Gaps between cardinalities of quotient algebras of rank-into-rank embeddings

Joseph Van Name

2019

Complex analysis
L
Algebra-Self distributivity
Set theory-Rank-into-rank cardinals
T

Large cardinal hierarchy

(1) Rank-into-rank embeddings
2) -n-huge
(3) Huge
(4) Vopenka
(5) Extendible

6 Supercompact
(7) Woodin

8 Measurable
(9) Ramsey
(10) Weakly compact
(11) Inaccessible cardinals
(12) ZFC

Review of rank-into-rank embeddings

Review of rank-into-rank embeddings

If λ is a cardinal, then a rank-into-rank embedding is an elementary embedding $j: V_{\lambda} \rightarrow V_{\lambda}$. Let \mathcal{E}_{λ} denote the collection of all elementary embeddings $j: V_{\lambda} \rightarrow V_{\lambda}$. Define $\mathcal{E}_{\lambda}^{+}=\mathcal{E}_{\lambda} \backslash\left\{1_{V_{\lambda}}\right\}$.

Review of rank-into-rank embeddings

If λ is a cardinal, then a rank-into-rank embedding is an elementary embedding $j: V_{\lambda} \rightarrow V_{\lambda}$. Let \mathcal{E}_{λ} denote the collection of all elementary embeddings $j: V_{\lambda} \rightarrow V_{\lambda}$. Define $\mathcal{E}_{\lambda}^{+}=\mathcal{E}_{\lambda} \backslash\left\{1_{V_{\lambda}}\right\}$. If $j \in \mathcal{E}_{\lambda}^{+}$, then recall that $\operatorname{crit}(j)$ is the smallest ordinal where $j(\operatorname{crit}(j))>\operatorname{crit}(j)$.

Review of rank-into-rank embeddings

If λ is a cardinal, then a rank-into-rank embedding is an elementary embedding $j: V_{\lambda} \rightarrow V_{\lambda}$. Let \mathcal{E}_{λ} denote the collection of all elementary embeddings $j: V_{\lambda} \rightarrow V_{\lambda}$. Define $\mathcal{E}_{\lambda}^{+}=\mathcal{E}_{\lambda} \backslash\left\{1_{V_{\lambda}}\right\}$. If $j \in \mathcal{E}_{\lambda}^{+}$, then recall that $\operatorname{crit}(j)$ is the smallest ordinal where $j(\operatorname{crit}(j))>\operatorname{crit}(j)$.
\mathcal{E}_{λ} is endowed with an operation $*$ defined by $j * k=\bigcup_{\alpha<\lambda} j\left(k \mid V_{\alpha}\right)$.

Review of rank-into-rank embeddings

If λ is a cardinal, then a rank-into-rank embedding is an elementary embedding $j: V_{\lambda} \rightarrow V_{\lambda}$. Let \mathcal{E}_{λ} denote the collection of all elementary embeddings $j: V_{\lambda} \rightarrow V_{\lambda}$. Define $\mathcal{E}_{\lambda}^{+}=\mathcal{E}_{\lambda} \backslash\left\{1_{V_{\lambda}}\right\}$. If $j \in \mathcal{E}_{\lambda}^{+}$, then recall that $\operatorname{crit}(j)$ is the smallest ordinal where $j(\operatorname{crit}(j))>\operatorname{crit}(j)$.
\mathcal{E}_{λ} is endowed with an operation $*$ defined by $j * k=\bigcup_{\alpha<\lambda} j\left(\left.k\right|_{V_{\alpha}}\right)$. The algebra $\left(\mathcal{E}_{\lambda}, *\right)$ satisfies the self-distributivity identity $j *(k * I)=(j * k) *(j * I)$.

