Expressivity in some many-valued modal logics.

Amanda Vidal
BLAST 2019
Boulder, 20-24 May
Institute of Computer Science, Czech Academy of Sciences

Table of contents

1. Introduction
2. Some definitions
3. Particularities
4. From undecidability results...
5. ...to (non) RE logics
6. Gödel modal logics

Introduction

Modal logics

- Modal logics: expand CL with non "truth-functional" operators

Modal logics

- Modal logics: expand CL with non "truth-functional" operators
- K models naturally notions like "possibly/necessarily", "sometimes/always", and many other modal operators/logics are considered in the literature (deontic/temporal/conditional...)

Modal logics

- Modal logics: expand CL with non "truth-functional" operators
- K models naturally notions like "possibly/necessarily", "sometimes/always", and many other modal operators/logics are considered in the literature (deontic/temporal/conditional...)
- One of the first, best known, more studied, and applied non-classical logics.

Modal logics

- Modal logics: expand CL with non "truth-functional" operators
- K models naturally notions like "possibly/necessarily", "sometimes/always", and many other modal operators/logics are considered in the literature (deontic/temporal/conditional...)
- One of the first, best known, more studied, and applied non-classical logics.
(partially) why? offer a much higher expressive power than CPL and (generally) much lower complexity than FOL (most well-known and used modal logics are decidable).

Many-valued logics

- Many-valued logics: valuate the formulas out of $\{0,1\}(\top, \perp)$ and enrich the set of operations, to richer algebraic structures than 2.

Many-valued logics

- Many-valued logics: valuate the formulas out of $\{0,1\}(T, \perp)$ and enrich the set of operations, to richer algebraic structures than 2.
- Huge family of logics (different classes of algebras for evaluation). Allow modeling vague/uncertain/incomplete knowledge and probabilistic notions

Many-valued logics

- Many-valued logics: valuate the formulas out of $\{0,1\}(T, \perp)$ and enrich the set of operations, to richer algebraic structures than 2.
- Huge family of logics (different classes of algebras for evaluation). Allow modeling vague/uncertain/incomplete knowledge and probabilistic notions
- Very developed general theory (via algebraic logic and development in AAL)

Many-valued logics

- Many-valued logics: valuate the formulas out of $\{0,1\}(\top, \perp)$ and enrich the set of operations, to richer algebraic structures than 2.
- Huge family of logics (different classes of algebras for evaluation). Allow modeling vague/uncertain/incomplete knowledge and probabilistic notions
- Very developed general theory (via algebraic logic and development in AAL)
(again) Richer logics, but many well-known infinitely-valued cases still decidable ($Ł$, Gödel, Product, H-BL...).

Many-valued modal logics

- Natural idea: expansion of MV logics with modal-like operators/interaction (or of modal-logics with wider algebraic evaluations/operations)

Many-valued modal logics

- Natural idea: expansion of MV logics with modal-like operators/interaction (or of modal-logics with wider algebraic evaluations/operations)
- Intuitionistic modal logics are particularly "nice": they naturally enjoy a relational semantics with an intuitive meaning.

Many-valued modal logics

- Natural idea: expansion of MV logics with modal-like operators/interaction (or of modal-logics with wider algebraic evaluations/operations)
- Intuitionistic modal logics are particularly "nice": they naturally enjoy a relational semantics with an intuitive meaning.
- what about the rest?

Many-valued modal logics

- Natural idea: expansion of MV logics with modal-like operators/interaction (or of modal-logics with wider algebraic evaluations/operations)
- Intuitionistic modal logics are particularly "nice": they naturally enjoy a relational semantics with an intuitive meaning.
- what about the rest? a seemingly reasonable approach: valuation of Kripke models/frames over classes of algebras

Many-valued modal logics

- Natural idea: expansion of MV logics with modal-like operators/interaction (or of modal-logics with wider algebraic evaluations/operations)
- Intuitionistic modal logics are particularly "nice": they naturally enjoy a relational semantics with an intuitive meaning.
- what about the rest? a seemingly reasonable approach: valuation of Kripke models/frames over classes of algebras
- Some modal MV logics have been axiomatised, but most have not. [Many usual intuitions fail, and usual constructions need to be adapted to get completeness.]
- Relation to purely relational semantics is unknown.
- Tools from classical modal logic like Sahlqvist theory have not been developed (wider set of operations + more specific semantics...)
- ...

Some definitions

The non-modal part

Definition

A (integral commutative bounded) Residuated Lattice \mathbf{A} is $\langle A, \odot, \rightarrow, \wedge, \vee, 0,1\rangle$ such that

- $\langle A, \wedge, \vee\rangle$ is a lattice,
- $\langle A, \odot, 1\rangle$ is a commutative monoid
- $x \odot y \leq z \Longleftrightarrow x \leq y \rightarrow z$ (residuation law)
- $0 \leq x \leq 1 \forall x \in A$.

The non-modal part

Definition

A (integral commutative bounded) Residuated Lattice \mathbf{A} is $\langle A, \odot, \rightarrow, \wedge, \vee, 0,1\rangle$ such that

- $\langle A, \wedge, \vee\rangle$ is a lattice,
- $\langle A, \odot, 1\rangle$ is a commutative monoid
- $x \odot y \leq z \Longleftrightarrow x \leq y \rightarrow z$ (residuation law)
- $0 \leq x \leq 1 \forall x \in A$.
$\Gamma \models_{\mathcal{C}} \varphi$ iff for any $\mathbf{A} \in \mathcal{C}$ and any $h \in \operatorname{Hom}(F m, \mathbf{A})$, if $h(\Gamma) \subseteq\{1\}$ then $h(\varphi)=1$.

The non-modal part

Definition

A (integral commutative bounded) Residuated Lattice \mathbf{A} is $\langle A, \odot, \rightarrow, \wedge, \vee, 0,1\rangle$ such that

- $\langle A, \wedge, \vee\rangle$ is a lattice,
- $\langle A, \odot, 1\rangle$ is a commutative monoid
- $x \odot y \leq z \Longleftrightarrow x \leq y \rightarrow z$ (residuation law)
- $0 \leq x \leq 1 \forall x \in A$.
$\Gamma \models_{\mathcal{C}} \varphi$ iff for any $\mathbf{A} \in \mathcal{C}$ and any $h \in \operatorname{Hom}(F m, \mathbf{A})$, if $h(\Gamma) \subseteq\{1\}$ then $h(\varphi)=1$.

Well known examples

- Heyting algebras,
- $[0,1]_{t}(x \odot y=\max \{0, x+y-1\})$
- $[0,1]_{G}$,
- $[0,1]_{\Pi}(\odot=\cdot)$

From Classical modal logic...

- (minimal)Modal logic $\mathbf{K}=\mathrm{CPC}+$
- $K: \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi)$,

From Classical modal logic...

- (minimal)Modal logic $\mathbf{K}=\mathrm{CPC}+$
- $K: ~ \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi)$,
- N_{\square} : from φ infer $\square \varphi$ obs: (over theorems/over deductions \Rightarrow local(三 theorems via D.T)/global logic).

From Classical modal logic...

- (minimal)Modal logic $\mathbf{K}=\mathrm{CPC}+$
- $K: ~ \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi)$,
- N_{\square} : from φ infer $\square \varphi$ obs: (over theorems/over deductions \Rightarrow local(三 theorems via D.T)/global logic).
- $\diamond:=\neg \square \neg$

From Classical modal logic...

- (minimal)Modal logic $\mathbf{K}=\mathrm{CPC}+$
- $K: ~ \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi)$,
- N_{\square} : from φ infer $\square \varphi$ obs: (over theorems/over deductions \Rightarrow local(三 theorems via D.T)/global logic).
- $\diamond:=\neg \square \neg$

Definition

A Kripke model \mathfrak{M} is a K . Frame $\mathfrak{F}=\langle W, R\rangle\left(W\right.$ set, $\left.R \subseteq W^{2}\right)$ together with an evaluation $e: \mathcal{V} \rightarrow \mathcal{P}(W)$.

From Classical modal logic...

