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Preliminaries

A congruence of an algebra A is an equivalence relation on A that
is the kernel of a homomorphism from A to another algebra.

An algebra, A, always has at least two congruences:
I 0A = {(a, a) | a ∈ A}, the equality relation.
I 1A = A×A, the universal binary relation.

An algebra, A, is simple if its only congruences are 0A and 1A.

The congruences of an algebra A form a lattice ordered by ⊆.
I The congruence lattice for a simple algebra A is

1A

0A
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Binary Commutator [α, β]

For congruences α, β we let M(α, β) be the set of all squares of the form:

τA(a1,a2)

τA(a1,b2)

τA(b1,a2)

τA(b1,b2)

such that

τ is a term in the language of A

a1 ≡α b1

a2 ≡β b2

A satisfies the α, β–term condition modulo δ if for any square as above in
M(α, β), we have that

τA(a1,a2) ≡δ τ
A(a1,b2) implies τA(b1,a2) ≡δ τ

A(b1,b2)

The binary commutator of α and β, [α, β], is the smallest δ for which this
holds.
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[1A, 1A] = 0A

We call an element of M(1A, 1A) a term square. Thus a term square is
a square of the form:

τA(a1,a2) = r1

τA(a1,b2) = r2

r3 = τA(b1,a2)

r4 = τA(b1,b2)

where τ(x,y) is a term in the language of A and a1,a2,b1, and b2 are
tuples of values from A. We write

SτA(ai,bi) = (r1, r2, r3, r4)

to represent the above term square.
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[1A, 1A] = 0A

An algebra fails the 2–dimensional term condition if there are tuples
a1,a2,b1,b2, and a term τ(x,y) such that the term square

SτA(ai,bi) = (r1, r2, r3, r4)

has equality on the bold red edge and inequality on the dashed red
edge in the display below.

r1

r2

r3

r4

[1A, 1A] = 0A if and only if A satisfies the 2–dimensional term
condition.
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[1A, 1A, 1A] = 0A

A term cube is a cube of the form:

τA(a1,a2,a3) = r1

τA(a1,a2,b3) = r2

r3 = τA(a1,b2,a3)

r4 = τA(a1,b2,b3)

τA(b1,a2,a3) = r5

τA(b1,a2,b3) = r6

r7 = τA(b1,b2,a3)

r8 = τA(b1,b2,b3)

where τ(x,y, z) is a term in the language of A. We write

CτA(ai,bi) = (r1, r2, r3, r4, r5, r6, r7, r8)

to represent the above term cube.
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[1A, 1A, 1A] = 0A

An algebra fails the 3–dimensional term condition if there are tuples
a1,a2,a3,b1,b2,b3, and a term τ(x,y, z) such that the term cube
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Some Facts

For a simple algebra A:
I [1A, 1A] = 1A if and only if A fails the 2–dimensional term

condition.
I [1A, 1A, 1A] = 1A if and only if A fails the 3–dimensional term

condition.

[α1, . . . , αn] ≤
∧n
i=1 αi

[α1, . . . , αn] = 0A if αi = 0A for some 1 ≤ i ≤ n.

[α1, . . . , αn, αn+1] ≤ [α1, . . . , αn]

[1A, . . . , 1A, 1A︸ ︷︷ ︸
(n+1) many

] ≤ [1A, . . . , 1A︸ ︷︷ ︸
n many

]
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The Descending Central Series of Higher Commutators

1A

[1A, 1A]

[1A, 1A, 1A]

[1A, 1A, 1A, 1A]

...

A weakly descending chain in the congruence lattice of A.
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Guiding Question

Can any weakly descending chain be the descending central series
of higher commutators?

Given an arbitrary algebraic lattice, L, and a weakly descending
chain

1 = θ1 ≥ θ2 ≥ θ3 ≥ . . .

can this chain be the descending central series of higher
commutators for some algebra A:

θn = [1A, . . . , 1A︸ ︷︷ ︸
n many

]
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The Simple Case

1 = θ1 = θ2 = . . .

0

1 = θ1

0 = θ2 = θ3 = . . .