Review of rank-into-rank embeddings

If λ is a cardinal, then a rank-into-rank embedding is an elementary embedding $j: V_{\lambda} \rightarrow V_{\lambda}$. Let \mathcal{E}_{λ} denote the collection of all elementary embeddings $j: V_{\lambda} \rightarrow V_{\lambda}$. Define $\mathcal{E}_{\lambda}^{+}=\mathcal{E}_{\lambda} \backslash\left\{1_{V_{\lambda}}\right\}$. If $j \in \mathcal{E}_{\lambda}^{+}$, then recall that $\operatorname{crit}(j)$ is the smallest ordinal where $j(\operatorname{crit}(j))>\operatorname{crit}(j)$.
\mathcal{E}_{λ} is endowed with an operation $*$ defined by $j * k=\bigcup_{\alpha<\lambda} j\left(k \mid V_{\alpha}\right)$. The algebra $\left(\mathcal{E}_{\lambda}, *\right)$ satisfies the self-distributivity identity $j *(k * I)=(j * k) *(j * I)$.
If γ is a limit ordinal with $\gamma<\lambda$, then define a congruence \equiv^{γ} on $\left(\mathcal{E}_{\lambda}, *\right)$ by letting $j \equiv^{\gamma} k$ if and only if $j(x) \cap V_{\gamma}=k(x) \cap V_{\gamma}$ for $x \in V_{\gamma}$.

Review of rank-into-rank embeddings

If λ is a cardinal, then a rank-into-rank embedding is an elementary embedding $j: V_{\lambda} \rightarrow V_{\lambda}$. Let \mathcal{E}_{λ} denote the collection of all elementary embeddings $j: V_{\lambda} \rightarrow V_{\lambda}$. Define $\mathcal{E}_{\lambda}^{+}=\mathcal{E}_{\lambda} \backslash\left\{1_{V_{\lambda}}\right\}$. If $j \in \mathcal{E}_{\lambda}^{+}$, then recall that $\operatorname{crit}(j)$ is the smallest ordinal where $j(\operatorname{crit}(j))>\operatorname{crit}(j)$.
\mathcal{E}_{λ} is endowed with an operation $*$ defined by $j * k=\bigcup_{\alpha<\lambda} j\left(k \mid V_{\alpha}\right)$. The algebra $\left(\mathcal{E}_{\lambda}, *\right)$ satisfies the self-distributivity identity $j *(k * I)=(j * k) *(j * I)$.
If γ is a limit ordinal with $\gamma<\lambda$, then define a congruence \equiv^{γ} on $\left(\mathcal{E}_{\lambda}, *\right)$ by letting $j \equiv^{\gamma} k$ if and only if $j(x) \cap V_{\gamma}=k(x) \cap V_{\gamma}$ for $x \in V_{\gamma}$.
In this talk, we shall use the convention that all implied parentheses will be put on the left. i.e. $j * k * I=(j * k) * I$.

Review of rank-into-rank embeddings

If λ is a cardinal, then a rank-into-rank embedding is an elementary embedding $j: V_{\lambda} \rightarrow V_{\lambda}$. Let \mathcal{E}_{λ} denote the collection of all elementary embeddings $j: V_{\lambda} \rightarrow V_{\lambda}$. Define $\mathcal{E}_{\lambda}^{+}=\mathcal{E}_{\lambda} \backslash\left\{1_{V_{\lambda}}\right\}$. If $j \in \mathcal{E}_{\lambda}^{+}$, then recall that $\operatorname{crit}(j)$ is the smallest ordinal where $j(\operatorname{crit}(j))>\operatorname{crit}(j)$.
\mathcal{E}_{λ} is endowed with an operation $*$ defined by $j * k=\bigcup_{\alpha<\lambda} j\left(k \mid V_{\alpha}\right)$. The algebra $\left(\mathcal{E}_{\lambda}, *\right)$ satisfies the self-distributivity identity $j *(k * I)=(j * k) *(j * I)$.
If γ is a limit ordinal with $\gamma<\lambda$, then define a congruence \equiv^{γ} on $\left(\mathcal{E}_{\lambda}, *\right)$ by letting $j \equiv^{\gamma} k$ if and only if $j(x) \cap V_{\gamma}=k(x) \cap V_{\gamma}$ for $x \in V_{\gamma}$.
In this talk, we shall use the convention that all implied parentheses will be put on the left. i.e. $j * k * I=(j * k) * I$.

