Gaps between cardinalities of quotient algebras of rank-into-rank embeddings

Joseph Van Name

2019

Complex analysis

Algebra-Self distributivity Set theory-Rank-into-rank cardinals

Large cardinal hierarchy

Rank-into-rank embeddings

- 2 n-huge
- 3 Huge
- ④ Vopenka
- 5 Extendible
- 6 Supercompact
- Woodin
- 8 Measurable
- 9 Ramsey
- 10 Weakly compact
- Inaccessible cardinals
- 12 ZFC

If λ is a cardinal, then a rank-into-rank embedding is an elementary embedding $j: V_{\lambda} \to V_{\lambda}$. Let \mathcal{E}_{λ} denote the collection of all elementary embeddings $j: V_{\lambda} \to V_{\lambda}$. Define $\mathcal{E}_{\lambda}^+ = \mathcal{E}_{\lambda} \setminus \{1_{V_{\lambda}}\}$.

If λ is a cardinal, then a rank-into-rank embedding is an elementary embedding $j : V_{\lambda} \to V_{\lambda}$. Let \mathcal{E}_{λ} denote the collection of all elementary embeddings $j : V_{\lambda} \to V_{\lambda}$. Define $\mathcal{E}_{\lambda}^+ = \mathcal{E}_{\lambda} \setminus \{1_{V_{\lambda}}\}$.

If $j \in \mathcal{E}_{\lambda}^+$, then recall that $\operatorname{crit}(j)$ is the smallest ordinal where $j(\operatorname{crit}(j)) > \operatorname{crit}(j)$.

If λ is a cardinal, then a rank-into-rank embedding is an elementary embedding $j: V_{\lambda} \to V_{\lambda}$. Let \mathcal{E}_{λ} denote the collection of all elementary embeddings $j: V_{\lambda} \to V_{\lambda}$. Define $\mathcal{E}_{\lambda}^+ = \mathcal{E}_{\lambda} \setminus \{1_{V_{\lambda}}\}$.

If $j \in \mathcal{E}_{\lambda}^+$, then recall that $\operatorname{crit}(j)$ is the smallest ordinal where $j(\operatorname{crit}(j)) > \operatorname{crit}(j)$.

 \mathcal{E}_{λ} is endowed with an operation * defined by $j * k = \bigcup_{\alpha < \lambda} j(k|_{V_{\alpha}}).$

If λ is a cardinal, then a rank-into-rank embedding is an elementary embedding $j: V_{\lambda} \to V_{\lambda}$. Let \mathcal{E}_{λ} denote the collection of all elementary embeddings $j: V_{\lambda} \to V_{\lambda}$. Define $\mathcal{E}_{\lambda}^+ = \mathcal{E}_{\lambda} \setminus \{1_{V_{\lambda}}\}$.

If $j \in \mathcal{E}_{\lambda}^+$, then recall that $\operatorname{crit}(j)$ is the smallest ordinal where $j(\operatorname{crit}(j)) > \operatorname{crit}(j)$.

 \mathcal{E}_{λ} is endowed with an operation * defined by $j * k = \bigcup_{\alpha < \lambda} j(k|_{V_{\alpha}})$. The algebra $(\mathcal{E}_{\lambda}, *)$ satisfies the self-distributivity identity j * (k * l) = (j * k) * (j * l).

If λ is a cardinal, then a rank-into-rank embedding is an elementary embedding $j: V_{\lambda} \to V_{\lambda}$. Let \mathcal{E}_{λ} denote the collection of all elementary embeddings $j: V_{\lambda} \to V_{\lambda}$. Define $\mathcal{E}_{\lambda}^+ = \mathcal{E}_{\lambda} \setminus \{1_{V_{\lambda}}\}$.

If $j \in \mathcal{E}_{\lambda}^+$, then recall that $\operatorname{crit}(j)$ is the smallest ordinal where $j(\operatorname{crit}(j)) > \operatorname{crit}(j)$.

 \mathcal{E}_{λ} is endowed with an operation * defined by $j * k = \bigcup_{\alpha < \lambda} j(k|_{V_{\alpha}})$. The algebra $(\mathcal{E}_{\lambda}, *)$ satisfies the self-distributivity identity j * (k * l) = (j * k) * (j * l).

If γ is a limit ordinal with $\gamma < \lambda$, then define a congruence \equiv^{γ} on $(\mathcal{E}_{\lambda}, *)$ by letting $j \equiv^{\gamma} k$ if and only if $j(x) \cap V_{\gamma} = k(x) \cap V_{\gamma}$ for $x \in V_{\gamma}$.

If λ is a cardinal, then a rank-into-rank embedding is an elementary embedding $j: V_{\lambda} \to V_{\lambda}$. Let \mathcal{E}_{λ} denote the collection of all elementary embeddings $j: V_{\lambda} \to V_{\lambda}$. Define $\mathcal{E}_{\lambda}^+ = \mathcal{E}_{\lambda} \setminus \{1_{V_{\lambda}}\}$.

If $j \in \mathcal{E}_{\lambda}^+$, then recall that $\operatorname{crit}(j)$ is the smallest ordinal where $j(\operatorname{crit}(j)) > \operatorname{crit}(j)$.

 \mathcal{E}_{λ} is endowed with an operation * defined by $j * k = \bigcup_{\alpha < \lambda} j(k|_{V_{\alpha}})$. The algebra $(\mathcal{E}_{\lambda}, *)$ satisfies the self-distributivity identity j * (k * l) = (j * k) * (j * l).

