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Introduction



Modal logics

• Modal logics: expand CL with non “truth-functional” operators

• K models naturally notions like ”possibly/necessarily”,

”sometimes/always”, and many other modal operators/logics are

considered in the literature (deontic/temporal/conditional...)

• One of the first, best known, more studied, and applied non-classical

logics.

(partially) why? offer a much higher expressive power than CPL and (generally) much

lower complexity than FOL (most well-known and used modal logics

are decidable).
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Many-valued logics

• Many-valued logics: valuate the formulas out of {0, 1}(>,⊥) and

enrich the set of operations, to richer algebraic structures than 2.

• Huge family of logics (different classes of algebras for evaluation).

Allow modeling vague/uncertain/incomplete knowledge and

probabilistic notions

• Very developed general theory (via algebraic logic and development

in AAL)

(again) Richer logics, but many well-known infinitely-valued cases still

decidable ( L, Gödel, Product, H-BL...).
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Many-valued modal logics

• Natural idea: expansion of MV logics with modal-like

operators/interaction (or of modal-logics with wider algebraic

evaluations/operations)

• Intuitionistic modal logics are particularly ”nice”: they naturally

enjoy a relational semantics with an intuitive meaning.

• what about the rest? a seemingly reasonable approach: valuation of

Kripke models/frames over classes of algebras

• Some modal MV logics have been axiomatised, but most have not.

[Many usual intuitions fail, and usual constructions need to be

adapted to get completeness.]

• Relation to purely relational semantics is unknown.

• Tools from classical modal logic like Sahlqvist theory have not been

developed (wider set of operations + more specific semantics...)

• ...
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Some definitions



The non-modal part

Definition

A (integral commutative bounded) Residuated Lattice A is

〈A,�,→,∧,∨, 0, 1〉 such that

• 〈A,∧,∨〉 is a lattice,

• 〈A,�, 1〉 is a commutative monoid

• x � y ≤ z ⇐⇒ x ≤ y → z (residuation law)

• 0 ≤ x ≤ 1 ∀x ∈ A.

Γ |=C ϕ iff for any A ∈ C and any h ∈ Hom(Fm,A), if h(Γ) ⊆ {1} then

h(ϕ) = 1.

Well known examples

• Heyting algebras,

• [0, 1]G ,

• [0, 1] L ( x � y = max{0, x + y − 1})
• [0, 1]Π (� = · )
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From Classical modal logic...

• (minimal)Modal logic K = CPC +

• K : 2(ϕ→ ψ)→ (2ϕ→ 2ψ),

• N2 : from ϕ infer 2ϕ obs: (over theorems/over deductions ⇒
local(≡ theorems via D.T)/global logic).

• 3 := ¬2¬

Definition

A Kripke model M is a K. Frame F = 〈W ,R〉 (W set, R ⊆W 2)

together with an evaluation e : V → P(W ).

M, v  p iff v ∈ e(p), M, v  ¬ϕ iff v 6∈ e(ϕ)

M, v  ϕ{∧,∨}ψ iff M, v  ϕ {and, or} M, v  ψ

M, v  2ϕ iff for all w ∈W s.t. R(v ,w), M,w  ϕ

M, v  3ϕ iff there is w ∈W s.t. R(v ,w) and M,w  ϕ
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• N2 : from ϕ infer 2ϕ) obs: over theorems/over deductions ⇒
local(≡ theorems via D.T)/global logic.

• 3 := ¬2¬
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From Classical modal logic...

• (minimal)Modal logic K = CPC +

• K : 2(ϕ→ ψ)→ (2ϕ→ 2ψ),

• N2 : from ϕ infer 2ϕ) obs: over theorems/over deductions ⇒
local(≡ theorems via D.T)/global logic.

• 3 := ¬2¬

Definition

A Kripke model M is a K. Frame F = 〈W ,R〉 (W set,
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From (Classical) modal logic...