- (minimal)Modal logic $\mathbf{K}=\mathrm{CPC}+$
- $K: ~ \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi)$,
- N_{\square} : from φ infer $\square \varphi$ obs: (over theorems/over deductions \Rightarrow local(三 theorems via D.T)/global logic).
- $\diamond:=\neg \square \neg$

Definition

A Kripke model \mathfrak{M} is a K . Frame $\mathfrak{F}=\langle W, R\rangle\left(W\right.$ set, $\left.R \subseteq W^{2}\right)$ together with an evaluation $e: \mathcal{V} \rightarrow \mathcal{P}(W)$.

$$
\mathfrak{M}, v \Vdash p \text { iff } v \in e(p), \quad \mathfrak{M}, v \Vdash \neg \varphi \text { iff } v \notin e(\varphi)
$$

$\mathfrak{M}, v \Vdash \varphi\{\wedge, \vee\} \psi$ iff $\mathfrak{M}, v \Vdash \varphi$ \{and, or\} $\mathfrak{M}, v \Vdash \psi$
$\mathfrak{M}, v \Vdash \square \varphi$ iff for all $w \in W$ s.t. $R(v, w), \mathfrak{M}, w \Vdash \varphi$
$\mathfrak{M}, v \Vdash \diamond \varphi$ iff there is $w \in W$ s.t. $R(v, w)$ and $\mathfrak{M}, w \Vdash \varphi$

From Classical modal logic...

- (minimal)Modal logic $\mathbf{K}=\mathrm{CPC}+$
- K: $\square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi)$,
- N_{\square} : from φ infer $\square \varphi$) obs: over theorems/over deductions \Rightarrow local(三 theorems via D.T)/global logic.
- $\diamond:=\neg \square \neg$

Definition

A Kripke model \mathfrak{M} is a K. Frame $\mathfrak{F}=\langle W, R\rangle(W$ set, $\left.R: W^{2} \rightarrow\{0,1\}\right)$ together with an evaluation $e: W \times \mathcal{V} \rightarrow\{0,1\}$.

$$
\begin{aligned}
& e(v, \neg p)=\neg e(v, p), \quad e(v, \varphi\{\wedge, \vee\} \psi)=e(v, \varphi)\{\wedge, \vee\} e(v, \psi) \\
& e(v, \square \varphi)= \begin{cases}1 & \text { if for all } w \in W \text { s.t. } R(v, w), e(u, \varphi)=1 \\
0 & \text { otherwise }\end{cases} \\
& e(v, \diamond \varphi)= \begin{cases}1 & \text { if there is } w \in W \text { s.t. } R(v, w) \text { and } e(w, \varphi)=1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

From Classical modal logic...

- (minimal)Modal logic $\mathbf{K}=\mathrm{CPC}+$
- $K: ~ \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi)$,
- N_{\square} : from φ infer $\square \varphi$) obs: over theorems/over deductions \Rightarrow local(三 theorems via D.T)/global logic.
- $\diamond:=\neg \square \neg$

Definition

A Kripke model \mathfrak{M} is a K. Frame $\mathfrak{F}=\langle W, R\rangle(W$ set, $\left.R: W^{2} \rightarrow\{0,1\}\right)$ together with an evaluation $e: W \times \mathcal{V} \rightarrow\{0,1\}$.

$$
\begin{aligned}
& e(v, \neg p)=\neg e(v, p), \quad e(v, \varphi\{\wedge, \vee\} \psi)=e(v, \varphi)\{\wedge, \vee\} e(v, \psi) \\
& e(v, \square \varphi)=\bigwedge_{w \in W}\{R v w \rightarrow e(w, \varphi)\} \\
& e(v, \diamond \varphi)=\bigvee_{w \in W}\{R v w \wedge e(w, \varphi)\}
\end{aligned}
$$

From (Classical) modal logic...

- (Local): $\Gamma \Vdash_{K} \varphi$ iff for all \mathfrak{M} K-model and for all $w \in W$, $\mathfrak{M}, w \Vdash \Gamma \Rightarrow \mathfrak{M}, w \Vdash \varphi$

From (Classical) modal logic...

- (Local): $\Gamma \Vdash_{K} \varphi$ iff for all \mathfrak{M} K-model and for all $w \in W$, $e(w,[\Gamma]) \subseteq\{1\} \Rightarrow e(w, \varphi)=1$

From (Classical) modal logic...

- (Local): $\Gamma \Vdash_{K} \varphi$ iff for all \mathfrak{M} K-model and for all $w \in W$,

$$
e(w,[\Gamma]) \subseteq\{1\} \Rightarrow e(w, \varphi)=1
$$

- (Global): $\Gamma \Vdash_{K}^{g} \varphi$ iff for all \mathfrak{M} K-model, $\mathfrak{M}, w \Vdash \Gamma$ for all $w \in W \Rightarrow \mathfrak{M}, w \Vdash \varphi$ for all $w \in W$

From (Classical) modal logic...

- (Local): $\Gamma \Vdash_{K} \varphi$ iff for all \mathfrak{M} K-model and for all $w \in W$, $e(w,[\Gamma]) \subseteq\{1\} \Rightarrow e(w, \varphi)=1$
- (Global): $\Gamma \Vdash_{K}^{g} \varphi$ iff for all \mathfrak{M} K-model, $e(w,[\Gamma]) \subseteq\{1\}$ for all $w \in W \Rightarrow e(u, \varphi)=1$ for all $w \in W$

From (Classical) modal logic...

- (Local): $\Gamma \Vdash_{K} \varphi$ iff for all \mathfrak{M} K-model and for all $w \in W$,

$$
e(w,[\Gamma]) \subseteq\{1\} \Rightarrow e(w, \varphi)=1
$$

- (Global): $\Gamma \Vdash_{K}^{g} \varphi$ iff for all \mathfrak{M} K-model,

$$
e(w,[\Gamma]) \subseteq\{1\} \text { for all } w \in W \Rightarrow e(u, \varphi)=1 \text { for all } w \in W
$$

Completeness: $\left\lceil\vdash_{K} \varphi \Leftrightarrow \Gamma \vdash_{\kappa} \varphi\right.$

From (Classical) modal logic...

- (Local): $\Gamma \Vdash_{K} \varphi$ iff for all \mathfrak{M} K-model and for all $w \in W$,

$$
e(w,[\Gamma]) \subseteq\{1\} \Rightarrow e(w, \varphi)=1
$$

- (Global): $\Gamma \Vdash_{K}^{g} \varphi$ iff for all \mathfrak{M} K-model,

$$
e(w,[\Gamma]) \subseteq\{1\} \text { for all } w \in W \Rightarrow e(u, \varphi)=1 \text { for all } w \in W
$$

Completeness: $\Gamma \vdash_{K} \varphi \Leftrightarrow \Gamma \vdash_{K} \varphi$

- proven via a canonical model:
- $W=$ maximally consistent theories,
- $R T Q \Leftrightarrow \square^{-1} T \subseteq Q$,
- $e(p)=\{T: p \in T\}$.

From (Classical) modal logic...

- (Local): $\Gamma \Vdash_{K} \varphi$ iff for all \mathfrak{M} K-model and for all $w \in W$,

$$
e(w,[\Gamma]) \subseteq\{1\} \Rightarrow e(w, \varphi)=1
$$

- (Global): $\Gamma \Vdash_{K}^{g} \varphi$ iff for all \mathfrak{M} K-model,

$$
e(w,[\Gamma]) \subseteq\{1\} \text { for all } w \in W \Rightarrow e(u, \varphi)=1 \text { for all } w \in W
$$

Completeness: $\Gamma \vdash_{K} \varphi \Leftrightarrow \Gamma \vdash_{K} \varphi$

- proven via a canonical model:
- $W=$ maximally consistent theories,
- $R T Q \Leftrightarrow \square^{-1} T \subseteq Q$,
- $e(p)=\{T: p \in T\} . e(T, p)= \begin{cases}1 & \text { if } p \in T \\ 0 & \text { otherwise }\end{cases}$

From (Classical) modal logic...