1 = θ1 = θ2 = · · · = θn

0 = θn+1 = θn+2 = . . .
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Higher Commutators in the Lattice of a Simple Algebra

1A = [1A, 1A] = [1A, 1A, 1A] = . . .

0A

A5

1A

0A = [1A, 1A] = [1A, 1A, 1A] = . . . Z2

1A = [1A, 1A] = · · · = [1A, . . . , 1A︸ ︷︷ ︸
n many

]

0A = [1A, . . . , 1A, 1A︸ ︷︷ ︸
(n+1) many

] = . . .
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The Result

Theorem (W.)

For any natural number n ≥ 2 there is a simple algebra A such that

[1A, . . . , 1A︸ ︷︷ ︸
n many

] = 1A

[1A, . . . , 1A, 1A︸ ︷︷ ︸
(n+1) many

] = 0A
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The Construction for n = 2
The Goal

Want A such that

A is simple

[1A, 1A] = 1A

[1A, 1A, 1A] = 0A
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The Construction for n = 2
Defining A0

Define A0:

A0 = B ∪ {c, d1, d2, d3}

Base:

B =


a1 = a1,0 a1,1 a1,2 a1,3 . . .
a2 = a2,0 a2,1 a2,2 a2,3 . . .
b1 = b1,0 b1,1 b1,2 b1,3 . . .
b2 = b2,0 b2,1 b2,2 b2,3 . . .


Core:

C = {a1, a2, b1, b2}
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The Construction for n = 2
Defining A0

Define a binary partial operation fA0 :

fA0(a1, a2) = d1

fA0(a1, b2) = d1

d2 = fA0(b1, a2)

d3 = fA0(b1, b2)

fA0 is defined to ensure we have a failure of the 2-dimensional term
condition.
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The Construction for n = 2
Defining Ai+1

Define Ai+1 :

Ai+1 = Ai ∪ {(x, y, i) | (x, y) ∈ A2
i \Dom(fAi)}

fAi+1(x, y) =

{
fAi(x, y) if (x, y) ∈ Dom(fAi)

(x, y, i) if (x, y) ∈ A2
i \Dom(fAi)

Dom(fAi+1) = A2
i
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The Construction for n = 2
Defining A

Define A :

A =
⋃
i∈ω Ai

fA =
⋃
i∈ω f

Ai

For each (p, q, r) ∈ (A \B)3 with p, q, r pairwise distinct, add a unary
operation:

uAp,q,r = (p q r)(a1,0 a1,1 . . . )(a2,0 a2,1 . . . )(b1,0 b1,1 . . . )(b2,0 b2,1 . . . )

Finally add the unary operation:

uA = (a1 a2 b1 b2 c)

Steven Weinell (CU Boulder) Descending Central Series of HC BLAST 2019 18 / 19



The Construction for n = 2
Defining A

Define A :

A =
⋃
i∈ω Ai

fA =
⋃
i∈ω f

Ai

For each (p, q, r) ∈ (A \B)3 with p, q, r pairwise distinct, add a unary
operation:

uAp,q,r = (p q r)(a1,0 a1,1 . . . )(a2,0 a2,1 . . . )(b1,0 b1,1 . . . )(b2,0 b2,1 . . . )

Finally add the unary operation:

uA = (a1 a2 b1 b2 c)

Steven Weinell (CU Boulder) Descending Central Series of HC BLAST 2019 18 / 19



The Construction for n = 2
Defining A

Define A :

A =
⋃
i∈ω Ai

fA =
⋃
i∈ω f

Ai

For each (p, q, r) ∈ (A \B)3 with p, q, r pairwise distinct, add a unary
operation:

uAp,q,r = (p q r)(a1,0 a1,1 . . . )(a2,0 a2,1 . . . )(b1,0 b1,1 . . . )(b2,0 b2,1 . . . )

Finally add the unary operation:

uA = (a1 a2 b1 b2 c)

Steven Weinell (CU Boulder) Descending Central Series of HC BLAST 2019 18 / 19



Thank You
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