On the Descending Central Series of Higher Commutators in Simple Algebras

Steven Weinell

CU Boulder

May 20, 2019

Preliminaries

- A congruence of an algebra \mathbf{A} is an equivalence relation on A that is the kernel of a homomorphism from \mathbf{A} to another algebra.

Preliminaries

- A congruence of an algebra \mathbf{A} is an equivalence relation on A that is the kernel of a homomorphism from \mathbf{A} to another algebra.
- An algebra, A, always has at least two congruences:
- $0_{\mathbf{A}}=\{(a, a) \mid a \in A\}$, the equality relation.
- $1_{\mathbf{A}}=A \times A$, the universal binary relation.

Preliminaries

- A congruence of an algebra \mathbf{A} is an equivalence relation on A that is the kernel of a homomorphism from \mathbf{A} to another algebra.
- An algebra, A, always has at least two congruences:
- $0_{\mathbf{A}}=\{(a, a) \mid a \in A\}$, the equality relation.
- $1_{\mathbf{A}}=A \times A$, the universal binary relation.
- An algebra, \mathbf{A}, is simple if its only congruences are $0_{\mathbf{A}}$ and $1_{\mathbf{A}}$.

Preliminaries

- A congruence of an algebra \mathbf{A} is an equivalence relation on A that is the kernel of a homomorphism from \mathbf{A} to another algebra.
- An algebra, A, always has at least two congruences:
- $0_{\mathbf{A}}=\{(a, a) \mid a \in A\}$, the equality relation.
- $1_{\mathbf{A}}=A \times A$, the universal binary relation.
- An algebra, \mathbf{A}, is simple if its only congruences are $0_{\mathbf{A}}$ and $1_{\mathbf{A}}$.
- The congruences of an algebra \mathbf{A} form a lattice ordered by \subseteq.

Preliminaries

- A congruence of an algebra \mathbf{A} is an equivalence relation on A that is the kernel of a homomorphism from \mathbf{A} to another algebra.
- An algebra, A, always has at least two congruences:
- $0_{\mathbf{A}}=\{(a, a) \mid a \in A\}$, the equality relation.
- $1_{\mathbf{A}}=A \times A$, the universal binary relation.
- An algebra, \mathbf{A}, is simple if its only congruences are $0_{\mathbf{A}}$ and $1_{\mathbf{A}}$.
- The congruences of an algebra \mathbf{A} form a lattice ordered by \subseteq.
- The congruence lattice for a simple algebra \mathbf{A} is

Binary Commutator $[\alpha, \beta]$

For congruences α, β we let $M(\alpha, \beta)$ be the set of all squares of the form:

such that

- τ is a term in the language of \mathbf{A}
- $\mathbf{a}_{1} \equiv{ }_{\alpha} \mathbf{b}_{1}$
- $\mathbf{a}_{2} \equiv{ }_{\beta} \mathbf{b}_{2}$

A satisfies the α, β-term condition modulo δ if for any square as above in $M(\alpha, \beta)$, we have that

- $\tau^{\mathbf{A}}\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right) \equiv{ }_{\delta} \tau^{\mathbf{A}}\left(\mathbf{a}_{1}, \mathbf{b}_{2}\right)$ implies $\tau^{\mathbf{A}}\left(\mathbf{b}_{1}, \mathbf{a}_{2}\right) \equiv_{\delta} \tau^{\mathbf{A}}\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right)$

The binary commutator of α and $\beta,[\alpha, \beta]$, is the smallest δ for which this holds.

$\left[1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=0_{\mathbf{A}}$

We call an element of $M\left(1_{\mathbf{A}}, 1_{\mathbf{A}}\right)$ a term square. Thus a term square is a square of the form:

$$
\begin{aligned}
& \tau^{\mathbf{A}}\left(\mathbf{a}_{1}, \mathbf{b}_{2}\right)=r_{2} \\
& \tau^{\mathbf{A}}\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right)=r_{1}
\end{aligned} \quad \bullet \begin{aligned}
& r_{4}=\tau^{\mathbf{A}}\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right) \\
& r_{3}=\tau^{\mathbf{A}}\left(\mathbf{b}_{1}, \mathbf{a}_{2}\right)
\end{aligned}
$$

where $\tau(\mathbf{x}, \mathbf{y})$ is a term in the language of \mathbf{A} and $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{b}_{1}$, and \mathbf{b}_{2} are tuples of values from A. We write

$$
S_{\tau \mathbf{A}}\left(\mathbf{a}_{i}, \mathbf{b}_{i}\right)=\left(r_{1}, r_{2}, r_{3}, r_{4}\right)
$$

to represent the above term square.