- (Local): $\Gamma \Vdash_{K} \varphi$ iff for all \mathfrak{M} K-model and for all $w \in W$,

$$
e(w,[\Gamma]) \subseteq\{1\} \Rightarrow e(w, \varphi)=1
$$

- (Global): $\Gamma \Vdash_{K}^{g} \varphi$ iff for all \mathfrak{M} K-model,

$$
e(w,[\Gamma]) \subseteq\{1\} \text { for all } w \in W \Rightarrow e(u, \varphi)=1 \text { for all } w \in W
$$

Completeness: $\left\lceil\vdash_{K} \varphi \Leftrightarrow \Gamma \vdash_{K} \varphi\right.$

- proven via a canonical model:
- $W=$ maximally consistent theories,
- $R T Q \Leftrightarrow \square^{-1} T \subseteq Q$,
- e(p) $=\{T: p \in T\} . e(T, p)= \begin{cases}1 & \text { if } p \in T \\ 0 & \text { otherwise }\end{cases}$

Truth Lemma: $e(\varphi)=\{T: \varphi \in T\}$.

From (Classical) modal logic...

- (Local): $\Gamma \Vdash_{K} \varphi$ iff for all \mathfrak{M} K-model and for all $w \in W$,

$$
e(w,[\Gamma]) \subseteq\{1\} \Rightarrow e(w, \varphi)=1
$$

- (Global): $\Gamma \Vdash_{K}^{g} \varphi$ iff for all \mathfrak{M} K-model,

$$
e(w,[\Gamma]) \subseteq\{1\} \text { for all } w \in W \Rightarrow e(u, \varphi)=1 \text { for all } w \in W
$$

Completeness: $\left\lceil\vdash_{K} \varphi \Leftrightarrow \Gamma \vdash_{K} \varphi\right.$

- proven via a canonical model:
- $W=$ maximally consistent theories,
- $R T Q \Leftrightarrow \square^{-1} T \subseteq Q$,
- $e(p)=\{T: p \in T\} . e(T, p)= \begin{cases}1 & \text { if } p \in T \\ 0 & \text { otherwise }\end{cases}$

Truth Lemma: $e(\varphi)=\{T: \varphi \in T\} . e(T, \varphi)= \begin{cases}1 & \text { if } \varphi \in T \\ 0 & \text { otherwise }\end{cases}$

...to MV-modal logics

A residuated lattice.

Definition

A A-Kripke model \mathfrak{M} is an \mathbf{A} - K. Frame $\mathfrak{F}=\langle W, R\rangle(W$ set, $\left.R: W^{2} \rightarrow A\right)$ together with an evaluation $e: W \times V \rightarrow A$.

...to MV-modal logics

A residuated lattice.

Definition

A A-Kripke model \mathfrak{M} is an \mathbf{A} - K.Frame $\mathfrak{F}=\langle W, R\rangle(W$ set, $\left.R: W^{2} \rightarrow A\right)$ together with an evaluation $e: W \times V \rightarrow A$.

$$
\begin{aligned}
e(v, \varphi\{\wedge, \vee\} \psi) & =e(v, \varphi)\{\wedge, \vee\} e(v, \psi) \\
e(v, \varphi \odot \psi) & =e(v, \varphi) \odot e(v, \psi) \\
e(v, \varphi \rightarrow \psi) & =e(v, \varphi) \rightarrow e(v, \psi) \\
e(v, \square \varphi) & =\bigwedge_{w \in W}\{R(v, w) \rightarrow e(w, \varphi)\} \\
e(v, \diamond \varphi) & =\bigvee_{w \in W}\{R(v, w) \odot e(w, \varphi)\}
\end{aligned}
$$

...to MV-modal logics

A residuated lattice.

Definition

A A-Kripke model \mathfrak{M} is an \mathbf{A} - K.Frame $\mathfrak{F}=\langle W, R\rangle(W$ set, $\left.R: W^{2} \rightarrow A\right)$ together with an evaluation $e: W \times V \rightarrow A$.

$$
\begin{aligned}
e(v, \varphi\{\wedge, \vee\} \psi) & =e(v, \varphi)\{\wedge, \vee\} e(v, \psi) \\
e(v, \varphi \odot \psi) & =e(v, \varphi) \odot e(v, \psi) \\
e(v, \varphi \rightarrow \psi) & =e(v, \varphi) \rightarrow e(v, \psi) \\
e(v, \square \varphi) & =\bigwedge_{w \in W}\{R(v, w) \rightarrow e(w, \varphi)\} \\
e(v, \diamond \varphi) & =\bigvee_{w \in W}\{R(v, w) \odot e(w, \varphi)\}
\end{aligned}
$$

safe whenever $e(u, \square \varphi), e(u, \diamond \varphi)$ are defined in every world.

Modal logics over residuated lattices

Let \mathcal{A} be a class of RLs, and \mathcal{K} be a class of \mathbf{A}-Kripke models for $\mathbf{A} \in \mathcal{A}$.

Modal logics over residuated lattices

Let \mathcal{A} be a class of RLs, and \mathcal{K} be a class of \mathbf{A}-Kripke models for $\mathbf{A} \in \mathcal{A}$.

- (Local -over $\mathcal{K}): \Gamma \Vdash_{\mathcal{K}} \varphi$ iff for all $\mathfrak{M} \in \mathcal{K}$ and for all $w \in W$,

$$
e(w,[\Gamma]) \subseteq\{1\} \Rightarrow e(w, \varphi)=1
$$

Modal logics over residuated lattices

Let \mathcal{A} be a class of RLs, and \mathcal{K} be a class of \mathbf{A}-Kripke models for $\mathbf{A} \in \mathcal{A}$.

- (Local -over $\mathcal{K}): \Gamma \Vdash_{\mathcal{K}} \varphi$ iff for all $\mathfrak{M} \in \mathcal{K}$ and for all $w \in W$,

$$
e(w,[\Gamma]) \subseteq\{1\} \Rightarrow e(w, \varphi)=1
$$

- (Global -over $\mathcal{K}): \Gamma \Vdash_{\mathcal{K}}^{g} \varphi$ iff for all $\mathfrak{M} \in \mathcal{K}$,

$$
e(w,[\Gamma]) \subseteq\{1\} \text { for all } w \in W \Rightarrow e(u, \varphi)=1 \text { for all } w \in W
$$

Modal logics over residuated lattices

Let \mathcal{A} be a class of RLs, and \mathcal{K} be a class of \mathbf{A}-Kripke models for $\mathbf{A} \in \mathcal{A}$.

- (Local -over $\mathcal{K}): \Gamma \Vdash_{\mathcal{K}} \varphi$ iff for all $\mathfrak{M} \in \mathcal{K}$ and for all $w \in W$,

$$
e(w,[\Gamma]) \subseteq\{1\} \Rightarrow e(w, \varphi)=1
$$

- (Global -over $\mathcal{K}): \Gamma \Vdash_{\mathcal{K}}^{g} \varphi$ iff for all $\mathfrak{M} \in \mathcal{K}$,

$$
e(w,[\Gamma]) \subseteq\{1\} \text { for all } w \in W \Rightarrow e(u, \varphi)=1 \text { for all } w \in W
$$

Particularities

Some initial observations

- K is a theorem (Axiom!) from (Classical) modal logic.

Some initial observations

- K is a theorem (Axiom!) from (Classical) modal logic. No more:

K is not necessarily valid

Over $[0,1]_{\llcorner }$consider the model $W=\{a, b\}, R(a, b)=0.8$, $e(b, x)=0.7, e(b, y)=0.5$.

Some initial observations

- K is a theorem (Axiom!) from (Classical) modal logic. No more:

K is not necessarily valid

Over $[0,1]_{Ł}$ consider the model $W=\{a, b\}, R(a, b)=0.8$, $e(b, x)=0.7, e(b, y)=0.5$. Then

- $\square(x \rightarrow y)=0.8 \rightarrow(0.7 \rightarrow 0.5)=0.8 \rightarrow 0.8=1$, but
- $\square x \rightarrow \square y=(0.8 \rightarrow 0.7) \rightarrow(0.8 \rightarrow 0.5)=0.9 \rightarrow 0.7<1$.