• (Local): Γ K ϕ iff for all M K-model and for all w ∈W ,

M,w  Γ⇒M,w  ϕ

e(w , [Γ]) ⊆ {1} ⇒
e(w , ϕ) = 1

• (Global): Γ g
K ϕ iff for all M K-model,

e(w , [Γ]) ⊆ {1} for all w ∈W ⇒ e(u, ϕ) = 1 for all w ∈W

Completeness: Γ `K ϕ⇔ Γ K ϕ

• proven via a canonical model:

• W = maximally consistent theories,

• RTQ ⇔ 2−1T ⊆ Q,

• e(p) = {T : p ∈ T}. e(T , p) =

1 if p ∈ T

0 otherwise

Truth Lemma: e(ϕ) = {T : ϕ ∈ T}. e(T , ϕ) =

1 if ϕ ∈ T

0 otherwise
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...to MV-modal logics

A residuated lattice.

Definition

A A-Kripke model M is an A- K.Frame F = 〈W ,R〉 (W set,

R : W 2 → A) together with an evaluation e : W × V → A.

e(v , ϕ{∧,∨}ψ) = e(v , ϕ){∧,∨}e(v , ψ)

e(v , ϕ� ψ) = e(v , ϕ)� e(v , ψ)

e(v , ϕ→ ψ) = e(v , ϕ)→ e(v , ψ)

e(v ,2ϕ) =
∧

w∈W

{R(v ,w)→ e(w , ϕ)}

e(v ,3ϕ) =
∨

w∈W

{R(v ,w)� e(w , ϕ)}

safe whenever e(u,2ϕ), e(u,3ϕ) are defined in every world.
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Modal logics over residuated lattices

Let A be a class of RLs, and K be a class of A-Kripke models for A ∈ A .

• (Local -over K): Γ K ϕ iff for all M ∈ K and for all w ∈W ,

e(w , [Γ]) ⊆ {1} ⇒ e(w , ϕ) = 1

• (Global -over K): Γ g
K ϕ iff for all M ∈ K,

e(w , [Γ]) ⊆ {1} for all w ∈W ⇒ e(u, ϕ) = 1 for all w ∈W
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Particularities



Some initial observations

• K is a theorem (Axiom!) from (Classical) modal logic.

No more:

K is not necessarily valid

Over [0, 1] L consider the model W = {a, b}, R(a, b) = 0.8,

e(b, x) = 0.7, e(b, y) = 0.5. Then

• 2(x → y) = 0.8→ (0.7→ 0.5) = 0.8→ 0.8 = 1, but

• 2x → 2y = (0.8→ 0.7)→ (0.8→ 0.5) = 0.9→ 0.7 < 1.

• If � is idempotent over the values taken by R, K is valid in the

model (eg., over Heyting and Gödel algebras, or with R crisp).

• In (c.) modal logic, the D.T. holds (Γ, γ `K ϕ⇔ Γ ` γ → ϕ).

• In (non-modal) MV-logics in general, this D.T already fails. At most

weaker versions will be attainable, but still unclear (by semantic

methods-only is not easy to see). Over order-preserving logics (eg.

[0, 1]G ) D.T. naturally still holds.

12



Some initial observations

• K is a theorem (Axiom!) from (Classical) modal logic. No more:

K is not necessarily valid

Over [0, 1] L consider the model W = {a, b}, R(a, b) = 0.8,

e(b, x) = 0.7, e(b, y) = 0.5.

Then

• 2(x → y) = 0.8→ (0.7→ 0.5) = 0.8→ 0.8 = 1, but

• 2x → 2y = (0.8→ 0.7)→ (0.8→ 0.5) = 0.9→ 0.7 < 1.

• If � is idempotent over the values taken by R, K is valid in the

model (eg., over Heyting and Gödel algebras, or with R crisp).
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model (eg., over Heyting and Gödel algebras, or with R crisp).

• In (c.) modal logic, the D.T. holds (Γ, γ `K ϕ⇔ Γ ` γ → ϕ).

• In (non-modal) MV-logics in general, this D.T already fails. At most

weaker versions will be attainable, but still unclear (by semantic

methods-only is not easy to see). Over order-preserving logics (eg.

[0, 1]G ) D.T. naturally still holds.