$\left[1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=0_{\mathbf{A}}$

An algebra fails the 2-dimensional term condition if there are tuples $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{b}_{1}, \mathbf{b}_{2}$, and a term $\tau(\mathbf{x}, \mathbf{y})$ such that the term square

$$
S_{\tau \mathbf{A}}\left(\mathbf{a}_{i}, \mathbf{b}_{i}\right)=\left(r_{1}, r_{2}, r_{3}, r_{4}\right)
$$

has equality on the bold red edge and inequality on the dashed red edge in the display below.

$\left[1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=0_{\mathbf{A}}$

An algebra fails the 2-dimensional term condition if there are tuples $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{b}_{1}, \mathbf{b}_{2}$, and a term $\tau(\mathbf{x}, \mathbf{y})$ such that the term square

$$
S_{\tau \mathbf{A}}\left(\mathbf{a}_{i}, \mathbf{b}_{i}\right)=\left(r_{1}, r_{2}, r_{3}, r_{4}\right)
$$

has equality on the bold red edge and inequality on the dashed red edge in the display below.

$\left[1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=0_{\mathbf{A}}$ if and only if \mathbf{A} satisfies the 2-dimensional term condition.

$\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=0_{\mathbf{A}}$

A term cube is a cube of the form:

$$
\begin{aligned}
& \tau^{\mathbf{A}}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{b}_{3}\right)=r_{2} \bullet \\
& \tau^{\mathbf{A}}\left(\mathbf{b}_{1}, \mathbf{a}_{2}, \mathbf{b}_{3}\right)=r_{6} \bullet r_{4}= \\
& \\
& \\
& \tau^{\mathbf{A}}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right)=r_{1} \bullet \\
& \tau^{\mathbf{A}}\left(\mathbf{a}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right) \\
& \\
& r_{8}\left(\mathbf{b}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right)=r_{5} \bullet \tau^{\mathbf{A}}\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right) \\
& r_{3}= \tau^{\mathbf{A}}\left(\mathbf{a}_{1}, \mathbf{b}_{2}, \mathbf{a}_{3}\right) \\
& r_{7}=\tau^{\mathbf{A}}\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{a}_{3}\right)
\end{aligned}
$$

where $\tau(\mathbf{x}, \mathbf{y}, \mathbf{z})$ is a term in the language of \mathbf{A}. We write

$$
C_{\tau^{\mathbf{A}}}\left(\mathbf{a}_{i}, \mathbf{b}_{i}\right)=\left(r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}, r_{8}\right)
$$

to represent the above term cube.

$\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=0_{\mathbf{A}}$

An algebra fails the 3-dimensional term condition if there are tuples $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$, and a term $\tau(\mathbf{x}, \mathbf{y}, \mathbf{z})$ such that the term cube

$$
C_{\tau^{\mathbf{A}}}\left(\mathbf{a}_{i}, \mathbf{b}_{i}\right)=\left(r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}, r_{8}\right)
$$

has equality on the bold red edges and inequality on the dashed red edge in the display below.

$\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=0_{\mathbf{A}}$

An algebra fails the 3-dimensional term condition if there are tuples $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$, and a term $\tau(\mathbf{x}, \mathbf{y}, \mathbf{z})$ such that the term cube

$$
C_{\tau^{\mathbf{A}}}\left(\mathbf{a}_{i}, \mathbf{b}_{i}\right)=\left(r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}, r_{8}\right)
$$

has equality on the bold red edges and inequality on the dashed red edge in the display below.

$\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=0_{\mathbf{A}}$ if and only if \mathbf{A} satisfies the 3-dimensional term condition.

Some Facts

- For a simple algebra \mathbf{A} :
- $\left[1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=1_{\mathbf{A}}$ if and only if \mathbf{A} fails the 2-dimensional term condition.
- $\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=1_{\mathbf{A}}$ if and only if \mathbf{A} fails the 3 -dimensional term condition.