Some initial observations

- K is a theorem (Axiom!) from (Classical) modal logic. No more:

K is not necessarily valid

Over $[0,1]_{\llcorner }$consider the model $W=\{a, b\}, R(a, b)=0.8$, $e(b, x)=0.7, e(b, y)=0.5$. Then

- $\square(x \rightarrow y)=0.8 \rightarrow(0.7 \rightarrow 0.5)=0.8 \rightarrow 0.8=1$, but
- $\square x \rightarrow \square y=(0.8 \rightarrow 0.7) \rightarrow(0.8 \rightarrow 0.5)=0.9 \rightarrow 0.7<1$.
- If \odot is idempotent over the values taken by R, K is valid in the model (eg., over Heyting and Gödel algebras, or with R crisp).

Some initial observations

- K is a theorem (Axiom!) from (Classical) modal logic. No more:

K is not necessarily valid

Over $[0,1]_{Ł}$ consider the model $W=\{a, b\}, R(a, b)=0.8$, $e(b, x)=0.7, e(b, y)=0.5$. Then

- $\square(x \rightarrow y)=0.8 \rightarrow(0.7 \rightarrow 0.5)=0.8 \rightarrow 0.8=1$, but
- $\square x \rightarrow \square y=(0.8 \rightarrow 0.7) \rightarrow(0.8 \rightarrow 0.5)=0.9 \rightarrow 0.7<1$.
- If \odot is idempotent over the values taken by R, K is valid in the model (eg., over Heyting and Gödel algebras, or with R crisp).
- In (c.) modal logic, the D.T. holds $\left(\Gamma, \gamma \vdash_{K} \varphi \Leftrightarrow \Gamma \vdash \gamma \rightarrow \varphi\right)$.

Some initial observations

- K is a theorem (Axiom!) from (Classical) modal logic. No more:

K is not necessarily valid

Over $[0,1]_{\llcorner }$consider the model $W=\{a, b\}, R(a, b)=0.8$, $e(b, x)=0.7, e(b, y)=0.5$. Then

- $\square(x \rightarrow y)=0.8 \rightarrow(0.7 \rightarrow 0.5)=0.8 \rightarrow 0.8=1$, but
- $\square x \rightarrow \square y=(0.8 \rightarrow 0.7) \rightarrow(0.8 \rightarrow 0.5)=0.9 \rightarrow 0.7<1$.
- If \odot is idempotent over the values taken by R, K is valid in the model (eg., over Heyting and Gödel algebras, or with R crisp).
- In (c.) modal logic, the D.T. holds ($\Gamma, \gamma \vdash_{K} \varphi \Leftrightarrow \Gamma \vdash \gamma \rightarrow \varphi$).
- In (non-modal) MV-logics in general, this D.T already fails. At most weaker versions will be attainable, but still unclear (by semantic methods-only is not easy to see).

Some initial observations

- K is a theorem (Axiom!) from (Classical) modal logic. No more:
K is not necessarily valid
Over $[0,1]_{\llcorner }$consider the model $W=\{a, b\}, R(a, b)=0.8$, $e(b, x)=0.7, e(b, y)=0.5$. Then
- $\square(x \rightarrow y)=0.8 \rightarrow(0.7 \rightarrow 0.5)=0.8 \rightarrow 0.8=1$, but
- $\square x \rightarrow \square y=(0.8 \rightarrow 0.7) \rightarrow(0.8 \rightarrow 0.5)=0.9 \rightarrow 0.7<1$.
- If \odot is idempotent over the values taken by R, K is valid in the model (eg., over Heyting and Gödel algebras, or with R crisp).
- In (c.) modal logic, the D.T. holds ($\Gamma, \gamma \vdash_{K} \varphi \Leftrightarrow \Gamma \vdash \gamma \rightarrow \varphi$).
- In (non-modal) MV-logics in general, this D.T already fails. At most weaker versions will be attainable, but still unclear (by semantic methods-only is not easy to see). Over order-preserving logics (eg. $\left.[0,1]_{G}\right)$ D.T. naturally still holds.

Some initial observations

- In (c.) modal logic \diamond can be given as an abbreviation of \square (or vice-versa).

Some initial observations

- In (c.) modal logic \diamond can be given as an abbreviation of \square (or vice-versa).
- In the general case this approach has some flaws (eg. cancelative negations give boolean \diamond).

Some initial observations

- In (c.) modal logic \diamond can be given as an abbreviation of \square (or vice-versa).
- In the general case this approach has some flaws (eg. cancelative negations give boolean \diamond). The semantic definition based on \bigvee and \wedge seems reasonable, but
- Only very particular cases allow for the above inter-definability of $\square-\diamond$ (eg. chains with an involutive negation like $[0,1]_{\llcorner }$)

Some initial observations

- In (c.) modal logic \diamond can be given as an abbreviation of \square (or vice-versa).
- In the general case this approach has some flaws (eg. cancelative negations give boolean \diamond). The semantic definition based on \bigvee and \wedge seems reasonable, but
- Only very particular cases allow for the above inter-definability of $\square-\diamond$ (eg. chains with an involutive negation like $[0,1]_{\llcorner }$)
- (enough) Constants in the language allow certain level of expressability, but as for now, quite ad hoc.

Some initial observations

- In (c.) modal logic \diamond can be given as an abbreviation of \square (or vice-versa).
- In the general case this approach has some flaws (eg. cancelative negations give boolean \diamond). The semantic definition based on \bigvee and \wedge seems reasonable, but
- Only very particular cases allow for the above inter-definability of $\square-\diamond$ (eg. chains with an involutive negation like $\left.[0,1]_{Ł}\right)$
- (enough) Constants in the language allow certain level of expressability, but as for now, quite ad hoc.
- In general, 3 minimal modal logics: \square-fragment, \diamond-fragment, bi-modal logic (both \square and \diamond)

Some initial observations

- In (c.) modal logic \diamond can be given as an abbreviation of \square (or vice-versa).
- In the general case this approach has some flaws (eg. cancelative negations give boolean \diamond). The semantic definition based on \bigvee and \wedge seems reasonable, but
- Only very particular cases allow for the above inter-definability of $\square-\diamond$ (eg. chains with an involutive negation like $\left.[0,1]_{Ł}\right)$
- (enough) Constants in the language allow certain level of expressability, but as for now, quite ad hoc.
- In general, 3 minimal modal logics: \square-fragment, \diamond-fragment, bi-modal logic (both \square and \diamond)
- Axioms relating \square and \diamond are crucial to get both of them over the same accessibility relation (eg. also intutionistic Modal logics have faced this in different ways)

Decidability/FMP

- (c.) modal logic (both local and global) are decidable. Follow (eg.) from the Finite Model Property.

Decidability/FMP

- (c.) modal logic (both local and global) are decidable. Follow (eg.) from the Finite Model Property. No longer the case:

FMP (as a K.model) is not necessarily valid

Over $[0,1]_{G}$ consider the formula $\neg \square x \rightarrow \diamond \neg x$.

Decidability/FMP

- (c.) modal logic (both local and global) are decidable. Follow (eg.) from the Finite Model Property. No longer the case:

FMP (as a K.model) is not necessarily valid

Over $[0,1]_{G}$ consider the formula $\neg \square x \rightarrow \diamond \neg x$. Then

- In any $[0,1]_{G}$ model with finite W , finite model the formula is true (infima/suprema turn to minimum and maximum),

Decidability/FMP

- (c.) modal logic (both local and global) are decidable. Follow (eg.) from the Finite Model Property. No longer the case:

FMP (as a K.model) is not necessarily valid

Over $[0,1]_{G}$ consider the formula $\neg \square x \rightarrow \diamond \neg x$. Then

- In any $[0,1]_{G}$ model with finite W , finite model the formula is true (infima/suprema turn to minimum and maximum),
- The model $\left\{a, b_{i}: i \in \omega^{+}\right\}, R\left(a, b_{i}\right)=1$ for all $i, e\left(b_{i}, x\right)=1 / i$ falsifies the formula.