If γ is a limit ordinal with $\gamma < \lambda$, then define a congruence \equiv^{γ} on $(\mathcal{E}_{\lambda}, *)$ by letting $j \equiv^{\gamma} k$ if and only if $j(x) \cap V_{\gamma} = k(x) \cap V_{\gamma}$ for $x \in V_{\gamma}$.

If λ is a cardinal, then a rank-into-rank embedding is an elementary embedding $j: V_{\lambda} \to V_{\lambda}$. Let \mathcal{E}_{λ} denote the collection of all elementary embeddings $j: V_{\lambda} \to V_{\lambda}$. Define $\mathcal{E}_{\lambda}^+ = \mathcal{E}_{\lambda} \setminus \{1_{V_{\lambda}}\}$.

If $j \in \mathcal{E}_{\lambda}^+$, then recall that $\operatorname{crit}(j)$ is the smallest ordinal where $j(\operatorname{crit}(j)) > \operatorname{crit}(j)$.

 \mathcal{E}_{λ} is endowed with an operation * defined by $j * k = \bigcup_{\alpha < \lambda} j(k|_{V_{\alpha}})$. The algebra $(\mathcal{E}_{\lambda}, *)$ satisfies the self-distributivity identity j * (k * l) = (j * k) * (j * l).

If γ is a limit ordinal with $\gamma < \lambda$, then define a congruence \equiv^{γ} on $(\mathcal{E}_{\lambda}, *)$ by letting $j \equiv^{\gamma} k$ if and only if $j(x) \cap V_{\gamma} = k(x) \cap V_{\gamma}$ for $x \in V_{\gamma}$.

If λ is a cardinal, then a rank-into-rank embedding is an elementary embedding $j: V_{\lambda} \to V_{\lambda}$. Let \mathcal{E}_{λ} denote the collection of all elementary embeddings $j: V_{\lambda} \to V_{\lambda}$. Define $\mathcal{E}_{\lambda}^+ = \mathcal{E}_{\lambda} \setminus \{1_{V_{\lambda}}\}$.

If $j \in \mathcal{E}_{\lambda}^+$, then recall that $\operatorname{crit}(j)$ is the smallest ordinal where $j(\operatorname{crit}(j)) > \operatorname{crit}(j)$.

 \mathcal{E}_{λ} is endowed with an operation * defined by $j * k = \bigcup_{\alpha < \lambda} j(k|_{V_{\alpha}})$. The algebra $(\mathcal{E}_{\lambda}, *)$ satisfies the self-distributivity identity j * (k * l) = (j * k) * (j * l).

If γ is a limit ordinal with $\gamma < \lambda$, then define a congruence \equiv^{γ} on $(\mathcal{E}_{\lambda}, *)$ by letting $j \equiv^{\gamma} k$ if and only if $j(x) \cap V_{\gamma} = k(x) \cap V_{\gamma}$ for $x \in V_{\gamma}$.

If λ is a cardinal, then a rank-into-rank embedding is an elementary embedding $j: V_{\lambda} \to V_{\lambda}$. Let \mathcal{E}_{λ} denote the collection of all elementary embeddings $j: V_{\lambda} \to V_{\lambda}$. Define $\mathcal{E}_{\lambda}^+ = \mathcal{E}_{\lambda} \setminus \{1_{V_{\lambda}}\}$.

If $j \in \mathcal{E}_{\lambda}^+$, then recall that $\operatorname{crit}(j)$ is the smallest ordinal where $j(\operatorname{crit}(j)) > \operatorname{crit}(j)$.

 \mathcal{E}_{λ} is endowed with an operation * defined by $j * k = \bigcup_{\alpha < \lambda} j(k|_{V_{\alpha}})$. The algebra $(\mathcal{E}_{\lambda}, *)$ satisfies the self-distributivity identity j * (k * l) = (j * k) * (j * l).

If γ is a limit ordinal with $\gamma < \lambda$, then define a congruence \equiv^{γ} on $(\mathcal{E}_{\lambda}, *)$ by letting $j \equiv^{\gamma} k$ if and only if $j(x) \cap V_{\gamma} = k(x) \cap V_{\gamma}$ for $x \in V_{\gamma}$.

Theorem

Suppose that λ is a cardinal and there is a non-trivial elementary embedding $j : V_{\lambda} \to V_{\lambda}$.

Theorem

Suppose that λ is a cardinal and there is a non-trivial elementary embedding $j : V_{\lambda} \to V_{\lambda}$.

1 (Kunen) λ is a strong limit cardinal of cofinality \aleph_0 .

Theorem

Suppose that λ is a cardinal and there is a non-trivial elementary embedding $j : V_{\lambda} \to V_{\lambda}$.

- (Kunen) λ is a strong limit cardinal of cofinality \aleph_0 .
- 2 (Laver-Steel) If $j_n \in \mathcal{E}^+_{\lambda}$ for $n \in \omega$, then $\sup_{n \in \omega} \operatorname{crit}(j_0 * \cdots * j_n) = \lambda$.

Theorem

Suppose that λ is a cardinal and there is a non-trivial elementary embedding $j : V_{\lambda} \rightarrow V_{\lambda}$.

