The Constraint Satisfaction Dichotomy Theorem for Beginners
 Tutorial - Part 2

Ross Willard

University of Waterloo

BLAST 2019
CU Boulder, May 22, 2019

Recall:

An algebra $\mathbb{A}=(A, \mathcal{F})$ is:

- idempotent if every $f \in \mathcal{F}$ satisfies $(\forall x) f(x, x, \ldots, x)=x$.
- Taylor if it is idempotent and has a term operation $t\left(x_{1}, \ldots, x_{n}\right)$ satisfying identities of the form $(\forall x, y \ldots) t($ vars $)=t\left(\right.$ vars $\left.^{\prime}\right)$ forcing t to not be a projection.

A (multi-sorted) CSP instance compatible with \mathbb{A} consists of

- a family ($\left.\mathbb{A}_{x_{i}}: 1 \leq i \leq n\right)$ of subalgebras of \mathbb{A} (indexed by variables), and
- a set $\left\{C_{t}: 1 \leq t \leq m\right\}$ of "constraints" of the form $R_{t}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ where

$$
R_{t} \leq_{s d} \mathbb{A}_{x_{i_{1}}} \times \cdots \times \mathbb{A}_{x_{i_{k}}}
$$

Assuming Θ is a CSP instance compatible with a Taylor algebra \mathbb{A} and satisfying some level of local consistency,

$$
\text { How can } \Theta \text { nonetheless be inconsistent? }
$$

One obvious way: if it encodes linear equations.

Plan for today: to explain in detail how compatible subdirect relations of Taylor algebras encode linear equations.

- In particular, the role of:
- abelian congruences
- critical rectangular relations
- strands
- similarity

I will explain by examples, using "Maltsev reducts of groups."

Definition

Given a group \mathbb{G}, its Maltsev reduct is the algebra $\mathbb{G}^{\text {aff }}=\left(G, x y^{-1} z\right)$.

Note:
(1) $\mathbb{G}^{\text {aff }}$ is Taylor.
(2) \mathbb{G} and $\mathbb{G}^{\text {aff }}$ have the same congruences.
(3) The relations compatible with $\mathbb{G}^{\text {aff }}$ are any cosets (left or right) of subgroups $H \leq \mathbb{G} \times \cdots \times \mathbb{G}$.

Example 1: \mathbb{Z}_{p}

We've already seen $\mathbb{Z}_{p}^{\text {aff }}=\left(\mathbb{Z}_{p}, x-y+z\right)$.

$$
\text { Norm } \mathbb{Z}_{p}=\left[\begin{array}{l}
\mathbb{Z}_{p} \\
\cdot\{0\}
\end{array} \quad \text { so } \quad \operatorname{Con} \mathbb{Z}_{p}^{\text {aff }}={ }_{\cdot}^{1(\text { abelian })}\right.
$$

A relation compatible with $\mathbb{Z}_{2}^{\text {aff }}$ is

$$
L_{111}=\left\{(x, y, z) \in\left(\mathbb{Z}_{2}\right)^{3}: x+y+z=1\right\} .
$$

Observe that the relation L_{111} has the following properties:
(1) L_{111} is subdirect.
(2) L_{111} is "functional at every variable."

- This is equivalent to L_{111} being fork-free, where a fork is a pair of elements in the relation which disagree at exactly one coordinate.

a fork

Other properties of L_{111} :
(3) L_{111} is indecomposable: there is no partition of its coordinates such that L_{111} is the product of its projections onto the two subsets.
(9) L_{111} is maximal in the lattice of subuniverses of $\mathbb{Z}_{2}^{\text {aff }} \times \mathbb{Z}_{2}^{\text {aff }} \times \mathbb{Z}_{2}^{\text {aff }}$.

The unique strand of this relation is $\{0,1\} \times\{0,1\} \times\{0,1\}$.