Decidability/FMP

- (c.) modal logic (both local and global) are decidable. Follow (eg.) from the Finite Model Property. No longer the case:

FMP (as a K.model) is not necessarily valid

Over $[0,1]_{G}$ consider the formula $\neg \square x \rightarrow \diamond \neg x$. Then

- In any $[0,1]_{G}$ model with finite W , finite model the formula is true (infima/suprema turn to minimum and maximum),
- The model $\left\{a, b_{i}: i \in \omega^{+}\right\}, R\left(a, b_{i}\right)=1$ for all $i, e\left(b_{i}, x\right)=1 / i$ falsifies the formula.
- Even in cases where the underlying MV-logic is decidable, the decidability of the MV-modal logics is unclear.

On the methodology for proving completeness

- Recall the canonical model from (c) modal logic.
- We could move from having Theories (as worlds) to have values on the algebra because we are working in 2.

On the methodology for proving completeness

- Recall the canonical model from (c) modal logic.
- We could move from having Theories (as worlds) to have values on the algebra because we are working in 2.
- Richer algebras (and operations) need finer definition of the canonical model in order to prove completeness.

On the methodology for proving completeness

- Recall the canonical model from (c) modal logic.
- We could move from having Theories (as worlds) to have values on the algebra because we are working in 2.
- Richer algebras (and operations) need finer definition of the canonical model in order to prove completeness.
- Up to now, the C.M in MV-modal logics is based on letting W to be the set of homomorphisms into the algebra (preserving the modal theorems). Observe in the cases when all -or enough- constants are added to the language, this is equivalent to "the Theories" approach).

On the methodology for proving completeness

- Recall the canonical model from (c) modal logic.
- We could move from having Theories (as worlds) to have values on the algebra because we are working in 2.
- Richer algebras (and operations) need finer definition of the canonical model in order to prove completeness.
- Up to now, the C.M in MV-modal logics is based on letting W to be the set of homomorphisms into the algebra (preserving the modal theorems). Observe in the cases when all -or enough- constants are added to the language, this is equivalent to "the Theories" approach).
- This highly complicates the Truth-lemma proof.

Some known results for infinite algebras

- (local) modal Gödel logics are decidable, even if they do not enjoy the FMP (Caicedo et al. (2013))

Some known results for infinite algebras

- (local) modal Gödel logics are decidable, even if they do not enjoy the FMP (Caicedo et al. (2013))
- Theorems of modal Łukasiewicz logic (for models with $\{0,1\}$-valued accessibility relation) are decidable via some Hajek's results for FO.(2005)

Some known results for infinite algebras

- (local) modal Gödel logics are decidable, even if they do not enjoy the FMP (Caicedo et al. (2013))
- Theorems of modal Łukasiewicz logic (for models with $\{0,1\}$-valued accessibility relation) are decidable via some Hajek's results for FO.(2005)
- Gödel modal logics (Caicedo and Rodríguez (2010); Caicedo and Rodriguez (2015)),(Metcalfe and Olivetti (2011)), (Rodriguez and V. (in process)).

Some known results for infinite algebras

- (local) modal Gödel logics are decidable, even if they do not enjoy the FMP (Caicedo et al. (2013))
- Theorems of modal Łukasiewicz logic (for models with $\{0,1\}$-valued accessibility relation) are decidable via some Hajek's results for FO.(2005)
- Gödel modal logics (Caicedo and Rodríguez (2010); Caicedo and Rodriguez (2015)),(Metcalfe and Olivetti (2011)), (Rodriguez and V. (in process)).
- Łukasiewicz modal logics have not been axiomatized -only its corresponding non-compact/infinitary logic (Hansoul and Teheux (2013)).

Some known results for infinite algebras

- (local) modal Gödel logics are decidable, even if they do not enjoy the FMP (Caicedo et al. (2013))
- Theorems of modal Łukasiewicz logic (for models with $\{0,1\}$-valued accessibility relation) are decidable via some Hajek's results for FO.(2005)
- Gödel modal logics (Caicedo and Rodríguez (2010); Caicedo and Rodriguez (2015)),(Metcalfe and Olivetti (2011)), (Rodriguez and V. (in process)).
- Łukasiewicz modal logics have not been axiomatized -only its corresponding non-compact/infinitary logic (Hansoul and Teheux (2013)).
- Product modal logics neither -only their infinitary correspondent, and adding dense constants (Vidal et al. (2017)).

Some known results for infinite algebras

- (local) modal Gödel logics are decidable, even if they do not enjoy the FMP (Caicedo et al. (2013))
- Theorems of modal Łukasiewicz logic (for models with $\{0,1\}$-valued accessibility relation) are decidable via some Hajek's results for FO.(2005)
- Gödel modal logics (Caicedo and Rodríguez (2010); Caicedo and Rodriguez (2015)),(Metcalfe and Olivetti (2011)), (Rodriguez and V. (in process)).
- Łukasiewicz modal logics have not been axiomatized -only its corresponding non-compact/infinitary logic (Hansoul and Teheux (2013)).
- Product modal logics neither -only their infinitary correspondent, and adding dense constants (Vidal et al. (2017)).
- can we say something else??

From undecidability results...

Undecidable deductions

\mathcal{A} class of linearly ordered R.L such that

- (not n-contractive) $\forall n \in \omega$ there is $\mathbf{A} \in \mathcal{A}$ and $a \in A$ such that $a^{n+1}<a^{n}$.

Undecidable deductions

\mathcal{A} class of linearly ordered R.L such that

- (not n-contractive) $\forall n \in \omega$ there is $\mathbf{A} \in \mathcal{A}$ and $a \in A$ such that $a^{n+1}<a^{n}$.
- (weakly saturated) $\forall \mathbf{A} \in \mathcal{A}, \forall a, b \in A$, if $b \leq a^{n}$ for all n, then $b \odot a=b$.

Undecidable deductions

\mathcal{A} class of linearly ordered R.L such that

- (not n-contractive) $\forall n \in \omega$ there is $\mathbf{A} \in \mathcal{A}$ and $a \in A$ such that $a^{n+1}<a^{n}$.
- (weakly saturated) $\forall \mathbf{A} \in \mathcal{A}, \forall a, b \in A$, if $b \leq a^{n}$ for all n, then $b \odot a=b$.
$\mathcal{M}_{\mathcal{A}}$ all safe models with $R \subseteq W^{2}$ (crisp) over \mathcal{A}.

Undecidable deductions

\mathcal{A} class of linearly ordered R.L such that

- (not n-contractive) $\forall n \in \omega$ there is $\mathbf{A} \in \mathcal{A}$ and $a \in A$ such that $a^{n+1}<a^{n}$.
- (weakly saturated) $\forall \mathbf{A} \in \mathcal{A}, \forall a, b \in A$, if $b \leq a^{n}$ for all n, then $b \odot a=b$.
$\mathcal{M}_{\mathcal{A}}$ all safe models with $R \subseteq W^{2}$ (crisp) over \mathcal{A}.

Theorem (\star)

1. $\Vdash_{\mathcal{M}_{\mathcal{A}}}^{g}$ and $\Vdash_{\omega \mathcal{M}_{\mathcal{A}}}^{g}$ are undecidable;

Undecidable deductions

\mathcal{A} class of linearly ordered R.L such that

- (not n-contractive) $\forall n \in \omega$ there is $\mathbf{A} \in \mathcal{A}$ and $a \in A$ such that $a^{n+1}<a^{n}$.
- (weakly saturated) $\forall \mathbf{A} \in \mathcal{A}, \forall a, b \in A$, if $b \leq a^{n}$ for all n, then $b \odot a=b$.
$\mathcal{M}_{\mathcal{A}}$ all safe models with $R \subseteq W^{2}$ (crisp) over \mathcal{A}.