Review of rank-into-rank embeddings

If λ is a cardinal, then a rank-into-rank embedding is an elementary embedding $j: V_{\lambda} \rightarrow V_{\lambda}$. Let \mathcal{E}_{λ} denote the collection of all elementary embeddings $j: V_{\lambda} \rightarrow V_{\lambda}$. Define $\mathcal{E}_{\lambda}^{+}=\mathcal{E}_{\lambda} \backslash\left\{1_{V_{\lambda}}\right\}$. If $j \in \mathcal{E}_{\lambda}^{+}$, then recall that $\operatorname{crit}(j)$ is the smallest ordinal where $j(\operatorname{crit}(j))>\operatorname{crit}(j)$.
\mathcal{E}_{λ} is endowed with an operation $*$ defined by $j * k=\bigcup_{\alpha<\lambda} j\left(k \mid V_{\alpha}\right)$. The algebra $\left(\mathcal{E}_{\lambda}, *\right)$ satisfies the self-distributivity identity $j *(k * I)=(j * k) *(j * I)$.
If γ is a limit ordinal with $\gamma<\lambda$, then define a congruence \equiv^{γ} on $\left(\mathcal{E}_{\lambda}, *\right)$ by letting $j \equiv^{\gamma} k$ if and only if $j(x) \cap V_{\gamma}=k(x) \cap V_{\gamma}$ for $x \in V_{\gamma}$.
In this talk, we shall use the convention that all implied parentheses will be put on the left. i.e. $j * k * I=(j * k) * I$.

Review of rank-into-rank embeddings

If λ is a cardinal, then a rank-into-rank embedding is an elementary embedding $j: V_{\lambda} \rightarrow V_{\lambda}$. Let \mathcal{E}_{λ} denote the collection of all elementary embeddings $j: V_{\lambda} \rightarrow V_{\lambda}$. Define $\mathcal{E}_{\lambda}^{+}=\mathcal{E}_{\lambda} \backslash\left\{1_{V_{\lambda}}\right\}$. If $j \in \mathcal{E}_{\lambda}^{+}$, then recall that $\operatorname{crit}(j)$ is the smallest ordinal where $j(\operatorname{crit}(j))>\operatorname{crit}(j)$.
\mathcal{E}_{λ} is endowed with an operation $*$ defined by $j * k=\bigcup_{\alpha<\lambda} j\left(k \mid V_{\alpha}\right)$. The algebra $\left(\mathcal{E}_{\lambda}, *\right)$ satisfies the self-distributivity identity $j *(k * I)=(j * k) *(j * I)$.
If γ is a limit ordinal with $\gamma<\lambda$, then define a congruence \equiv^{γ} on $\left(\mathcal{E}_{\lambda}, *\right)$ by letting $j \equiv^{\gamma} k$ if and only if $j(x) \cap V_{\gamma}=k(x) \cap V_{\gamma}$ for $x \in V_{\gamma}$.
In this talk, we shall use the convention that all implied parentheses will be put on the left. i.e. $j * k * I=(j * k) * I$.

Elementary embeddings and countability

Elementary embeddings and countability

Theorem

Suppose that λ is a cardinal and there is a non-trivial elementary embedding $j: V_{\lambda} \rightarrow V_{\lambda}$.

Elementary embeddings and countability

Theorem

Suppose that λ is a cardinal and there is a non-trivial elementary embedding $j: V_{\lambda} \rightarrow V_{\lambda}$.
(1) (Kunen) λ is a strong limit cardinal of cofinality \aleph_{0}.

Elementary embeddings and countability

Theorem

Suppose that λ is a cardinal and there is a non-trivial elementary embedding $j: V_{\lambda} \rightarrow V_{\lambda}$.
(1) (Kunen) λ is a strong limit cardinal of cofinality \aleph_{0}.
(2) (Laver-Steel) If $j_{n} \in \mathcal{E}_{\lambda}^{+}$for $n \in \omega$, then $\sup _{n \in \omega} \operatorname{crit}\left(j_{0} * \cdots * j_{n}\right)=\lambda$.

Elementary embeddings and countability

Theorem

Suppose that λ is a cardinal and there is a non-trivial elementary embedding $j: V_{\lambda} \rightarrow V_{\lambda}$.
(1) (Kunen) λ is a strong limit cardinal of cofinality \aleph_{0}.
(2) (Laver-Steel) If $j_{n} \in \mathcal{E}_{\lambda}^{+}$for $n \in \omega$, then

$$
\sup _{n \in \omega} \operatorname{crit}\left(j_{0} * \cdots * j_{n}\right)=\lambda .
$$

(3) (V.) Every finitely generated subalgebra of $\mathcal{E}_{\lambda} / \equiv^{\gamma}$ is finite.