12



Some initial observations

• K is a theorem (Axiom!) from (Classical) modal logic. No more:

K is not necessarily valid

Over [0, 1] L consider the model W = {a, b}, R(a, b) = 0.8,

e(b, x) = 0.7, e(b, y) = 0.5. Then

• 2(x → y) = 0.8→ (0.7→ 0.5) = 0.8→ 0.8 = 1, but

• 2x → 2y = (0.8→ 0.7)→ (0.8→ 0.5) = 0.9→ 0.7 < 1.

• If � is idempotent over the values taken by R, K is valid in the

model (eg., over Heyting and Gödel algebras, or with R crisp).
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Some initial observations

• In (c.) modal logic 3 can be given as an abbreviation of 2 (or

vice-versa).

• In the general case this approach has some flaws (eg. cancelative

negations give boolean 3). The semantic definition based on
∨

and∧
seems reasonable, but

• Only very particular cases allow for the above inter-definability of

2−3 (eg. chains with an involutive negation like [0, 1] L)

• (enough) Constants in the language allow certain level of

expressability, but as for now, quite ad hoc.

• In general, 3 minimal modal logics: 2-fragment, 3-fragment,

bi-modal logic (both 2 and 3)

• Axioms relating 2 and 3 are crucial to get both of them over the

same accessibility relation (eg. also intutionistic Modal logics have

faced this in different ways)
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Decidability/FMP

• (c.) modal logic (both local and global) are decidable. Follow (eg.)

from the Finite Model Property.

No longer the case:

FMP (as a K.model) is not necessarily valid

Over [0, 1]G consider the formula ¬2x → 3¬x . Then

• In any [0, 1]G model with finite W, finite model the formula is true

(infima/suprema turn to minimum and maximum),

• The model {a, bi : i ∈ ω+}, R(a, bi ) = 1 for all i , e(bi , x) = 1/i falsifies

the formula.

• Even in cases where the underlying MV-logic is decidable, the

decidability of the MV-modal logics is unclear.

14



Decidability/FMP

• (c.) modal logic (both local and global) are decidable. Follow (eg.)

from the Finite Model Property. No longer the case:

FMP (as a K.model) is not necessarily valid

Over [0, 1]G consider the formula ¬2x → 3¬x .

Then

• In any [0, 1]G model with finite W, finite model the formula is true

(infima/suprema turn to minimum and maximum),

• The model {a, bi : i ∈ ω+}, R(a, bi ) = 1 for all i , e(bi , x) = 1/i falsifies

the formula.

• Even in cases where the underlying MV-logic is decidable, the

decidability of the MV-modal logics is unclear.

14



Decidability/FMP

• (c.) modal logic (both local and global) are decidable. Follow (eg.)

from the Finite Model Property. No longer the case:

FMP (as a K.model) is not necessarily valid

Over [0, 1]G consider the formula ¬2x → 3¬x . Then

• In any [0, 1]G model with finite W, finite model the formula is true

(infima/suprema turn to minimum and maximum),

• The model {a, bi : i ∈ ω+}, R(a, bi ) = 1 for all i , e(bi , x) = 1/i falsifies

the formula.

• Even in cases where the underlying MV-logic is decidable, the

decidability of the MV-modal logics is unclear.

14



Decidability/FMP

• (c.) modal logic (both local and global) are decidable. Follow (eg.)

from the Finite Model Property. No longer the case:

FMP (as a K.model) is not necessarily valid

Over [0, 1]G consider the formula ¬2x → 3¬x . Then

• In any [0, 1]G model with finite W, finite model the formula is true

(infima/suprema turn to minimum and maximum),

• The model {a, bi : i ∈ ω+}, R(a, bi ) = 1 for all i , e(bi , x) = 1/i falsifies

the formula.

• Even in cases where the underlying MV-logic is decidable, the

decidability of the MV-modal logics is unclear.