Some Facts

- For a simple algebra \mathbf{A} :
- $\left[1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=1_{\mathbf{A}}$ if and only if \mathbf{A} fails the 2-dimensional term condition.
- $\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=1_{\mathbf{A}}$ if and only if \mathbf{A} fails the 3 -dimensional term condition.
- $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \bigwedge_{i=1}^{n} \alpha_{i}$

Some Facts

- For a simple algebra \mathbf{A} :
- $\left[1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=1_{\mathbf{A}}$ if and only if \mathbf{A} fails the 2-dimensional term condition.
- $\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=1_{\mathbf{A}}$ if and only if \mathbf{A} fails the 3 -dimensional term condition.
- $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \bigwedge_{i=1}^{n} \alpha_{i}$
- $\left[\alpha_{1}, \ldots, \alpha_{n}\right]=0_{\mathbf{A}}$ if $\alpha_{i}=0_{\mathbf{A}}$ for some $1 \leq i \leq n$.

Some Facts

- For a simple algebra \mathbf{A} :
- $\left[1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=1_{\mathbf{A}}$ if and only if \mathbf{A} fails the 2-dimensional term condition.
- $\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=1_{\mathbf{A}}$ if and only if \mathbf{A} fails the 3 -dimensional term condition.
- $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \bigwedge_{i=1}^{n} \alpha_{i}$
- $\left[\alpha_{1}, \ldots, \alpha_{n}\right]=0_{\mathbf{A}}$ if $\alpha_{i}=0_{\mathbf{A}}$ for some $1 \leq i \leq n$.
- $\left[\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1}\right] \leq\left[\alpha_{1}, \ldots, \alpha_{n}\right]$

Some Facts

- For a simple algebra \mathbf{A} :
- $\left[1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=1_{\mathbf{A}}$ if and only if \mathbf{A} fails the 2-dimensional term condition.
- $\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=1_{\mathbf{A}}$ if and only if \mathbf{A} fails the 3 -dimensional term condition.
- $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \bigwedge_{i=1}^{n} \alpha_{i}$
- $\left[\alpha_{1}, \ldots, \alpha_{n}\right]=0_{\mathbf{A}}$ if $\alpha_{i}=0_{\mathbf{A}}$ for some $1 \leq i \leq n$.
- $\left[\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1}\right] \leq\left[\alpha_{1}, \ldots, \alpha_{n}\right]$
- $[\underbrace{1_{\mathbf{A}}, \ldots, 1_{\mathbf{A}}, 1_{\mathbf{A}}}_{(n+1) \text { many }}] \leq[\underbrace{1_{\mathbf{A}}, \ldots, 1_{\mathbf{A}}}_{n \text { many }}]$

The Descending Central Series of Higher Commutators

$$
\begin{gathered}
1_{\mathbf{A}} \\
{\left[1_{\mathbf{A}}, 1_{\mathbf{A}}\right]} \\
{\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]} \\
{\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]}
\end{gathered}
$$

The Descending Central Series of Higher Commutators

$$
\begin{gathered}
1_{\mathbf{A}} \\
{\left[1_{\mathbf{A}}, 1_{\mathbf{A}}\right]} \\
{\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]} \\
{\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]}
\end{gathered}
$$

A weakly descending chain in the congruence lattice of \mathbf{A}.

Guiding Question

- Can any weakly descending chain be the descending central series of higher commutators?

Guiding Question

- Can any weakly descending chain be the descending central series of higher commutators?
- Given an arbitrary algebraic lattice, L, and a weakly descending chain

$$
1=\theta_{1} \geq \theta_{2} \geq \theta_{3} \geq \ldots
$$

can this chain be the descending central series of higher commutators for some algebra \mathbf{A} :

$$
\theta_{n}=[\underbrace{1_{\mathbf{A}}, \ldots, 1_{\mathbf{A}}}_{n \text { many }}]
$$

The Simple Case

$\bullet_{0}^{1=} \theta_{1}=\theta_{2}=\ldots$

The Simple Case

$\int_{0}^{1=} \theta_{1}=\theta_{2}=\ldots$
$\bullet \begin{aligned} & 1=\theta_{1} \\ & 0=\theta_{2}=\theta_{3}=\ldots\end{aligned}$

The Simple Case

$\int_{0}^{1=} \theta_{1}=\theta_{2}=\ldots$
$\left[\begin{array}{l}1=\theta_{1} \\ 0=\theta_{2}=\theta_{3}=\ldots\end{array}\right.$