Example 2: \mathbb{S}_{3}

Consider the symmetric group \mathbb{S}_{3} of order 6:

$$
\begin{aligned}
\mathbb{S}_{3} & =\left\langle a, b \mid a^{3}=b^{2}=1, a b=b a^{-1}\right\rangle \\
& =\left\{1, a, a^{2}\right\} \cup\left\{b, b a, b a^{2}\right\} .
\end{aligned}
$$

Let $R^{*}=\left\{(x, y, z) \in\left(S_{3}\right)^{3}: x \equiv_{N} y \equiv_{N} z\right\}$.
For each $c, d \in \mathbb{Z}_{3}$ let

$$
\begin{aligned}
R_{c d} & =\left\{\left(a^{i}, a^{j}, a^{k}\right): i+j+k=c(\bmod 3)\right\} \\
& \cup\left\{\left(b a^{i}, b a^{j}, b a^{k}\right): i+j+k=d(\bmod 3)\right\}
\end{aligned}
$$

Observe that:

- R_{01} is subdirect, fork-free and indecomposable.
- R_{01} supports two distinct (and disjoint) strands:

$$
N \times N \times N \quad \text { and } \quad N^{c} \times N^{c} \times N^{c}
$$

$$
\begin{aligned}
R_{01} & =\left\{\left(a^{i}, a^{j}, a^{k}\right): i+j+k=0(\bmod 3)\right\} \\
& \cup\left\{\left(b a^{i}, b a^{j}, b a^{k}\right): i+j+k=1(\bmod 3)\right\} .
\end{aligned}
$$

One more property:

- R_{01} is meet-irreducible in the subuniverse lattice of $\mathbb{S}_{3}^{a f f} \times \mathbb{S}_{3}^{a f f} \times \mathbb{S}_{3}^{a f f}$.

Proof sketch.

Recall $R^{*}=\left\{(x, y, z) \in\left(S_{3}\right)^{3}: x \equiv_{N} y \equiv_{N} z\right\}$.
Claim: R^{*} is the unique minimal subuniverse properly containing R_{01}.
First, it's easy to see that R_{01} is maximal in R^{*}.
Suppose B is a subuniverse of $\left(\mathbb{S}_{3}^{a f f}\right)^{3}$ containing R_{01} and some $\mathbf{x} \notin R^{*}$. WLOG, $\mathbf{x}=\left(b, a, a^{2}\right)$. Also note that $(a, a, a) \in R_{01}$.
Then $\left(b, a, a^{2}\right)(a, a, a)^{-1}\left(b, a, a^{2}\right)=(a, a, 1) \in B \cap\left(R^{*} \backslash R_{01}\right)$.

Using the $R_{c d}$'s, we can encode two systems of linear equations over \mathbb{Z}_{3} on parallel strands through cosets of N.

From a CSP perspective, such parallel systems are easily solved.

Example 3: $\mathbb{S L}(2,5)$

Let $\mathbb{G}=\mathbb{S L}(2,5)$ (the group of $M \in \operatorname{Mat}_{2 \times 2}\left(\mathbb{Z}_{5}\right)$ with $\left.\operatorname{det}(M)=1\right)$.

$$
|G|=120, \quad Z(\mathbb{G})=\{1,-1\}, \quad \text { and } \mathbb{G} / Z(\mathbb{G}) \cong \mathbb{A}_{5} . \text { Let } N=\{1,-1\} .
$$

Let $G(\mu)=\left\{(x, y) \in G^{2}: x \mu y\right\} \leq \mathbb{G}^{2}$. Define the map $h: G(\mu) \rightarrow \mathbb{Z}_{2}$ by

$$
h((x, y))= \begin{cases}0 & \text { if } x=y \\ 1 & \text { otherwise (i.e., } x=-y)\end{cases}
$$

It is a homomorphism $\mathbb{G}(\mu) \rightarrow \mathbb{Z}_{2}$ (because N is central).

Thus we can define

$$
\begin{aligned}
& R^{*}=G(\mu)^{3} \\
& R_{0}=\left\{(\mathbf{x}, \mathbf{y}, \mathbf{z}) \in G(\mu)^{3}: h(\mathbf{x})+h(\mathbf{y})+h(\mathbf{z})=0\right\} \\
& R_{1}=\left\{(\mathbf{x}, \mathbf{y}, \mathbf{z}) \in G(\mu)^{3}: h(\mathbf{x})+h(\mathbf{y})+h(\mathbf{z})=1\right\}
\end{aligned}
$$

all viewed as 6 -ary relations compatible with $\mathbb{G}^{\text {aff }}$.