- (*Kunen*) λ is a strong limit cardinal of cofinality \aleph_0 .
- 2 (Laver-Steel) If $j_n \in \mathcal{E}^+_{\lambda}$ for $n \in \omega$, then $\sup_{n \in \omega} \operatorname{crit}(j_0 * \cdots * j_n) = \lambda$.
- 3 (V.) Every finitely generated subalgebra of $\mathcal{E}_{\lambda} / \equiv^{\gamma}$ is finite.

Theorem

Suppose that λ is a cardinal and there is a non-trivial elementary embedding $j : V_{\lambda} \rightarrow V_{\lambda}$.

- (Kunen) λ is a strong limit cardinal of cofinality \aleph_0 .
- 2 (Laver-Steel) If $j_n \in \mathcal{E}^+_{\lambda}$ for $n \in \omega$, then $\sup_{n \in \omega} \operatorname{crit}(j_0 * \cdots * j_n) = \lambda$.
- 3 (V.) Every finitely generated subalgebra of $\mathcal{E}_{\lambda}/\equiv^{\gamma}$ is finite.
- (V.) If $j_1, \ldots, j_k \in \mathcal{E}_{\lambda}$, then $\{\operatorname{crit}(j) : j \in \langle j_1, \ldots, j_k \rangle\}$ has order type ω .

Theorem

Suppose that λ is a cardinal and there is a non-trivial elementary embedding $j : V_{\lambda} \rightarrow V_{\lambda}$.

- (Kunen) λ is a strong limit cardinal of cofinality \aleph_0 .
- 2 (Laver-Steel) If $j_n \in \mathcal{E}^+_{\lambda}$ for $n \in \omega$, then $\sup_{n \in \omega} \operatorname{crit}(j_0 * \cdots * j_n) = \lambda$.
- 3 (V.) Every finitely generated subalgebra of $\mathcal{E}_{\lambda}/\equiv^{\gamma}$ is finite.
- (V.) If $j_1, \ldots, j_k \in \mathcal{E}_{\lambda}$, then $\{\operatorname{crit}(j) : j \in \langle j_1, \ldots, j_k \rangle\}$ has order type ω .

Theorem

Suppose that λ is a cardinal and there is a non-trivial elementary embedding $j : V_{\lambda} \rightarrow V_{\lambda}$.

- (Kunen) λ is a strong limit cardinal of cofinality \aleph_0 .
- 2 (Laver-Steel) If $j_n \in \mathcal{E}^+_{\lambda}$ for $n \in \omega$, then $\sup_{n \in \omega} \operatorname{crit}(j_0 * \cdots * j_n) = \lambda$.
- 3 (V.) Every finitely generated subalgebra of $\mathcal{E}_{\lambda}/\equiv^{\gamma}$ is finite.
- (V.) If $j_1, \ldots, j_k \in \mathcal{E}_{\lambda}$, then $\{\operatorname{crit}(j) : j \in \langle j_1, \ldots, j_k \rangle\}$ has order type ω .

Theorem

Suppose that λ is a cardinal and there is a non-trivial elementary embedding $j : V_{\lambda} \rightarrow V_{\lambda}$.

- (Kunen) λ is a strong limit cardinal of cofinality \aleph_0 .
- 2 (Laver-Steel) If $j_n \in \mathcal{E}^+_{\lambda}$ for $n \in \omega$, then $\sup_{n \in \omega} \operatorname{crit}(j_0 * \cdots * j_n) = \lambda$.
- 3 (V.) Every finitely generated subalgebra of $\mathcal{E}_{\lambda}/\equiv^{\gamma}$ is finite.
- (V.) If $j_1, \ldots, j_k \in \mathcal{E}_{\lambda}$, then $\{\operatorname{crit}(j) : j \in \langle j_1, \ldots, j_k \rangle\}$ has order type ω .

If $j_1, \ldots, j_k \in \mathcal{E}^+_{\lambda}$, then let $\operatorname{crit}_n(j_1, \ldots, j_k)$ denote the *n*-th element (we start at 0) in the set {crit(j) | $j \in \langle j_1, \ldots, j_k \rangle$ }.

If $j_1, \ldots, j_k \in \mathcal{E}^+_{\lambda}$, then let $\operatorname{crit}_n(j_1, \ldots, j_k)$ denote the *n*-th element (we start at 0) in the set { $\operatorname{crit}(j) \mid j \in \langle j_1, \ldots, j_k \rangle$ }. For $n \in \omega$, define non-commutative polynomials $p_{n,h,\ldots,k}^*(x_1, \ldots, x_k)$ by letting

$$p_{n,j_1,\ldots,j_k}^*(x_1,\ldots,x_k)$$

$$= 1 + \sum \{x_{a_1} \dots x_{a_s} \mid \operatorname{crit}(j_{a_1} \ast \dots \ast j_{a_s}) = \operatorname{crit}_n(j_1, \dots, j_k),$$
$$\operatorname{crit}(j_{a_1} \ast \dots \ast j_{a_r}) < \operatorname{crit}_n(j_1, \dots, j_k) \text{ for } 1 \le r < s\}.$$