- $1=\theta_{1}=\theta_{2}=\cdots=\theta_{n}$
- $0=\theta_{n+1}=\theta_{n+2}=\ldots$

Higher Commutators in the Lattice of a Simple Algebra

- $1_{\mathbf{A}}=\left[1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=\ldots$
- 0_{A}

Higher Commutators in the Lattice of a Simple Algebra

- $1_{\mathbf{A}}=\left[1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=\ldots$
- 0_{A}

Higher Commutators in the Lattice of a Simple Algebra

- $1_{\mathbf{A}}=\left[1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=\ldots$
- 0_{A}
A_{5}
- ${ }^{1}$ A
- $0_{\mathbf{A}}=\left[1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=\ldots$

Higher Commutators in the Lattice of a Simple Algebra

- $1_{\mathbf{A}}=\left[1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=\ldots$
- 0_{A}
- ${ }^{1}$ A
- $0_{\mathbf{A}}=\left[1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=\ldots$
\mathbb{Z}_{2}

Higher Commutators in the Lattice of a Simple Algebra

- $1_{\mathbf{A}}=\left[1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=\ldots$
- 0_{A}
- ${ }^{1}$
- $0_{\mathbf{A}}=\left[1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=\ldots$
\mathbb{Z}_{2}

$$
\left\{\begin{array}{l}
1_{\mathbf{A}}=\left[1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=\cdots=[\underbrace{1_{\mathbf{A}}, \ldots, 1_{\mathbf{A}}}_{n \text { many }}] \\
0_{\mathbf{A}}=[\underbrace{1_{\mathbf{A}}, \ldots, 1_{\mathbf{A}}, 1_{\mathbf{A}}}_{(n+1) \text { many }}]=\ldots
\end{array}\right.
$$

The Result

Theorem (W.)

For any natural number $n \geq 2$ there is a simple algebra \mathbf{A} such that

- $[\underbrace{1_{\mathbf{A}}, \ldots, 1_{\mathbf{A}}}_{n \text { many }}]=1_{\mathbf{A}}$
- $[\underbrace{1_{\mathbf{A}}, \ldots, 1_{\mathbf{A}}, 1_{\mathbf{A}}}_{(n+1) \text { many }}]=0_{\mathbf{A}}$

The Construction for $\mathrm{n}=2$ The Goal

Want A such that

- A is simple
- $\left[1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=1_{\mathbf{A}}$
- $\left[1_{\mathbf{A}}, 1_{\mathbf{A}}, 1_{\mathbf{A}}\right]=0_{\mathbf{A}}$

The Construction for $\mathrm{n}=2$

Defining \mathbf{A}_{0}

Define \mathbf{A}_{0} :

$$
A_{0}=B \cup\left\{c, d_{1}, d_{2}, d_{3}\right\}
$$

The Construction for $\mathrm{n}=2$

Defining \mathbf{A}_{0}

Define \mathbf{A}_{0} :
$A_{0}=B \cup\left\{c, d_{1}, d_{2}, d_{3}\right\}$

Base:
$B=\left\{\begin{array}{lllll}a_{1}=a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} & \ldots \\ a_{2}=a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} & \ldots \\ b_{1}=b_{1,0} & b_{1,1} & b_{1,2} & b_{1,3} & \ldots \\ b_{2}=b_{2,0} & b_{2,1} & b_{2,2} & b_{2,3} & \ldots\end{array}\right\}$

The Construction for $\mathrm{n}=2$

Defining \mathbf{A}_{0}

Define \mathbf{A}_{0} :
$A_{0}=B \cup\left\{c, d_{1}, d_{2}, d_{3}\right\}$

Base:
$B=\left\{\begin{array}{lllll}a_{1}=a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} & \ldots \\ a_{2}=a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} & \ldots \\ b_{1}=b_{1,0} & b_{1,1} & b_{1,2} & b_{1,3} & \ldots \\ b_{2}=b_{2,0} & b_{2,1} & b_{2,2} & b_{2,3} & \ldots\end{array}\right\}$

Core:
$C=\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$

The Construction for $\mathrm{n}=2$

Defining \mathbf{A}_{0}

Define a binary partial operation $f^{\mathbf{A}_{0}}$:

$$
\begin{array}{ll}
f^{\mathbf{A}_{0}}\left(a_{1}, b_{2}\right)=d_{1} \\
& \bullet d_{3}=f^{\mathbf{A}_{0}}\left(b_{1}, b_{2}\right) \\
f^{\mathbf{A}_{0}}\left(a_{1}, a_{2}\right)=d_{1} & \bullet d_{2}=f^{\mathbf{A}_{0}}\left(b_{1}, a_{2}\right)
\end{array}
$$

$f^{\mathbf{A}_{0}}$ is defined to ensure we have a failure of the 2-dimensional term condition.

