\mathbb{A}_{x} = (\mathbb{Z}_{4} \times \mathbb{Z}_{2})^{aff}$.

Con \mathbb{A}_{x} "forces" linear dependencies between any triple of incomparable SI quotients.

In congruence modular varieties, this is explained via the relation of similarity on SIs. (Freese, Freese & McKenzie).

There is a version of similarity applicable to finite SIs in Taylor varieties (Zhuk). (See Lecture 3.)