If $j_1, \ldots, j_k \in \mathcal{E}^+_{\lambda}$, then let $\operatorname{crit}_n(j_1, \ldots, j_k)$ denote the *n*-th element (we start at 0) in the set { $\operatorname{crit}(j) \mid j \in \langle j_1, \ldots, j_k \rangle$ }. For $n \in \omega$, define non-commutative polynomials $p_{n,h,\ldots,k}^*(x_1, \ldots, x_k)$ by letting

$$p_{n,j_1,\ldots,j_k}^*(x_1,\ldots,x_k)$$

$$= 1 + \sum \{ x_{a_1} \dots x_{a_s} \mid \operatorname{crit}(j_{a_1} * \dots * j_{a_s}) = \operatorname{crit}_n(j_1, \dots, j_k), \\ \operatorname{crit}(j_{a_1} * \dots * j_{a_r}) < \operatorname{crit}_n(j_1, \dots, j_k) \text{ for } 1 \le r < s \}.$$

Theorem

$$(V.) \lim_{n \to \infty} p_{n,j_1,\dots,j_k}^*(x_1,\dots,x_k) \cdots p_{0,j_1,\dots,j_k}^*(x_1,\dots,x_k) = \frac{1}{1 - (x_1 + \dots + x_k)}.$$

Joseph Van Name Gaps between cardinalit

If $j_1, \ldots, j_k \in \mathcal{E}^+_{\lambda}$, then let $\operatorname{crit}_n(j_1, \ldots, j_k)$ denote the *n*-th element (we start at 0) in the set { $\operatorname{crit}(j) \mid j \in \langle j_1, \ldots, j_k \rangle$ }. For $n \in \omega$, define non-commutative polynomials $p_{n,h,\ldots,k}^*(x_1, \ldots, x_k)$ by letting

$$p_{n,j_1,\ldots,j_k}^*(x_1,\ldots,x_k)$$

$$= 1 + \sum \{ x_{a_1} \dots x_{a_s} \mid \operatorname{crit}(j_{a_1} * \dots * j_{a_s}) = \operatorname{crit}_n(j_1, \dots, j_k), \\ \operatorname{crit}(j_{a_1} * \dots * j_{a_r}) < \operatorname{crit}_n(j_1, \dots, j_k) \text{ for } 1 \le r < s \}.$$

Theorem

$$(V.) \lim_{n \to \infty} p_{n,j_1,\dots,j_k}^*(x_1,\dots,x_k) \cdots p_{0,j_1,\dots,j_k}^*(x_1,\dots,x_k) = \frac{1}{1 - (x_1 + \dots + x_k)}.$$

Joseph Van Name Gaps between cardinalit

If $j_1, \ldots, j_k \in \mathcal{E}^+_{\lambda}$, then let $\operatorname{crit}_n(j_1, \ldots, j_k)$ denote the *n*-th element (we start at 0) in the set { $\operatorname{crit}(j) \mid j \in \langle j_1, \ldots, j_k \rangle$ }. For $n \in \omega$, define non-commutative polynomials $p_{n,h,\ldots,k}^*(x_1, \ldots, x_k)$ by letting

$$p_{n,j_1,\ldots,j_k}^*(x_1,\ldots,x_k)$$

$$= 1 + \sum \{ x_{a_1} \dots x_{a_s} \mid \operatorname{crit}(j_{a_1} * \dots * j_{a_s}) = \operatorname{crit}_n(j_1, \dots, j_k), \\ \operatorname{crit}(j_{a_1} * \dots * j_{a_r}) < \operatorname{crit}_n(j_1, \dots, j_k) \text{ for } 1 \le r < s \}.$$

Theorem

$$(V.) \lim_{n \to \infty} p_{n,j_1,\dots,j_k}^*(x_1,\dots,x_k) \cdots p_{0,j_1,\dots,j_k}^*(x_1,\dots,x_k) = \frac{1}{1 - (x_1 + \dots + x_k)}.$$

Joseph Van Name Gaps between cardinalit

If $j_1, \ldots, j_k \in \mathcal{E}^+_{\lambda}$, then let $\operatorname{crit}_n(j_1, \ldots, j_k)$ denote the *n*-th element (we start at 0) in the set { $\operatorname{crit}(j) \mid j \in \langle j_1, \ldots, j_k \rangle$ }. For $n \in \omega$, define non-commutative polynomials $p_{n,h,\ldots,k}^*(x_1, \ldots, x_k)$ by letting

$$p_{n,j_1,\ldots,j_k}^*(x_1,\ldots,x_k)$$

$$= 1 + \sum \{ x_{a_1} \dots x_{a_s} \mid \operatorname{crit}(j_{a_1} * \dots * j_{a_s}) = \operatorname{crit}_n(j_1, \dots, j_k), \\ \operatorname{crit}(j_{a_1} * \dots * j_{a_r}) < \operatorname{crit}_n(j_1, \dots, j_k) \text{ for } 1 \le r < s \}.$$

Theorem

$$(V.) \lim_{n \to \infty} p_{n,j_1,\dots,j_k}^*(x_1,\dots,x_k) \cdots p_{0,j_1,\dots,j_k}^*(x_1,\dots,x_k) = \frac{1}{1 - (x_1 + \dots + x_k)}.$$

Joseph Van Name Gaps between cardinalit

Gaps between cardinalities of quotient algebras of rank-into-rank Joseph Van Name

Suppose that X is a subalgebra of \mathcal{E}_{λ} . Endow X / \equiv^{γ} with a partial ordering \preceq_X where we define $[j]_{\gamma} \preceq_X [k]_{\gamma}$ if and only if there are $j_0, \ldots, j_n \in X$ where $j_0 = j, j_0 * \cdots * j_n \equiv^{\gamma} k$ and where $\operatorname{crit}(j_0 * \cdots * j_m) < \gamma$ whenever $0 \leq m < n$.