Theorem (\star)

1. $\Vdash_{\mathcal{M}_{\mathcal{A}}}^{g}$ and $\Vdash_{\omega \mathcal{M}_{\mathcal{A}}}^{g}$ are undecidable;
2. $\Vdash_{4 \mathcal{M}_{\mathcal{A}}}^{\prime}$ and $\Vdash_{\omega 4 \mathcal{M}_{\mathcal{A}}}^{\prime}$ are undecidable;

Undecidable deductions

\mathcal{A} class of linearly ordered R.L such that

- (not n-contractive) $\forall n \in \omega$ there is $\mathbf{A} \in \mathcal{A}$ and $a \in A$ such that $a^{n+1}<a^{n}$.
- (weakly saturated) $\forall \mathbf{A} \in \mathcal{A}, \forall a, b \in A$, if $b \leq a^{n}$ for all n, then $b \odot a=b$.
$\mathcal{M}_{\mathcal{A}}$ all safe models with $R \subseteq W^{2}$ (crisp) over \mathcal{A}.

Theorem (\star)

1. $\Vdash_{\mathcal{M}_{\mathcal{A}}}^{g}$ and $\Vdash_{\omega \mathcal{M}_{\mathcal{A}}}^{g}$ are undecidable;
2. $\Vdash_{4 M_{\mathcal{A}}}^{I}$ and $\Vdash_{\omega 4 M_{\mathcal{A}}}^{I}$ are undecidable;

Corollary

$\Vdash_{\mathcal{M}_{\mathfrak{L}}}^{g}, \Vdash_{\mathcal{M}_{\pi}}^{g}$ and $\Vdash_{\mathcal{M}_{\boldsymbol{N}_{1}}}^{g}$, and their restrictions to finite models are undecidable.
for $\Pi_{1} \prec[0,1]_{\Pi}$ with universe $\{0,1\} \cup\left\{a^{i}: i \in \omega\right\}$ with $a \in(0,1)$.

Some hints on the proof...

- Post correspondence problem: given $\left\langle v_{1}, w_{1}\right\rangle, \ldots,\left\langle v_{n}, w_{n}\right\rangle$ of pairs of numbers in some base $s>1$, it is undecidable whether there exist i_{1}, \ldots, i_{k} with $i_{j} \in\{1, \ldots, n\}$ such that $v_{i_{1}} \cdots v_{i_{k}}=w_{i_{1}} \cdots w_{i_{k}}$.

Some hints on the proof...

- Post correspondence problem: given $\left\langle v_{1}, w_{1}\right\rangle, \ldots,\left\langle v_{n}, w_{n}\right\rangle$ of pairs of numbers in some base $s>1$, it is undecidable whether there exist i_{1}, \ldots, i_{k} with $i_{j} \in\{1, \ldots, n\}$ such that $v_{i_{1}} \cdots v_{i_{k}}=w_{i_{1}} \cdots w_{i_{k}}$.
- OBS: Monoidal operation over non contractive elements can uniquely express concatenations of numbers as the above ones.

Some hints on the proof...

- Post correspondence problem: given $\left\langle v_{1}, w_{1}\right\rangle, \ldots,\left\langle v_{n}, w_{n}\right\rangle$ of pairs of numbers in some base $s>1$, it is undecidable whether there exist i_{1}, \ldots, i_{k} with $i_{j} \in\{1, \ldots, n\}$ such that $v_{i_{1}} \cdots v_{i_{k}}=w_{i_{1}} \cdots w_{i_{k}}$.
- OBS: Monoidal operation over non contractive elements can uniquely express concatenations of numbers as the above ones.

Let $P=\left\{\left\langle\mathbf{x}_{1}, \mathbf{y}_{1}\right\rangle \ldots\left\langle\mathbf{x}_{n}, \mathbf{y}_{n}\right\rangle\right\}$. Define Γ_{P} over $\mathcal{V}=\{x, y, z\}$ as
$\neg \square 0 \rightarrow(\square p \leftrightarrow \diamond p)$ for each $p \in \mathcal{V}$,
$\neg \square 0 \rightarrow(z \leftrightarrow \square z)$,
$\bigvee\left(x \leftrightarrow(\square x)^{s^{\prime\left(x_{i}\right)}} z^{x_{i}}\right) \wedge\left(y \leftrightarrow(\square y)^{s^{\prime\left(y_{i}\right)}} z^{y_{i}}\right)$
$1 \leq i \leq n$
and $\varphi_{P}=(x \leftrightarrow y) \rightarrow(z \vee(x \rightarrow x z))$.

Some hints on the proof...

- Post correspondence problem: given $\left\langle v_{1}, w_{1}\right\rangle, \ldots,\left\langle v_{n}, w_{n}\right\rangle$ of pairs of numbers in some base $s>1$, it is undecidable whether there exist i_{1}, \ldots, i_{k} with $i_{j} \in\{1, \ldots, n\}$ such that $v_{i_{1}} \cdots v_{i_{k}}=w_{i_{1}} \cdots w_{i_{k}}$.
- OBS: Monoidal operation over non contractive elements can uniquely express concatenations of numbers as the above ones.

Let $P=\left\{\left\langle\mathbf{x}_{1}, \mathbf{y}_{1}\right\rangle \ldots\left\langle\mathbf{x}_{n}, \mathbf{y}_{n}\right\rangle\right\}$. Define Γ_{P} over $\mathcal{V}=\{x, y, z\}$ as

$$
\begin{aligned}
& \neg \square 0 \rightarrow(\square p \leftrightarrow \diamond p) \text { for each } p \in \mathcal{V}, \\
& \neg \square 0 \rightarrow(z \leftrightarrow \square z),
\end{aligned}
$$

$$
\bigvee\left(x \leftrightarrow(\square x)^{s^{\prime\left(x_{i}\right)}} z^{x_{i}}\right) \wedge\left(y \leftrightarrow(\square y)^{s^{\prime\left(y_{i}\right)}} z^{y_{i}}\right)
$$

$$
1 \leq i \leq n
$$

and $\varphi_{P}=(x \leftrightarrow y) \rightarrow(z \vee(x \rightarrow x z))$.

Theorem

$$
P \text { is SAT } \Longleftrightarrow \Gamma_{P} \Vdash_{\mathcal{M}_{\mathcal{A}}}^{g} \varphi_{P} \Longleftrightarrow \Gamma_{P} \Vdash_{\omega \mathcal{M}_{\mathcal{A}}}^{g} \varphi_{P}
$$

...more hints on the proof

We always can "work" with models of the form

- The \Rightarrow direction exploits non-contractivity of some algebra in the class.

...more hints on the proof

We always can "work" with models of the form

- The \Rightarrow direction exploits non-contractivity of some algebra in the class.
- The \Leftarrow direction uses weakly saturation and non-contractivity to prove that if $\Gamma_{P} \Vdash_{\mathcal{K}} \varphi_{P}$ then it happens in a model with structure as above with an evaluation that is then easily translatable into a solution of P.
...to (non) RE logics

In general

Lemma

If $\models_{\mathcal{C}}$ is decidable, then $\vdash_{\omega \mathcal{M}_{\mathcal{C}}}^{g}$ is recursively enumerable.

In general

Lemma

If $\models_{\mathcal{C}}$ is decidable, then $\mid \vdash_{\omega \mathcal{M}_{\mathcal{C}}}^{g}$ is recursively enumerable.
For the cases in the previous lemma, $\Vdash_{\omega \mathcal{M}_{\mathcal{C}}}^{g}$ is undecidable!

In general

Lemma

If $\models_{\mathcal{C}}$ is decidable, then $\mid \vdash_{\omega \mathcal{M}_{\mathcal{C}}}^{g}$ is recursively enumerable.
For the cases in the previous lemma, $\Vdash_{\omega \mathcal{M}_{\mathcal{C}}}^{g}$ is undecidable!

Lemma

If \mathcal{C} of R.L is as in Lemma (\star) and $\models_{\mathcal{C}}$ is decidable, then $\Vdash_{\omega \mathcal{M}_{\mathcal{C}}}^{g}$ is not R.E, and so, not axiomatizable.

In general

Lemma

If $\models_{\mathcal{C}}$ is decidable, then $\mid \vdash_{\omega \mathcal{M}_{\mathcal{C}}}^{g}$ is recursively enumerable.
For the cases in the previous lemma, $\Vdash_{\omega \mathcal{M}_{\mathcal{C}}}^{g}$ is undecidable!