The Construction for $\mathrm{n}=2$

Defining \mathbf{A}_{i+1}

Define \mathbf{A}_{i+1} :

$$
A_{i+1}=A_{i} \cup\left\{(x, y, i) \mid(x, y) \in A_{i}^{2} \backslash \operatorname{Dom}\left(f^{\mathbf{A}_{i}}\right)\right\}
$$

The Construction for $\mathrm{n}=2$

Defining \mathbf{A}_{i+1}

Define \mathbf{A}_{i+1} :

$$
\begin{aligned}
& A_{i+1}=A_{i} \cup\left\{(x, y, i) \mid(x, y) \in A_{i}^{2} \backslash \operatorname{Dom}\left(f^{\mathbf{A}_{i}}\right)\right\} \\
& f^{\mathbf{A}_{i+1}}(x, y)= \begin{cases}f^{\mathbf{A}_{i}}(x, y) & \text { if }(x, y) \in \operatorname{Dom}\left(f^{\mathbf{A}_{i}}\right) \\
(x, y, i) & \text { if }(x, y) \in A_{i}^{2} \backslash \operatorname{Dom}\left(f^{\mathbf{A}_{i}}\right)\end{cases}
\end{aligned}
$$

The Construction for $\mathrm{n}=2$

Defining \mathbf{A}_{i+1}

Define \mathbf{A}_{i+1} :
$A_{i+1}=A_{i} \cup\left\{(x, y, i) \mid(x, y) \in A_{i}^{2} \backslash \operatorname{Dom}\left(f^{\mathbf{A}_{i}}\right)\right\}$
$f^{\mathbf{A}_{i+1}}(x, y)= \begin{cases}f^{\mathbf{A}_{i}}(x, y) & \text { if }(x, y) \in \operatorname{Dom}\left(f^{\mathbf{A}_{i}}\right) \\ (x, y, i) & \text { if }(x, y) \in A_{i}^{2} \backslash \operatorname{Dom}\left(f^{\mathbf{A}_{i}}\right)\end{cases}$
$\operatorname{Dom}\left(f^{\mathbf{A}_{i+1}}\right)=A_{i}^{2}$

The Construction for $\mathrm{n}=2$

Defining A

Define A:

$A=\bigcup_{i \in \omega} A_{i}$
$f^{\mathbf{A}}=\bigcup_{i \in \omega} f^{\mathbf{A}_{i}}$

The Construction for $\mathrm{n}=2$

Defining A

Define A:
$A=\bigcup_{i \in \omega} A_{i}$
$f^{\mathbf{A}}=\bigcup_{i \in \omega} f^{\mathbf{A}_{i}}$
For each $(p, q, r) \in(A \backslash B)^{3}$ with p, q, r pairwise distinct, add a unary operation:

$$
u_{p, q, r}^{\mathbf{A}}=(p q r)\left(a_{1,0} a_{1,1} \ldots\right)\left(a_{2,0} a_{2,1} \ldots\right)\left(b_{1,0} b_{1,1} \ldots\right)\left(b_{2,0} b_{2,1} \ldots\right)
$$

The Construction for $\mathrm{n}=2$

Defining A

Define A:
$A=\bigcup_{i \in \omega} A_{i}$
$f^{\mathbf{A}}=\bigcup_{i \in \omega} f^{\mathbf{A}_{i}}$
For each $(p, q, r) \in(A \backslash B)^{3}$ with p, q, r pairwise distinct, add a unary operation:

$$
u_{p, q, r}^{\mathbf{A}}=(p q r)\left(a_{1,0} a_{1,1} \ldots\right)\left(a_{2,0} a_{2,1} \ldots\right)\left(b_{1,0} b_{1,1} \ldots\right)\left(b_{2,0} b_{2,1} \ldots\right)
$$

Finally add the unary operation:

$$
u^{\mathbf{A}}=\left(a_{1} a_{2} b_{1} b_{2} c\right)
$$

Thank You