Suppose that X is a subalgebra of \mathcal{E}_{λ} . Endow X / \equiv^{γ} with a partial ordering \preceq_X where we define $[j]_{\gamma} \preceq_X [k]_{\gamma}$ if and only if there are $j_0, \ldots, j_n \in X$ where $j_0 = j, j_0 * \cdots * j_n \equiv^{\gamma} k$ and where $\operatorname{crit}(j_0 * \cdots * j_m) < \gamma$ whenever $0 \leq m < n$.

Define the height ht(X) to be the length of the longest chain in the poset $(X / \equiv^{\gamma}, \preceq_X)$.

Suppose that X is a subalgebra of \mathcal{E}_{λ} . Endow X / \equiv^{γ} with a partial ordering \preceq_X where we define $[j]_{\gamma} \preceq_X [k]_{\gamma}$ if and only if there are $j_0, \ldots, j_n \in X$ where $j_0 = j, j_0 * \cdots * j_n \equiv^{\gamma} k$ and where $\operatorname{crit}(j_0 * \cdots * j_m) < \gamma$ whenever $0 \leq m < n$.

Define the height ht(X) to be the length of the longest chain in the poset $(X / \equiv^{\gamma}, \preceq_X)$.

(V.) Let
$$X = \langle j_1, \ldots, j_k \rangle$$
 and let $\alpha_n = \operatorname{crit}_n(j_1, \ldots, j_k)$. Then

$$|X/\equiv^{\alpha_{n+1}}|-|X/\equiv^{\alpha_n}|\geq \operatorname{ht}(X/\equiv^{\alpha_{n+1}})-\operatorname{ht}(X/\equiv^{\alpha_n})$$

Suppose that X is a subalgebra of \mathcal{E}_{λ} . Endow X / \equiv^{γ} with a partial ordering \preceq_X where we define $[j]_{\gamma} \preceq_X [k]_{\gamma}$ if and only if there are $j_0, \ldots, j_n \in X$ where $j_0 = j, j_0 * \cdots * j_n \equiv^{\gamma} k$ and where $\operatorname{crit}(j_0 * \cdots * j_m) < \gamma$ whenever $0 \leq m < n$.

Define the height ht(X) to be the length of the longest chain in the poset $(X / \equiv^{\gamma}, \preceq_X)$.

(V.) Let
$$X = \langle j_1, \ldots, j_k \rangle$$
 and let $\alpha_n = \operatorname{crit}_n(j_1, \ldots, j_k)$. Then

$$|X|\equiv^{lpha_{n+1}}|-|X|\equiv^{lpha_n}|\geq \operatorname{ht}(X|\equiv^{lpha_{n+1}})-\operatorname{ht}(X|\equiv^{lpha_n})$$

$$= \deg(p_{n,j_1,\ldots,j_k}^*(x_1,\ldots,x_k)).$$

Suppose that X is a subalgebra of \mathcal{E}_{λ} . Endow X / \equiv^{γ} with a partial ordering \preceq_X where we define $[j]_{\gamma} \preceq_X [k]_{\gamma}$ if and only if there are $j_0, \ldots, j_n \in X$ where $j_0 = j, j_0 * \cdots * j_n \equiv^{\gamma} k$ and where $\operatorname{crit}(j_0 * \cdots * j_m) < \gamma$ whenever $0 \leq m < n$.

Define the height ht(X) to be the length of the longest chain in the poset $(X / \equiv^{\gamma}, \preceq_X)$.

(V.) Let
$$X = \langle j_1, \ldots, j_k \rangle$$
 and let $\alpha_n = \operatorname{crit}_n(j_1, \ldots, j_k)$. Then

$$|X|\equiv^{lpha_{n+1}}|-|X|\equiv^{lpha_n}|\geq \operatorname{ht}(X|\equiv^{lpha_{n+1}})-\operatorname{ht}(X|\equiv^{lpha_n})$$

$$= \deg(p_{n,j_1,\ldots,j_k}^*(x_1,\ldots,x_k)).$$

Suppose that X is a subalgebra of \mathcal{E}_{λ} . Endow X / \equiv^{γ} with a partial ordering \preceq_X where we define $[j]_{\gamma} \preceq_X [k]_{\gamma}$ if and only if there are $j_0, \ldots, j_n \in X$ where $j_0 = j, j_0 * \cdots * j_n \equiv^{\gamma} k$ and where $\operatorname{crit}(j_0 * \cdots * j_m) < \gamma$ whenever $0 \leq m < n$.

Define the height ht(X) to be the length of the longest chain in the poset $(X / \equiv^{\gamma}, \preceq_X)$.

(V.) Let
$$X = \langle j_1, \ldots, j_k \rangle$$
 and let $\alpha_n = \operatorname{crit}_n(j_1, \ldots, j_k)$. Then

$$|X/\equiv^{\alpha_{n+1}}|-|X/\equiv^{\alpha_n}|\geq \operatorname{ht}(X/\equiv^{\alpha_{n+1}})-\operatorname{ht}(X/\equiv^{\alpha_n})$$

$$= \deg(p_{n,j_1,\ldots,j_k}^*(x_1,\ldots,x_k)).$$
The degree of polynomials is the height difference.