Elementary embeddings and countability

Theorem

Suppose that λ is a cardinal and there is a non-trivial elementary embedding $j: V_{\lambda} \rightarrow V_{\lambda}$.
(1) (Kunen) λ is a strong limit cardinal of cofinality \aleph_{0}.
(2) (Laver-Steel) If $j_{n} \in \mathcal{E}_{\lambda}^{+}$for $n \in \omega$, then $\sup _{n \in \omega} \operatorname{crit}\left(j_{0} * \cdots * j_{n}\right)=\lambda$.
(3) (V.) Every finitely generated subalgebra of $\mathcal{E}_{\lambda} / \equiv^{\gamma}$ is finite.
(4) (V.) If $j_{1}, \ldots, j_{k} \in \mathcal{E}_{\lambda}$, then $\left\{\operatorname{crit}(j): j \in\left\langle j_{1}, \ldots, j_{k}\right\rangle\right\}$ has order type ω.

Elementary embeddings and countability

Theorem

Suppose that λ is a cardinal and there is a non-trivial elementary embedding $j: V_{\lambda} \rightarrow V_{\lambda}$.
(1) (Kunen) λ is a strong limit cardinal of cofinality \aleph_{0}.
(2) (Laver-Steel) If $j_{n} \in \mathcal{E}_{\lambda}^{+}$for $n \in \omega$, then $\sup _{n \in \omega} \operatorname{crit}\left(j_{0} * \cdots * j_{n}\right)=\lambda$.
(3) (V.) Every finitely generated subalgebra of $\mathcal{E}_{\lambda} / \equiv^{\gamma}$ is finite.
(4) (V.) If $j_{1}, \ldots, j_{k} \in \mathcal{E}_{\lambda}$, then $\left\{\operatorname{crit}(j): j \in\left\langle j_{1}, \ldots, j_{k}\right\rangle\right\}$ has order type ω.

Elementary embeddings and countability

Theorem

Suppose that λ is a cardinal and there is a non-trivial elementary embedding $j: V_{\lambda} \rightarrow V_{\lambda}$.
(1) (Kunen) λ is a strong limit cardinal of cofinality \aleph_{0}.
(2) (Laver-Steel) If $j_{n} \in \mathcal{E}_{\lambda}^{+}$for $n \in \omega$, then $\sup _{n \in \omega} \operatorname{crit}\left(j_{0} * \cdots * j_{n}\right)=\lambda$.
(3) (V.) Every finitely generated subalgebra of $\mathcal{E}_{\lambda} / \equiv^{\gamma}$ is finite.
(4) (V.) If $j_{1}, \ldots, j_{k} \in \mathcal{E}_{\lambda}$, then $\left\{\operatorname{crit}(j): j \in\left\langle j_{1}, \ldots, j_{k}\right\rangle\right\}$ has order type ω.

Elementary embeddings and countability

Theorem

Suppose that λ is a cardinal and there is a non-trivial elementary embedding $j: V_{\lambda} \rightarrow V_{\lambda}$.
(1) (Kunen) λ is a strong limit cardinal of cofinality \aleph_{0}.
(2) (Laver-Steel) If $j_{n} \in \mathcal{E}_{\lambda}^{+}$for $n \in \omega$, then $\sup _{n \in \omega} \operatorname{crit}\left(j_{0} * \cdots * j_{n}\right)=\lambda$.
(3) (V.) Every finitely generated subalgebra of $\mathcal{E}_{\lambda} / \equiv^{\gamma}$ is finite.
(4) (V.) If $j_{1}, \ldots, j_{k} \in \mathcal{E}_{\lambda}$, then $\left\{\operatorname{crit}(j): j \in\left\langle j_{1}, \ldots, j_{k}\right\rangle\right\}$ has order type ω.

The infinite product formula

The infinite product formula
If $j_{1}, \ldots, j_{k} \in \mathcal{E}_{\lambda}^{+}$, then let $\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right)$ denote the n-th element (we start at 0) in the set $\left\{\operatorname{crit}(j) \mid j \in\left\langle j_{1}, \ldots, j_{k}\right\rangle\right\}$.