14



Decidability/FMP

• (c.) modal logic (both local and global) are decidable. Follow (eg.)

from the Finite Model Property. No longer the case:

FMP (as a K.model) is not necessarily valid

Over [0, 1]G consider the formula ¬2x → 3¬x . Then

• In any [0, 1]G model with finite W, finite model the formula is true

(infima/suprema turn to minimum and maximum),

• The model {a, bi : i ∈ ω+}, R(a, bi ) = 1 for all i , e(bi , x) = 1/i falsifies

the formula.

• Even in cases where the underlying MV-logic is decidable, the

decidability of the MV-modal logics is unclear.

14



On the methodology for proving completeness

• Recall the canonical model from (c) modal logic.

• We could move from having Theories (as worlds) to have values on

the algebra because we are working in 2.

• Richer algebras (and operations) need finer definition of the

canonical model in order to prove completeness.

• Up to now, the C.M in MV-modal logics is based on letting W to be

the set of homomorphisms into the algebra (preserving the modal

theorems). Observe in the cases when all -or enough- constants are

added to the language, this is equivalent to ”the Theories”

approach).

• This highly complicates the Truth-lemma proof.
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Some known results for infinite algebras

• (local) modal Gödel logics are decidable, even if they do not enjoy

the FMP (Caicedo et al. (2013))

• Theorems of modal  Lukasiewicz logic (for models with {0, 1}-valued

accessibility relation) are decidable via some Hajek’s results for

FO.(2005 )

• Gödel modal logics (Caicedo and Rodŕıguez (2010); Caicedo and

Rodriguez (2015)),(Metcalfe and Olivetti (2011)), (Rodriguez and

V. (in process)).

•  Lukasiewicz modal logics have not been axiomatized -only its

corresponding non-compact/infinitary logic (Hansoul and Teheux

(2013)).

• Product modal logics neither -only their infinitary correspondent,

and adding dense constants (Vidal et al. (2017)).

• can we say something else??
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From undecidability results...



Undecidable deductions

A class of linearly ordered R.L such that

• (not n-contractive) ∀n ∈ ω there is A ∈ A and a ∈ A such that

an+1 < an.

• (weakly saturated) ∀A ∈ A,∀a, b ∈ A, if b ≤ an for all n, then

b � a = b.

MA all safe models with R ⊆W 2 (crisp) over A.

Theorem (?)

1. g
MA and g

ωMA are undecidable;

2. l
4MA and l

ω4MA are undecidable;

Corollary

g
M L

, g
MΠ

and g
MΠ1

, and their restrictions to finite models are

undecidable .

for Π1 ≺ [0, 1]Π with universe {0, 1} ∪ {ai : i ∈ ω} with a ∈ (0, 1).
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Some hints on the proof...

• Post correspondence problem: given 〈v1,w1〉, . . . , 〈vn,wn〉 of pairs of

numbers in some base s > 1, it is undecidable whether there exist

i1, . . . , ik with ij ∈ {1, . . . , n} such that vi1 · · · vik = wi1 · · ·wik .

• OBS: Monoidal operation over non contractive elements can

uniquely express concatenations of numbers as the above ones.

Let P = {〈x1, y1〉 . . . 〈xn, yn〉}. Define ΓP over V = {x , y , z} as

¬20→ (2p ↔ 3p) for each p ∈ V,
¬20→ (z ↔ 2z),∨
1≤i≤n

(x ↔ (2x)s l(xi )

zxi ) ∧ (y ↔ (2y)s l(yi )

zyi )

and ϕP = (x ↔ y)→ (z ∨ (x → xz)).

Theorem

P is SAT ⇐⇒ ΓP 6g
MA ϕP ⇐⇒ ΓP 6g

ωMA ϕP
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...more hints on the proof

We always can ”work” with models of the form

•
uk

// •
uk−1

•
u2

// •
u1

• The ⇒ direction exploits non-contractivity of some algebra in the

class.

• The ⇐ direction uses weakly saturation and non-contractivity to

prove that if ΓP 6K ϕP then it happens in a model with structure as

above with an evaluation that is then easily translatable into a

solution of P.
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...to (non) RE logics



In general

Lemma

If |=C is decidable, then 6g
ωMC is recursively enumerable.

For the cases in the previous lemma, g
ωMC is undecidable!