Suppose that X is a subalgebra of \mathcal{E}_{λ} . Endow X / \equiv^{γ} with a partial ordering \preceq_X where we define $[j]_{\gamma} \preceq_X [k]_{\gamma}$ if and only if there are $j_0, \ldots, j_n \in X$ where $j_0 = j, j_0 * \cdots * j_n \equiv^{\gamma} k$ and where $\operatorname{crit}(j_0 * \cdots * j_m) < \gamma$ whenever $0 \leq m < n$.

Define the height ht(X) to be the length of the longest chain in the poset $(X / \equiv^{\gamma}, \preceq_X)$.

Theorem

(V.) Let
$$X = \langle j_1, \ldots, j_k \rangle$$
 and let $\alpha_n = \operatorname{crit}_n(j_1, \ldots, j_k)$. Then

$$|X|\equiv^{lpha_{n+1}}|-|X|\equiv^{lpha_n}|\geq \operatorname{ht}(X|\equiv^{lpha_{n+1}})-\operatorname{ht}(X|\equiv^{lpha_n})$$

$$= \deg(p_{n,j_1,\ldots,j_k}^*(x_1,\ldots,x_k)).$$

Joseph Van Name Gaps between cardinalities of quotient algebras of rank-into-rank

Let \mathcal{A} be the set of all functions $f : \omega \setminus \{0\} \to \mathbb{C}$. Define the Dirichlet convolution * on \mathcal{A} by letting $x * y(\ell) = \sum_{j \cdot k = \ell} x(j) \cdot y(k)$. Then $(\mathcal{A}, +, *)$ is a ring. The ring \mathcal{A} has identity e defined by e(k) = 0 for k > 1 and e(1) = 1. If $x \in \mathcal{A}, x(1) \neq 0$, then x is invertible.

Let \mathcal{A} be the set of all functions $f : \omega \setminus \{0\} \to \mathbb{C}$. Define the Dirichlet convolution * on \mathcal{A} by letting $x * y(\ell) = \sum_{j \cdot k = \ell} x(j) \cdot y(k)$. Then $(\mathcal{A}, +, *)$ is a ring. The ring \mathcal{A} has identity e defined by e(k) = 0 for k > 1 and e(1) = 1. If $x \in \mathcal{A}, x(1) \neq 0$, then x is invertible.

Define an automorphism $T : A \to A$ by letting $T(a)(k) = k \cdot a(k)$ for k > 0.

Let \mathcal{A} be the set of all functions $f : \omega \setminus \{0\} \to \mathbb{C}$. Define the Dirichlet convolution * on \mathcal{A} by letting $x * y(\ell) = \sum_{j \cdot k = \ell} x(j) \cdot y(k)$. Then $(\mathcal{A}, +, *)$ is a ring. The ring \mathcal{A} has identity e defined by e(k) = 0 for k > 1 and e(1) = 1. If $x \in \mathcal{A}, x(1) \neq 0$, then x is invertible.

Define an automorphism $T : A \to A$ by letting $T(a)(k) = k \cdot a(k)$ for k > 0.

Define $1 \in \mathcal{A}$ by letting 1(n) = 1 for all n. Define $\mu \in \mathcal{A}$ by letting $\mu(n^2x) = 0$ whenever n > 1 and $\mu(p_1 \dots p_k) = (-1)^k$ whenever p_1, \dots, p_k are distinct primes.

Let \mathcal{A} be the set of all functions $f : \omega \setminus \{0\} \to \mathbb{C}$. Define the Dirichlet convolution * on \mathcal{A} by letting $x * y(\ell) = \sum_{j \cdot k = \ell} x(j) \cdot y(k)$. Then $(\mathcal{A}, +, *)$ is a ring. The ring \mathcal{A} has identity e defined by e(k) = 0 for k > 1 and e(1) = 1. If $x \in \mathcal{A}, x(1) \neq 0$, then x is invertible.

Define an automorphism $T : A \to A$ by letting $T(a)(k) = k \cdot a(k)$ for k > 0.

Define $1 \in \mathcal{A}$ by letting 1(n) = 1 for all n. Define $\mu \in \mathcal{A}$ by letting $\mu(n^2x) = 0$ whenever n > 1 and $\mu(p_1 \dots p_k) = (-1)^k$ whenever p_1, \dots, p_k are distinct primes.

Let \mathcal{A} be the set of all functions $f : \omega \setminus \{0\} \to \mathbb{C}$. Define the Dirichlet convolution * on \mathcal{A} by letting $x * y(\ell) = \sum_{j \cdot k = \ell} x(j) \cdot y(k)$. Then $(\mathcal{A}, +, *)$ is a ring. The ring \mathcal{A} has identity e defined by e(k) = 0 for k > 1 and e(1) = 1. If $x \in \mathcal{A}, x(1) \neq 0$, then x is invertible.

Define an automorphism $T : A \to A$ by letting $T(a)(k) = k \cdot a(k)$ for k > 0.

Define $1 \in \mathcal{A}$ by letting 1(n) = 1 for all n. Define $\mu \in \mathcal{A}$ by letting $\mu(n^2x) = 0$ whenever n > 1 and $\mu(p_1 \dots p_k) = (-1)^k$ whenever p_1, \dots, p_k are distinct primes.