Properties of R_{0} and R_{1} :

(1) Each is subdirect, fork-free and indecomposable.
(2) Each is meet-irreducible in the subuniverse lattice of $\left(\mathbb{G}^{a f f}\right)^{6}$. $R^{*}=G(\mu)^{3}$ is their common upper cover (exercise).
(3) Each supports 3,600 distinct strands, each of the form

$$
A^{2} \times B^{2} \times C^{2}
$$

where A, B, C are μ-classes (cosets of N).
(9) Restricted to any strand, R_{0} or R_{1} defines a linear equation.
(5) The strands "cross" each other; CSPs do not parallelize this time.

This is the interesting situation; doesn't reduce to simpler scenarios.
It turns out that strands being "fully linked" (like this example) is connected to the commutator condition $[1, \mu]=0$.

Summary of the 3 examples

(1) $L_{111} \leq \mathbb{Z}_{2}^{\text {aff }} \times \mathbb{Z}_{2}^{\text {aff }} \times \mathbb{Z}_{2}^{\text {aff }}$
(2) $R_{01} \leq \mathbb{S}_{3}^{\text {aff }} \times \mathbb{S}_{3}^{a f f} \times \mathbb{S}_{3}^{\text {aff }}$
(3) $R_{0} \leq \mathbb{G}^{\text {aff }} \times \mathbb{G}^{\text {aff }}$ where $\mathbb{G}=\mathbb{S L}(2,5)$.

Common properties:
(1) Potatoes \mathbb{A} are subdirectly irreducible (SI).
(2) Relations R are compatible, subdirect.

(3) Relations are fork-free.
(9) Relations are indecomposable and meet-irreducible ($=\underline{\text { critical). }}$
(3) The minimal upper cover R^{*} of the relation R is the coordinatewise μ-closure of $R(\mu=$ the monolith $)$.
(0) μ is "abelian."

Centrality and the commutator

Let \mathbb{A} be any algebra. Let $\alpha, \beta \in \operatorname{Con} \mathbb{A}$.
There is a relation " α centralizes β " on congruences.
$[\alpha, \beta]=0 \quad \Longleftrightarrow \quad \alpha$ centralizes β.
α is "abelian" $\Longleftrightarrow \quad[\alpha, \alpha]=0$.
For all β there is a largest α such that $[\alpha, \beta]=0$.
This largest α is denoted $(0: \beta)$ and called the annihilator of β.

Examples:

(1) $\mathbb{Z}_{p}^{\text {aff }}: \quad$ monolith $=1, \quad[1,1]=0, \quad(0: 1)=1$.
(2) $\mathbb{S}_{3}^{\text {aff }}: \quad$ monolith $=\mu, \quad[\mu, \mu]=0, \quad(0: \mu)=\mu$.
(3) $\mathbb{S L}(2,5)^{\text {aff }}:$ monolith $=\mu, \quad[\mu, \mu]=0, \quad(0: \mu)=1$.

Theorem (comb. of Kearnes \& Szendrei and Freese \& McKenzie)

Suppose $\mathbb{A}_{1}, \ldots, \mathbb{A}_{n}$ are finite algebras in an idempotent congruence modular variety with $n \geq 3$. Assume $R \leq_{s d} \mathbb{A}_{1} \times \cdots \times \mathbb{A}_{n}$ and R is critical and fork-free, and let R^{*} be its unique upper cover.
(1) Each \mathbb{A}_{j} is subdirectly irreducible with abelian monolith μ_{i}.
(2) R^{*} is the $\mu_{1} \times \cdots \times \mu_{n}$-closure of R.
(3) $\mathbb{A}_{i} /\left(0: \mu_{i}\right) \cong \mathbb{A}_{j} /\left(0: \mu_{j}\right)$ for all i, j.
(9) There exists a prime p such that each μ_{i}-class (for any i) has size a power of p.
(5) If $\left(0: \mu_{i}\right)=1$ for some (equivalently all) i, then:
(1) All μ_{i}-classes (for all i) have the same fixed size p^{k}.
(2) Each μ_{i}-class can be identified with a k-dimensional vector space over \mathbb{Z}_{p}, and with respect to these identifications, R restricted to any strand encodes k linear equations over \mathbb{Z}_{p}.
(3) Let $\mathbb{A}_{1}\left(\mu_{1}\right)=\mu_{1}$ considered as a subalgebra of $\mathbb{A}_{1} \times \mathbb{A}_{1}$. There exists a simple affine algebra \mathbb{M} with $|M|=p^{k}$, and a surjective homomorphism $\mathbb{A}_{1}\left(\mu_{1}\right) \rightarrow \mathbb{M}$ such that $0_{A_{1}}$ is a kernel-class.