If $j_{1}, \ldots, j_{k} \in \mathcal{E}_{\lambda}^{+}$, then let $\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right)$ denote the n-th element (we start at 0) in the set $\left\{\operatorname{crit}(j) \mid j \in\left\langle j_{1}, \ldots, j_{k}\right\rangle\right\}$.
For $n \in \omega$, define non-commutative polynomials $p_{n, j_{1}, \ldots, j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right)$ by letting

$$
\begin{gathered}
p_{n, j_{1}, \ldots, j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right) \\
=1+\sum\left\{x_{a_{1}} \ldots x_{a_{s}} \mid \operatorname{crit}\left(j_{a_{1}} * \cdots * j_{a_{s}}\right)=\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right),\right. \\
\left.\operatorname{crit}\left(j_{a_{1}} * \cdots * j_{a_{r}}\right)<\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right) \text { for } 1 \leq r<s\right\} .
\end{gathered}
$$

The infinite product formula

If $j_{1}, \ldots, j_{k} \in \mathcal{E}_{\lambda}^{+}$, then let $\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right)$ denote the n-th element (we start at 0) in the set $\left\{\operatorname{crit}(j) \mid j \in\left\langle j_{1}, \ldots, j_{k}\right\rangle\right\}$.
For $n \in \omega$, define non-commutative polynomials
$p_{n, j_{1}, \ldots, j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right)$ by letting

$$
\begin{gathered}
p_{n, j_{1}, \ldots j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right) \\
=1+\sum\left\{x_{a_{1}} \ldots x_{a_{s}} \mid \operatorname{crit}\left(j_{a_{1}} * \cdots * j_{a_{s}}\right)=\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right),\right. \\
\left.\operatorname{crit}\left(j_{a_{1}} * \cdots * j_{a_{r}}\right)<\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right) \text { for } 1 \leq r<s\right\} .
\end{gathered}
$$

Theorem

$$
\begin{gathered}
\text { (V.) } \lim _{n \rightarrow \infty} p_{n, j_{1}, \ldots, j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right) \cdots p_{0, j_{1}, \ldots, j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right) \\
=\frac{1}{1-\left(x_{1}+\cdots+x_{k}\right)} .
\end{gathered}
$$

The infinite product formula

If $j_{1}, \ldots, j_{k} \in \mathcal{E}_{\lambda}^{+}$, then let $\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right)$ denote the n-th element (we start at 0) in the set $\left\{\operatorname{crit}(j) \mid j \in\left\langle j_{1}, \ldots, j_{k}\right\rangle\right\}$.
For $n \in \omega$, define non-commutative polynomials
$p_{n, j_{1}, \ldots, j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right)$ by letting

$$
\begin{gathered}
p_{n, j_{1}, \ldots j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right) \\
=1+\sum\left\{x_{a_{1}} \ldots x_{a_{s}} \mid \operatorname{crit}\left(j_{a_{1}} * \cdots * j_{a_{s}}\right)=\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right),\right. \\
\left.\operatorname{crit}\left(j_{a_{1}} * \cdots * j_{a_{r}}\right)<\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right) \text { for } 1 \leq r<s\right\} .
\end{gathered}
$$

Theorem

$$
\begin{gathered}
\text { (V.) } \lim _{n \rightarrow \infty} p_{n, j_{1}, \ldots, j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right) \cdots p_{0, j_{1}, \ldots, j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right) \\
=\frac{1}{1-\left(x_{1}+\cdots+x_{k}\right)} .
\end{gathered}
$$

The infinite product formula

If $j_{1}, \ldots, j_{k} \in \mathcal{E}_{\lambda}^{+}$, then let $\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right)$ denote the n-th element (we start at 0) in the set $\left\{\operatorname{crit}(j) \mid j \in\left\langle j_{1}, \ldots, j_{k}\right\rangle\right\}$.
For $n \in \omega$, define non-commutative polynomials
$p_{n, j_{1}, \ldots, j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right)$ by letting

$$
\begin{gathered}
p_{n, j_{1}, \ldots j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right) \\
=1+\sum\left\{x_{a_{1}} \ldots x_{a_{s}} \mid \operatorname{crit}\left(j_{a_{1}} * \cdots * j_{a_{s}}\right)=\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right),\right. \\
\left.\operatorname{crit}\left(j_{a_{1}} * \cdots * j_{a_{r}}\right)<\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right) \text { for } 1 \leq r<s\right\} .
\end{gathered}
$$