Lemma

If C of R.L is as in Lemma (?) and |=C is decidable, then g
ωMC is not

R.E, and so, not axiomatizable.

Corollary

g
ωM L

, g
ωMΠ

and g
ωMΠ1

are not R.E, and so, not axiomatizable.

However, it is not the case that g
ωM L

= g
M L

, nor for the product case

...

so what about g
M L

and g
MΠ

? (the modal  Lukasiewicz/product logics?)
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The  Lukasiewicz case

A model M is witnessed iff for all v ∈W , ϕ, there are w2ϕ, w3ϕ

e(v ,2ϕ) = e(w2ϕ, ϕ) and e(v ,3ϕ) = e(w3ϕ, ϕ)

witM L be the class of witnessed models over [0, 1] L.

From (Hájek, 2005) + the standard translation from ML into FOL:

Lemma

Γ g
M L

ϕ if and only if Γ g
witM L

ϕ

We have completeness wrt. finite-width models... but the depth might

still be infinite

21



The  Lukasiewicz case

A model M is witnessed iff for all v ∈W , ϕ, there are w2ϕ, w3ϕ

e(v ,2ϕ) = e(w2ϕ, ϕ) and e(v ,3ϕ) = e(w3ϕ, ϕ)

witM L be the class of witnessed models over [0, 1] L.
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The  Lukasiewicz case

Lemma

Γ g
ωM L

ϕ iff Γ,Υ(p, q) g
M L

ϕ∨Ψ(p, q) for any p, q 6∈ Vars(Γ, ϕ) and

• Υ(p, q) := {20 ∨ (p ↔ 2p),20 ∨ (2p ↔ 3p), (q ↔ p �2q)}
• Ψ(p, q) := p ∨ ¬p ∨ q ∨ ¬q.

Given a finite set of formulas Γ, ϕ, whether Γ ≡ Γ0 ∪Υ(p, q) and

ϕ ≡ ϕ0 ∨Ψ(p, q) is a decidable process.

Theorem

The finitary companion of g
M L

is not RE.
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The Product case

! not known anything like the completeness of g
MΠ

wrt witnessed

models (only a partial result, not generalizable, for theorems).

! g
MΠ1

has for free quasi-witnessed models -and it is not axiomatizable.

We can split the reduction in two parts

Lemma

Γ ωMΠ1
ϕ iff Γ,Υ(p, q),QW (Γ, ϕ) MΠ1

ϕ ∨Ψ(p, q) for

p, q,Υ(p, q),Ψ(p, q) as in the  L case and

• QW (Γ, ϕ) := {¬2χ→ 3¬χ}2χ∈SFm(Γ,ϕ).

Corollary

The finitary companion of g
MΠ1

is not RE.
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The Product case

To reduce MΠ1
to MΠ

we can use the cancelativity

(∀a ∈ [0, 1],¬x ∈ {0, 1}).

Lemma

Given Γ, ϕ, there is a set of variables V ′ defined from Var(Γ, ϕ) and two

sets of formulas Σ(Γ, ϕ,V ′), Θ(ϕ,V ′) such that

Γ MΠ1
ϕ iff Σ(Γ, ϕ,V ′) MΠ

Θ(ϕ,V ′).

In both steps it is decidable whether some Γ, ϕ coincide with the

corresponding transformed premises/consequence of some Γ0, ϕ0.

Theorem

The finitary companion of g
MΠ

is not RE.
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Gödel modal logics



Differentiating underlying algebras

Let G↓ := {0} ∪ {1/i : i ∈ N∗}.

Lemma

Γ `[0,1]G
ϕ iff Γ `G↓ ϕ

Theorem (Hajek, 2005; Baaz, 1995)

`FOG↓ is non-arithmetical.

The ∃-free fragment is not recursively enumerable.

Theorem

K (G )2 (Caicedo and Rodŕıguez (2010)) +

((2ϕ↔ 2ψ) ∧ (2(ϕ→ ψ)→ ϕ))→ (2ψ ∨ ¬2ψ) is complete wrt.

3-free fragment over G↓.

25
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Thank you!
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