Almost the same thing can be proved in Taylor varieties.

Theorem (TCT + last-minute help from Keith (thanks!))

Suppose $\mathbb{A}_{1}, \ldots, \mathbb{A}_{n}$ are finite algebras in an (idempotent) Taylor variety with $n \geq 3$. Assume $R \leq_{s d} \mathbb{A}_{1} \times \cdots \times \mathbb{A}_{n}$ and R is critical and fork-free, and let R^{*} be its unique upper cover.
(1) Each \mathbb{A}_{i} is subdirectly irreducible with abelian monolith μ_{i}.
(2) R^{*} is the $\mu_{1} \times \cdots \times \mu_{n}$-closure of R.
(3) $\mathbb{A}_{i} /\left(0: \mu_{i}\right) \cong \mathbb{A}_{j} /\left(0: \mu_{j}\right)$ for all i, j.
(9) There exists a prime p such that each μ_{i}-class (for any i) has size a power of p.
(5) If $\left(0: \mu_{i}\right)=1$ for some (equivalently all) i, then:
(1) All μ_{i}-classes (for all i) have the same fixed size p^{k}.
(2) Coordinatization? (Conjecture: something nice is true.)
(3) There exists a simple affine algebra \mathbb{M} with $|M|=p^{m}$, and a surjective homomorphism $\mathbb{A}_{1}\left(\mu_{1}\right) \rightarrow \mathbb{M}$, such that $0_{A_{1}}$ is a kernel-class.

Added May 24: see Lecture 3 for an improved statement.

Relativizing to quotients

Suppose $\mathbb{A}_{1}, \ldots, \mathbb{A}_{n}$ are finite algebras, and for each i we have a meet-irreducible congruence $\delta_{i} \in \operatorname{Con} \mathbb{A}_{i}$.

For each i let $\overline{\mathbb{A}}_{i}=\mathbb{A}_{i} / \delta_{i} . \quad \overline{\mathbb{A}}_{i}$ is SI .
Every $\bar{R} \leq \overline{\mathbb{A}}_{1} \times \cdots \times \overline{\mathbb{A}}_{n}$ naturally pulls back to a $\delta_{1} \times \cdots \times \delta_{n}$-closed relation $R \leq \mathbb{A}_{1} \times \cdots \times \mathbb{A}_{n} . \quad(R$ can "encode" whatever \bar{R} encodes.)

$\overline{\mathbb{A}}_{i}=\mathbb{A}_{i} / \delta_{i}$.
$\bar{R} \leq \overline{\mathbb{A}}_{1} \times \cdots \times \overline{\mathbb{A}}_{n} . \quad R \leq \mathbb{A}_{1} \times \cdots \times \mathbb{A}_{n}$ is the natural pull-back.
Observe that:

If \bar{R} is \ldots	then
subdirect	R is \ldots
critical	subdirect
fork-free	critical
	rectangular

(When R is rectangular, the δ_{i} and fork-free \bar{R} are uniquely determined.)
Take-away: the last two theorems have versions relativized to meet-irreducible congruences; "fork-free" is replaced by "rectangular."

Similarity

Suppose, in some CSP instance, we have a variable x whose potato has more than one meet-irreducible congruence.

If we have two constraints $R\left(x, y_{1}, z_{1}\right), R^{\prime}\left(x, y_{2}, z_{2}\right)$ (as in the theorem) both mentioning x, then their corresponding congruences $\delta_{x}^{R}, \delta_{x}^{R^{\prime}}$ at the coordinate x may be the same or different.
(1) If $\delta_{x}^{R}=\delta_{x}^{R^{\prime}}$, then the linear equations encoded by the two constraints are both defined on the same quotient of \mathbb{A}_{x} (so are "connected").
(2) What if $\delta_{x}^{R} \neq \delta_{x}^{R^{\prime}}$?

For example, suppose $\mathbb{A}_{x}=\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right)^{\text {aff }}$.
Con \mathbb{A}_{x} "forces" linear dependencies between any triple of incomparable SI quotients.

In congruence modular varieties, this is explained via the relation of similarity on Sls. (Freese, Freese \& McKenzie).

There is a version of similarity applicable to finite SIs in Taylor varieties (Zhuk). (See Lecture 3.)