Theorem

$$
\begin{gathered}
\text { (V.) } \lim _{n \rightarrow \infty} p_{n, j_{1}, \ldots, j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right) \cdots p_{0, j_{1}, \ldots, j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right) \\
=\frac{1}{1-\left(x_{1}+\cdots+x_{k}\right)} .
\end{gathered}
$$

The infinite product formula

If $j_{1}, \ldots, j_{k} \in \mathcal{E}_{\lambda}^{+}$, then let $\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right)$ denote the n-th element (we start at 0) in the set $\left\{\operatorname{crit}(j) \mid j \in\left\langle j_{1}, \ldots, j_{k}\right\rangle\right\}$.
For $n \in \omega$, define non-commutative polynomials
$p_{n, j_{1}, \ldots, j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right)$ by letting

$$
\begin{gathered}
p_{n, j_{1}, \ldots j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right) \\
=1+\sum\left\{x_{a_{1}} \ldots x_{a_{s}} \mid \operatorname{crit}\left(j_{a_{1}} * \cdots * j_{a_{s}}\right)=\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right),\right. \\
\left.\operatorname{crit}\left(j_{a_{1}} * \cdots * j_{a_{r}}\right)<\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right) \text { for } 1 \leq r<s\right\} .
\end{gathered}
$$

Theorem

$$
\begin{gathered}
\text { (V.) } \lim _{n \rightarrow \infty} p_{n, j_{1}, \ldots, j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right) \cdots p_{0, j_{1}, \ldots, j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right) \\
=\frac{1}{1-\left(x_{1}+\cdots+x_{k}\right)} .
\end{gathered}
$$

The degree of polynomials is the height difference.

The degree of polynomials is the height difference.

Suppose that X is a subalgebra of \mathcal{E}_{λ}. Endow X / \equiv^{γ} with a partial ordering $\preceq x$ where we define $[j]_{\gamma} \preceq x[k]_{\gamma}$ if and only if there are $j_{0}, \ldots, j_{n} \in X$ where $j_{0}=j, j_{0} * \cdots * j_{n} \equiv^{\gamma} k$ and where $\operatorname{crit}\left(j_{0} * \cdots * j_{m}\right)<\gamma$ whenever $0 \leq m<n$.

The degree of polynomials is the height difference.

Suppose that X is a subalgebra of \mathcal{E}_{λ}. Endow $X / \equiv{ }^{\gamma}$ with a partial ordering $\preceq x$ where we define $[j]_{\gamma} \preceq x[k]_{\gamma}$ if and only if there are $j_{0}, \ldots, j_{n} \in X$ where $j_{0}=j, j_{0} * \cdots * j_{n} \equiv \gamma k$ and where $\operatorname{crit}\left(j_{0} * \cdots * j_{m}\right)<\gamma$ whenever $0 \leq m<n$.
Define the height $\operatorname{ht}(X)$ to be the length of the longest chain in the poset $\left(X / \equiv{ }^{\gamma}, \preceq X\right)$.

The degree of polynomials is the height difference.

Suppose that X is a subalgebra of \mathcal{E}_{λ}. Endow $X / \equiv{ }^{\gamma}$ with a partial ordering $\preceq x$ where we define $[j]_{\gamma} \preceq x[k]_{\gamma}$ if and only if there are $j_{0}, \ldots, j_{n} \in X$ where $j_{0}=j, j_{0} * \cdots * j_{n} \equiv \gamma k$ and where $\operatorname{crit}\left(j_{0} * \cdots * j_{m}\right)<\gamma$ whenever $0 \leq m<n$.
Define the height $\operatorname{ht}(X)$ to be the length of the longest chain in the poset $\left(X / \equiv{ }^{\gamma}, \preceq x\right)$.