Lemma

If \mathcal{C} of R.L is as in Lemma (\star) and $\models_{\mathcal{C}}$ is decidable, then $\Vdash_{\omega \mathcal{M}_{\mathcal{C}}}^{g}$ is not
R.E, and so, not axiomatizable.

Corollary
$\Vdash_{\omega \mathcal{M}_{\mathfrak{L}}}^{g}, \Vdash_{\omega \mathcal{M}_{\Pi}}^{g}$ and $\Vdash_{\omega \mathcal{M}_{\Pi_{1}}}^{g}$ are not R.E, and so, not axiomatizable.

In general

Lemma

If $\models_{\mathcal{C}}$ is decidable, then $\vdash_{\omega \mathcal{M}_{\mathcal{C}}}^{g}$ is recursively enumerable.
For the cases in the previous lemma, $\Vdash_{\omega \mathcal{M}_{\mathcal{C}}}^{g}$ is undecidable!

Lemma

If \mathcal{C} of R.L is as in Lemma (\star) and $\models_{\mathcal{C}}$ is decidable, then $\Vdash_{\omega \mathcal{M}_{\mathcal{C}}}^{g}$ is not R.E, and so, not axiomatizable.

Corollary

$\Vdash_{\omega \mathcal{M}_{\mathfrak{L}}}^{g}, \Vdash_{\omega \mathcal{M}_{\Pi}}^{g}$ and $\Vdash_{\omega \mathcal{M}_{\Pi_{1}}}^{g}$ are not R.E, and so, not axiomatizable.

However, it is not the case that $\Vdash_{\omega \mathcal{M}_{\mathfrak{t}}}^{g}=\Vdash_{\mathcal{M}_{\mathfrak{L}}}^{g}$, nor for the product case
so what about $\Vdash_{\mathcal{M}_{\mathfrak{L}}}^{g}$ and $\Vdash_{\mathcal{M}_{\Pi}}^{g}$? (the modal $Ł$ ukasiewicz/product logics?)

The Łukasiewicz case

A model \mathfrak{M} is witnessed iff for all $v \in W, \varphi$, there are $w_{\square \varphi}, w_{\Delta \varphi}$

$$
e(v, \square \varphi)=e\left(w_{\square \varphi}, \varphi\right) \quad \text { and } \quad e(v, \diamond \varphi)=e\left(w_{\diamond \varphi}, \varphi\right)
$$

wit \mathcal{M}_{t} be the class of witnessed models over $[0,1]_{\mathrm{t}}$.

The Łukasiewicz case

A model \mathfrak{M} is witnessed iff for all $v \in W, \varphi$, there are $w_{\square \varphi}, w_{\diamond \varphi}$

$$
e(v, \square \varphi)=e\left(w_{\square \varphi}, \varphi\right) \quad \text { and } \quad e(v, \diamond \varphi)=e\left(w_{\diamond \varphi}, \varphi\right)
$$

wit \mathcal{M}_{t} be the class of witnessed models over $[0,1]_{\mathrm{t}}$.

From (Hájek, 2005) + the standard translation from ML into FOL:

Lemma

$\Gamma \Vdash_{\mathcal{M}_{\mathfrak{L}}}^{g} \varphi$ if and only if $\Gamma \Vdash_{\text {wit }}^{g} \mathcal{M}_{\mathfrak{t}} \varphi$

The Łukasiewicz case

A model \mathfrak{M} is witnessed iff for all $v \in W, \varphi$, there are $w_{\square \varphi}, w_{\diamond \varphi}$

$$
e(v, \square \varphi)=e\left(w_{\square \varphi}, \varphi\right) \quad \text { and } \quad e(v, \diamond \varphi)=e\left(w_{\diamond \varphi}, \varphi\right)
$$

wit \mathcal{M}_{t} be the class of witnessed models over $[0,1]_{\mathrm{t}}$.

From (Hájek, 2005) + the standard translation from ML into FOL:

Lemma

$\Gamma \Vdash_{\mathcal{M}_{\mathfrak{L}}}^{g} \varphi$ if and only if $\Gamma \Vdash_{\text {wit } \mathcal{M}_{\mathrm{L}}}^{g} \varphi$
We have completeness wrt. finite-width models... but the depth might still be infinite

The $\ddagger u k a s i e w i c z ~ c a s e ~$

Lemma

$\Gamma \Vdash_{\omega \mathcal{M}_{\mathrm{L}}}^{g} \varphi$ iff $\Gamma, \Upsilon(p, q) \Vdash_{\mathcal{M}_{\mathfrak{t}}}^{g} \varphi \vee \Psi(p, q)$ for any $p, q \notin \operatorname{V} \operatorname{ars}(\Gamma, \varphi)$ and

- $\Upsilon(p, q):=\{\square 0 \vee(p \leftrightarrow \square p), \square 0 \vee(\square p \leftrightarrow \diamond p),(q \leftrightarrow p \odot \square q)\}$
- $\Psi(p, q):=p \vee \neg p \vee q \vee \neg q$.

The Łukasiewicz case

Lemma

$\Gamma \Vdash_{\omega \mathcal{M}_{Ł}}^{g} \varphi$ iff $\Gamma, \Upsilon(p, q) \Vdash_{\mathcal{M}_{Ł}}^{g} \varphi \vee \Psi(p, q)$ for any $p, q \notin \mathcal{V} \operatorname{ars}(\Gamma, \varphi)$ and

- $\Upsilon(p, q):=\{\square 0 \vee(p \leftrightarrow \square p), \square 0 \vee(\square p \leftrightarrow \diamond p),(q \leftrightarrow p \odot \square q)\}$
- $\Psi(p, q):=p \vee \neg p \vee q \vee \neg q$.

Given a finite set of formulas Γ, φ, whether $\Gamma \equiv \Gamma_{0} \cup \Upsilon(p, q)$ and $\varphi \equiv \varphi_{0} \vee \Psi(p, q)$ is a decidable process.

The Łukasiewicz case

Lemma

$\Gamma \Vdash_{\omega \mathcal{M}_{Ł}}^{g} \varphi$ iff $\Gamma, \Upsilon(p, q) \Vdash_{\mathcal{M}_{Ł}}^{g} \varphi \vee \Psi(p, q)$ for any $p, q \notin \mathcal{V} \operatorname{ars}(\Gamma, \varphi)$ and

- $\Upsilon(p, q):=\{\square 0 \vee(p \leftrightarrow \square p), \square 0 \vee(\square p \leftrightarrow \diamond p),(q \leftrightarrow p \odot \square q)\}$
- $\Psi(p, q):=p \vee \neg p \vee q \vee \neg q$.

Given a finite set of formulas Γ, φ, whether $\Gamma \equiv \Gamma_{0} \cup \Upsilon(p, q)$ and $\varphi \equiv \varphi_{0} \vee \Psi(p, q)$ is a decidable process.

Theorem

The finitary companion of $\Vdash_{\mathcal{M}_{\underline{L}}}^{g}$ is not RE.

The Product case

! not known anything like the completeness of $\Vdash^{g} \mathcal{M}_{\Pi}$ wrt witnessed models (only a partial result, not generalizable, for theorems).

The Product case

! not known anything like the completeness of $\Vdash_{\mathcal{M}_{\Pi}}^{g}$ wrt witnessed models (only a partial result, not generalizable, for theorems).
$!\Vdash^{g} \mathcal{M}_{\boldsymbol{M}_{1}}$ has for free quasi-witnessed models -and it is not axiomatizable.

The Product case

! not known anything like the completeness of $\Vdash_{\mathcal{M}_{\Pi}}^{g}$ wrt witnessed
models (only a partial result, not generalizable, for theorems).
$!\Vdash^{g} \mathcal{M}_{\boldsymbol{M}_{1}}$ has for free quasi-witnessed models -and it is not axiomatizable.