Let \mathcal{A} be the set of all functions $f : \omega \setminus \{0\} \to \mathbb{C}$. Define the Dirichlet convolution * on \mathcal{A} by letting $x * y(\ell) = \sum_{j \cdot k = \ell} x(j) \cdot y(k)$. Then $(\mathcal{A}, +, *)$ is a ring. The ring \mathcal{A} has identity e defined by e(k) = 0 for k > 1 and e(1) = 1. If $x \in \mathcal{A}, x(1) \neq 0$, then x is invertible.

Define an automorphism $T : A \to A$ by letting $T(a)(k) = k \cdot a(k)$ for k > 0.

Define $1 \in \mathcal{A}$ by letting 1(n) = 1 for all n. Define $\mu \in \mathcal{A}$ by letting $\mu(n^2x) = 0$ whenever n > 1 and $\mu(p_1 \dots p_k) = (-1)^k$ whenever p_1, \dots, p_k are distinct primes.

Let \mathcal{A} be the set of all functions $f : \omega \setminus \{0\} \to \mathbb{C}$. Define the Dirichlet convolution * on \mathcal{A} by letting $x * y(\ell) = \sum_{j \cdot k = \ell} x(j) \cdot y(k)$. Then $(\mathcal{A}, +, *)$ is a ring. The ring \mathcal{A} has identity e defined by e(k) = 0 for k > 1 and e(1) = 1. If $x \in \mathcal{A}, x(1) \neq 0$, then x is invertible.

Define an automorphism $T : A \to A$ by letting $T(a)(k) = k \cdot a(k)$ for k > 0.

Define $1 \in \mathcal{A}$ by letting 1(n) = 1 for all n. Define $\mu \in \mathcal{A}$ by letting $\mu(n^2x) = 0$ whenever n > 1 and $\mu(p_1 \dots p_k) = (-1)^k$ whenever p_1, \dots, p_k are distinct primes.

Joseph Van Name Gaps between cardinalities of quotient algebras of rank-into-rank

If *u* is a function holomorphic on a neighborhood of 0 with u(0) = 1, then define $R_u, r_u \in A$ by letting

$$\ln(u(z)) = \sum_{j=1}^{\infty} R_u(j) z^j; r_u = T(R_u); \frac{zu'(z)}{u(z)} = \sum_{k=1}^{\infty} r_u(k) x^k.$$

If *u* is a function holomorphic on a neighborhood of 0 with u(0) = 1, then define $R_u, r_u \in A$ by letting

$$\ln(u(z)) = \sum_{j=1}^{\infty} R_u(j) z^j; r_u = T(R_u); \frac{zu'(z)}{u(z)} = \sum_{k=1}^{\infty} r_u(k) x^k.$$

Theorem

Suppose that u is a function holomorphic on a neighborhood of 0 with $u(0)=1,~a\in\mathcal{A}$ and

$$\prod_{k=1}^{\infty} (1+z^k)^{a(k)} = \frac{1}{u(z)}$$

for z in a neighborhood of 0. Then

$$a = R_u * T^{-1}(\mu^{\sharp}) = T^{-1}(r_u * \mu^{\sharp}).$$

If *u* is a function holomorphic on a neighborhood of 0 with u(0) = 1, then define $R_u, r_u \in A$ by letting

$$\ln(u(z)) = \sum_{j=1}^{\infty} R_u(j) z^j; r_u = T(R_u); \frac{zu'(z)}{u(z)} = \sum_{k=1}^{\infty} r_u(k) x^k.$$

Theorem

Suppose that u is a function holomorphic on a neighborhood of 0 with $u(0)=1,~a\in\mathcal{A}$ and

$$\prod_{k=1}^{\infty} (1+z^k)^{a(k)} = \frac{1}{u(z)}$$

for z in a neighborhood of 0. Then

$$a = R_u * T^{-1}(\mu^{\sharp}) = T^{-1}(r_u * \mu^{\sharp}).$$

If *u* is a function holomorphic on a neighborhood of 0 with u(0) = 1, then define $R_u, r_u \in A$ by letting

$$\ln(u(z)) = \sum_{j=1}^{\infty} R_u(j) z^j; r_u = T(R_u); \frac{zu'(z)}{u(z)} = \sum_{k=1}^{\infty} r_u(k) x^k.$$

Theorem

Suppose that u is a function holomorphic on a neighborhood of 0 with $u(0)=1,~a\in\mathcal{A}$ and

$$\prod_{k=1}^{\infty} (1+z^k)^{a(k)} = \frac{1}{u(z)}$$

for z in a neighborhood of 0. Then

$$a = R_u * T^{-1}(\mu^{\sharp}) = T^{-1}(r_u * \mu^{\sharp}).$$

If *u* is a function holomorphic on a neighborhood of 0 with u(0) = 1, then define $R_u, r_u \in A$ by letting

$$\ln(u(z)) = \sum_{j=1}^{\infty} R_u(j) z^j; r_u = T(R_u); \frac{zu'(z)}{u(z)} = \sum_{k=1}^{\infty} r_u(k) x^k.$$