Theorem

(V.) Let $X=\left\langle j_{1}, \ldots, j_{k}\right\rangle$ and let $\alpha_{n}=\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right)$. Then

$$
\left|X / \equiv{ }^{\alpha_{n+1}}\right|-|X| \equiv \equiv^{\alpha_{n}} \mid \geq \operatorname{ht}\left(X / \equiv^{\alpha_{n+1}}\right)-\operatorname{ht}\left(X / \equiv^{\alpha_{n}}\right)
$$

The degree of polynomials is the height difference.

Suppose that X is a subalgebra of \mathcal{E}_{λ}. Endow $X / \equiv{ }^{\gamma}$ with a partial ordering $\preceq x$ where we define $[j]_{\gamma} \preceq x[k]_{\gamma}$ if and only if there are $j_{0}, \ldots, j_{n} \in X$ where $j_{0}=j, j_{0} * \cdots * j_{n} \equiv \gamma k$ and where $\operatorname{crit}\left(j_{0} * \cdots * j_{m}\right)<\gamma$ whenever $0 \leq m<n$.
Define the height $\operatorname{ht}(X)$ to be the length of the longest chain in the poset $\left(X / \equiv{ }^{\gamma}, \underline{x}\right)$.

Theorem

(V.) Let $X=\left\langle j_{1}, \ldots, j_{k}\right\rangle$ and let $\alpha_{n}=\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right)$. Then

$$
\left|X / \equiv{ }^{\alpha_{n+1}}\right|-|X| \equiv \equiv^{\alpha_{n}} \mid \geq \operatorname{ht}\left(X / \equiv^{\alpha_{n+1}}\right)-\operatorname{ht}\left(X / \equiv^{\alpha_{n}}\right)
$$

$$
=\operatorname{deg}\left(p_{n, j_{1}, \ldots, j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right)\right)
$$

The degree of polynomials is the height difference.

Suppose that X is a subalgebra of \mathcal{E}_{λ}. Endow $X / \equiv{ }^{\gamma}$ with a partial ordering $\preceq x$ where we define $[j]_{\gamma} \preceq x[k]_{\gamma}$ if and only if there are $j_{0}, \ldots, j_{n} \in X$ where $j_{0}=j, j_{0} * \cdots * j_{n} \equiv \gamma k$ and where $\operatorname{crit}\left(j_{0} * \cdots * j_{m}\right)<\gamma$ whenever $0 \leq m<n$.
Define the height $\operatorname{ht}(X)$ to be the length of the longest chain in the poset $\left(X / \equiv{ }^{\gamma}, \underline{x}\right)$.

Theorem

(V.) Let $X=\left\langle j_{1}, \ldots, j_{k}\right\rangle$ and let $\alpha_{n}=\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right)$. Then

$$
\left|X / \equiv{ }^{\alpha_{n+1}}\right|-|X| \equiv \equiv^{\alpha_{n}} \mid \geq \operatorname{ht}\left(X / \equiv^{\alpha_{n+1}}\right)-\operatorname{ht}\left(X / \equiv^{\alpha_{n}}\right)
$$

$$
=\operatorname{deg}\left(p_{n, j_{1}, \ldots, j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right)\right)
$$

The degree of polynomials is the height difference.

Suppose that X is a subalgebra of \mathcal{E}_{λ}. Endow $X / \equiv{ }^{\gamma}$ with a partial ordering $\preceq x$ where we define $[j]_{\gamma} \preceq x[k]_{\gamma}$ if and only if there are $j_{0}, \ldots, j_{n} \in X$ where $j_{0}=j, j_{0} * \cdots * j_{n} \equiv \gamma k$ and where $\operatorname{crit}\left(j_{0} * \cdots * j_{m}\right)<\gamma$ whenever $0 \leq m<n$.
Define the height $\operatorname{ht}(X)$ to be the length of the longest chain in the poset $\left(X / \equiv{ }^{\gamma}, \underline{x}\right)$.

Theorem

(V.) Let $X=\left\langle j_{1}, \ldots, j_{k}\right\rangle$ and let $\alpha_{n}=\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right)$. Then

$$
\left|X / \equiv{ }^{\alpha_{n+1}}\right|-|X| \equiv \equiv^{\alpha_{n}} \mid \geq \operatorname{ht}\left(X / \equiv^{\alpha_{n+1}}\right)-\operatorname{ht}\left(X / \equiv^{\alpha_{n}}\right)
$$

$$
=\operatorname{deg}\left(p_{n, j_{1}, \ldots, j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right)\right)
$$

The degree of polynomials is the height difference.