We can split the reduction in two parts

The Product case

! not known anything like the completeness of $\Vdash^{g} \mathcal{M}_{\Pi}$ wrt witnessed models (only a partial result, not generalizable, for theorems).
$!\Vdash^{\mathcal{M}_{n_{1}}}$ has for free quasi-witnessed models -and it is not axiomatizable.
We can split the reduction in two parts

Lemma

$\Gamma \Vdash_{\omega \mathcal{M}_{n_{1}}} \varphi$ iff $\Gamma, \Upsilon(p, q), Q W(\Gamma, \varphi) \Vdash_{\mathcal{M}_{n_{1}}} \varphi \vee \Psi(p, q)$ for $p, q, \Upsilon(p, q), \Psi(p, q)$ as in the $Ł$ case and

- $Q W(\Gamma, \varphi):=\{\neg \square \chi \rightarrow \diamond \neg \chi\}_{\square \chi \in \operatorname{SFm}(\Gamma, \varphi)}$.

The Product case

! not known anything like the completeness of $\Vdash_{\mathcal{M}_{\Pi}}^{g}$ wrt witnessed models (only a partial result, not generalizable, for theorems).
$!\Vdash^{\mathcal{M}_{n_{1}}}$ has for free quasi-witnessed models -and it is not axiomatizable.
We can split the reduction in two parts

Lemma

$\Gamma \Vdash_{\omega \mathcal{M}_{n_{1}}} \varphi$ iff $\Gamma, \Upsilon(p, q), Q W(\Gamma, \varphi) \Vdash_{\mathcal{M}_{n_{1}}} \varphi \vee \Psi(p, q)$ for $p, q, \Upsilon(p, q), \Psi(p, q)$ as in the $Ł$ case and

- $Q W(\Gamma, \varphi):=\{\neg \square \chi \rightarrow \diamond \neg \chi\}_{\square \chi \in S F m(\Gamma, \varphi)}$.

Corollary

The finitary companion of $\Vdash_{\mathcal{M}_{\boldsymbol{N}_{1}}}^{g}$ is not RE.

The Product case

To reduce $\Vdash_{\mathcal{M}_{\Pi_{1}}}$ to $\Vdash_{\mathcal{M}_{\Pi}}$ we can use the cancelativity $(\forall a \in[0,1], \neg x \in\{0,1\})$.

The Product case

To reduce $\Vdash_{\mathcal{M}_{\Pi_{1}}}$ to $\Vdash_{\mathcal{M}_{\Pi}}$ we can use the cancelativity $(\forall a \in[0,1], \neg x \in\{0,1\})$.

Lemma

Given Γ, φ, there is a set of variables \mathcal{V}^{\prime} defined from $\operatorname{Var}(\Gamma, \varphi)$ and two sets of formulas $\Sigma\left(\Gamma, \varphi, \mathcal{V}^{\prime}\right), \Theta\left(\varphi, \mathcal{V}^{\prime}\right)$ such that
$\Gamma \Vdash_{\mathcal{M}_{\Pi_{1}}} \varphi$ iff $\Sigma\left(\Gamma, \varphi, \mathcal{V}^{\prime}\right) \Vdash_{\mathcal{M}_{\Pi}} \Theta\left(\varphi, \mathcal{V}^{\prime}\right)$.

The Product case

To reduce $\Vdash_{\mathcal{M}_{\Pi_{1}}}$ to $\Vdash_{\mathcal{M}_{\Pi}}$ we can use the cancelativity $(\forall a \in[0,1], \neg x \in\{0,1\})$.

Lemma

Given Γ, φ, there is a set of variables \mathcal{V}^{\prime} defined from $\mathcal{V} \operatorname{ar}(\Gamma, \varphi)$ and two sets of formulas $\Sigma\left(\Gamma, \varphi, \mathcal{V}^{\prime}\right), \Theta\left(\varphi, \mathcal{V}^{\prime}\right)$ such that $\Gamma \Vdash_{\mathcal{M}_{\Pi_{1}}} \varphi$ iff $\Sigma\left(\Gamma, \varphi, \mathcal{V}^{\prime}\right) \Vdash_{\mathcal{M}_{\Pi}} \Theta\left(\varphi, \mathcal{V}^{\prime}\right)$.

In both steps it is decidable whether some Γ, φ coincide with the corresponding transformed premises/consequence of some Γ_{0}, φ_{0}.

The Product case

To reduce $\Vdash_{\mathcal{M}_{\Pi_{1}}}$ to $\Vdash_{\mathcal{M}_{\Pi}}$ we can use the cancelativity $(\forall a \in[0,1], \neg x \in\{0,1\})$.

Lemma

Given Γ, φ, there is a set of variables \mathcal{V}^{\prime} defined from $\mathcal{V} \operatorname{ar}(\Gamma, \varphi)$ and two sets of formulas $\Sigma\left(\Gamma, \varphi, \mathcal{V}^{\prime}\right), \Theta\left(\varphi, \mathcal{V}^{\prime}\right)$ such that
$\Gamma \Vdash_{\mathcal{M}_{\Pi_{1}}} \varphi$ iff $\Sigma\left(\Gamma, \varphi, \mathcal{V}^{\prime}\right) \Vdash_{\mathcal{M}_{\Pi}} \Theta\left(\varphi, \mathcal{V}^{\prime}\right)$.
In both steps it is decidable whether some Γ, φ coincide with the corresponding transformed premises/consequence of some Γ_{0}, φ_{0}.

Theorem

The finitary companion of $\Vdash_{\mathcal{M}_{\Pi}}^{g}$ is not RE.

Gödel modal logics

Differentiating underlying algebras

Let $G_{\downarrow}:=\{0\} \cup\left\{1 / i: i \in N^{*}\right\}$.
Lemma
$\Gamma \vdash_{[0,1]_{G}} \varphi$ iff $\Gamma \vdash_{G_{\downarrow}} \varphi$

Differentiating underlying algebras

Let $G_{\downarrow}:=\{0\} \cup\left\{1 / i: i \in N^{*}\right\}$.

Lemma

$$
\Gamma \vdash_{[0,1]_{G}} \varphi \text { iff } \Gamma \vdash_{G_{\downarrow}} \varphi
$$

Theorem (Hajek, 2005; Baaz, 1995)
$\vdash_{F O G_{\downarrow}}$ is non-arithmetical.
The \exists-free fragment is not recursively enumerable.

Differentiating underlying algebras

Let $G_{\downarrow}:=\{0\} \cup\left\{1 / i: i \in N^{*}\right\}$.

Lemma

$$
\Gamma \vdash_{[0,1]_{G}} \varphi \text { iff } \Gamma \vdash_{G_{\downarrow}} \varphi
$$

Theorem (Hajek, 2005; Baaz, 1995)

$\vdash_{F O G_{\downarrow}}$ is non-arithmetical.
The \exists-free fragment is not recursively enumerable.

Theorem

$K(G)_{\square}$ (Caicedo and Rodríguez (2010)) +
$((\square \varphi \leftrightarrow \square \psi) \wedge(\square(\varphi \rightarrow \psi) \rightarrow \varphi)) \rightarrow(\square \psi \vee \neg \square \psi)$ is complete wrt.
\diamond-free fragment over G_{\downarrow}.

Thank you!

References

Caicedo, X., Metcalfe, G., Rodríguez, R., and Rogger, J. (2013). A finite model property for Gödel modal logics. In Libkin, L., Kohlenbach, U., and de Queiroz, R., editors, Logic, Language, Information, and Computation, volume 8071 of Lecture Notes in Computer Science. Springer Berlin Heidelberg.
Caicedo, X. and Rodríguez, R. O. (2010). Standard Gödel modal logics. Studia Logica, 94(2):189-214.
Caicedo, X. and Rodriguez, R. O. (2015). Bi-modal Gödel logic over [0,1]-valued Kripke frames. Journal of Logic and Computation, 25(1):37-55.
Hansoul, G. and Teheux, B. (2013). Extending tukasiewicz logics with a modality: Algebraic approach to relational semantics. Studia Logica, 101(3):505-545.

Metcalfe, G. and Olivetti, N. (2011). Towards a proof theory of Gödel modal logics. Logical Methods in Computer Science, 7(2):27.

Vidal, A., Esteva, F., and Godo, L. (2017). On modal extensions of product fuzzy logic. Journal of Logic and Computation, 27(1):299-336.