Theorem

Suppose that u is a function holomorphic on a neighborhood of 0 with $u(0)=1,~a\in\mathcal{A}$ and

$$\prod_{k=1}^{\infty} (1+z^k)^{a(k)} = \frac{1}{u(z)}$$

for z in a neighborhood of 0. Then

$$a = R_u * T^{-1}(\mu^{\sharp}) = T^{-1}(r_u * \mu^{\sharp}).$$

Bounds from infinite products of polynomials

Define
$$p_{n,j_1,...,j_k}^*(x) = p_{n,j_1,...,j_k}^*(x,...,x).$$

Theorem

(V.) Suppose that $j_1, \ldots, j_k \in \mathcal{E}^+_{\lambda}$. Let $X = \langle j_1, \ldots, j_k \rangle$, and let $\alpha_n = \operatorname{crit}_n(j_1, \ldots, j_k)$ for $n \in \omega$. Suppose that N is a natural number. For each natural number h,

① let
$$b(h)$$
 be the number of $n \ge N$ such that $|X| \equiv^{\alpha_{n+1}} |-|X| \equiv^{\alpha_n} |=h$, and

2 let
$$c(h)$$
 be the number of $n \ge N$ such that $\operatorname{ht}(X / \equiv^{\alpha_{n+1}}) - \operatorname{ht}(X / \equiv^{\alpha_n}) = h.$

Let $u(x) = (1 - kx) \cdot p_{0,j_1,...,j_k}^*(x) \dots p_{N-1,j_1,...,j_k}^*(x)$. Then

- ① Either $b = T^{-1}(r_u * \mu^{\sharp})$ or there is some $h \ge 1$ with $b(h) < T^{-1}(r_u * \mu^{\sharp})(h)$.
- 2 Either $c = T^{-1}(r_u * \mu^{\sharp})$ or there is some $h \ge 1$ with $c(h) < T^{-1}(r_u * \mu^{\sharp})(h)$.

An algebraization of \mathcal{E}_{λ} .

A reduced Laver-like algebra is an algebra (X, *, 1) that satisfies the identities x * (y * z) = (x * y) * (x * z), x * 1 = 1, 1 * x = x and where if $x_n \in X$ for $n \in \omega$, then there is some N with $x_0 * \cdots * x_N = 1$.

The algebras $(\mathcal{E}_{\lambda} / \equiv^{\gamma}, *)$ are always reduced Laver-like algebras, but there are many reduced Laver-like algebras that do not embed into any $(\mathcal{E}_{\lambda} / \equiv^{\gamma}, *)$. The main results of this talk could have been stated in greater generality in terms of Laver-like algebras.

Computer calculations give some evidence that the bounds on b, c are sharp, or nearly sharp, and at the very least difficult to improve upon but only when these bounds are generalized to the setting of reduced Laver-like algebras.

Photographic evidence of rank-into-rank cardinals: A₄

Joseph Van Name

Photographic evidence of rank-into-rank cardinals: A_5

Gaps between cardinalities of quotient algebras of rank-into-rank

Photographic evidence of rank-into-rank cardinals: A₆

Name Gaps between cardinalities of quotient algebras of rank-into-rank

Photographic evidence of rank-into-rank cardinals: A7

ne Gaps between cardinalities of quotient algebras of rank-into-rank

Photographic evidence of rank-into-rank cardinals: A₈

Gaps between cardinalities of quotient algebras of rank-into-rank

Photographic evidence of rank-into-rank cardinals: A9

Gaps between cardinalities of quotient algebras of rank-into-rank

Photographic evidence of rank-into-rank cardinals: A_{10}

Gaps between cardinalities of quotient algebras of rank-into-rank

Photographic evidence of rank-into-rank cardinals: A₃

Joseph Van Name Gaps between cardinalities of quotient algebras of rank-into-rank

Photographic evidence of rank-into-rank cardinals: A₄

Joseph Van Name

Photographic evidence of rank-into-rank cardinals: A₅

Joseph Van Name

Photographic evidence of rank-into-rank cardinals: A₆

Joseph Van Name

Photographic evidence of rank-into-rank cardinals: A7

Joseph Van Name

Photographic evidence of rank-into-rank cardinals: A_8

Photographic evidence of rank-into-rank cardinals: A_9

Photographic evidence of rank-into-rank cardinals: A_{10}

Gaps between cardinalities of quotient algebras of rank-into-rank

Heat map

Joseph Van Name

Heat map

Joseph Van Name

Pictures: FM₅⁻

Gaps between cardinalities of quotient algebras of rank-into-rank

Pictures: FM_6^-

Name Gaps between cardinalities of quotient algebras of rank-into-rank
Pictures: *FM*₇⁻

n Name Gaps between cardinalities of quotient algebras of rank-into-rank

Gaps between cardinalities of quotient algebras of rank-into-rank

Pictures: FM_9^-

Gaps between cardinalities of quotient algebras of rank-into-rank

Pictures: FM_{10}^{-}

Gaps between cardinalities of quotient algebras of rank-into-rank

Pictures: Multigenic Laver table snapshot

Joseph Van Name Gaps between cardinalities of quotient algebras of rank-into-rank

Pictures: Endomorphic Laver table snapshot

Joseph Van Name

Gaps between cardinalities of quotient algebras of rank-into-rank

Pictures: Endomorphic Laver table snapshot

Joseph Van Name Gaps between cardinalities of quotient algebras of rank-into-rank

Other table (truncated)

Joseph Van Name

Gaps between cardinalities of quotient algebras of rank-into-rank

The end: Happy Bitcoin Pizza Day!

Joseph Van Name

Gaps between cardinalities of quotient algebras of rank-into-rank