Suppose that X is a subalgebra of \mathcal{E}_{λ}. Endow $X / \equiv{ }^{\gamma}$ with a partial ordering $\preceq x$ where we define $[j]_{\gamma} \preceq x[k]_{\gamma}$ if and only if there are $j_{0}, \ldots, j_{n} \in X$ where $j_{0}=j, j_{0} * \cdots * j_{n} \equiv \gamma k$ and where $\operatorname{crit}\left(j_{0} * \cdots * j_{m}\right)<\gamma$ whenever $0 \leq m<n$.
Define the height $\operatorname{ht}(X)$ to be the length of the longest chain in the poset $\left(X / \equiv{ }^{\gamma}, \underline{x}\right)$.

Theorem

(V.) Let $X=\left\langle j_{1}, \ldots, j_{k}\right\rangle$ and let $\alpha_{n}=\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right)$. Then

$$
\left|X / \equiv{ }^{\alpha_{n+1}}\right|-|X| \equiv \equiv^{\alpha_{n}} \mid \geq \operatorname{ht}\left(X / \equiv^{\alpha_{n+1}}\right)-\operatorname{ht}\left(X / \equiv^{\alpha_{n}}\right)
$$

$$
=\operatorname{deg}\left(p_{n, j_{1}, \ldots, j_{k}}^{*}\left(x_{1}, \ldots, x_{k}\right)\right)
$$

Arithmetic functions

Arithmetic functions

Let \mathcal{A} be the set of all functions $f: \omega \backslash\{0\} \rightarrow \mathbb{C}$. Define the Dirichlet convolution $*$ on \mathcal{A} by letting $x * y(\ell)=\sum_{j \cdot k=\ell} x(j) \cdot y(k)$. Then $(\mathcal{A},+, *)$ is a ring. The ring \mathcal{A} has identity e defined by $e(k)=0$ for $k>1$ and $e(1)=1$. If $x \in \mathcal{A}, x(1) \neq 0$, then x is invertible.

Arithmetic functions

Let \mathcal{A} be the set of all functions $f: \omega \backslash\{0\} \rightarrow \mathbb{C}$. Define the Dirichlet convolution $*$ on \mathcal{A} by letting $x * y(\ell)=\sum_{j \cdot k=\ell} x(j) \cdot y(k)$. Then $(\mathcal{A},+, *)$ is a ring. The ring \mathcal{A} has identity e defined by $e(k)=0$ for $k>1$ and $e(1)=1$. If $x \in \mathcal{A}, x(1) \neq 0$, then x is invertible.
Define an automorphism $T: \mathcal{A} \rightarrow \mathcal{A}$ by letting $T(a)(k)=k \cdot a(k)$ for $k>0$.

Arithmetic functions

Let \mathcal{A} be the set of all functions $f: \omega \backslash\{0\} \rightarrow \mathbb{C}$. Define the Dirichlet convolution $*$ on \mathcal{A} by letting $x * y(\ell)=\sum_{j \cdot k=\ell} x(j) \cdot y(k)$. Then $(\mathcal{A},+, *)$ is a ring. The ring \mathcal{A} has identity e defined by $e(k)=0$ for $k>1$ and $e(1)=1$. If $x \in \mathcal{A}, x(1) \neq 0$, then x is invertible.
Define an automorphism $T: \mathcal{A} \rightarrow \mathcal{A}$ by letting $T(a)(k)=k \cdot a(k)$ for $k>0$.
Define $1 \in \mathcal{A}$ by letting $1(n)=1$ for all n. Define $\mu \in \mathcal{A}$ by letting $\mu\left(n^{2} x\right)=0$ whenever $n>1$ and $\mu\left(p_{1} \ldots p_{k}\right)=(-1)^{k}$ whenever p_{1}, \ldots, p_{k} are distinct primes.

Arithmetic functions

Let \mathcal{A} be the set of all functions $f: \omega \backslash\{0\} \rightarrow \mathbb{C}$. Define the Dirichlet convolution $*$ on \mathcal{A} by letting $x * y(\ell)=\sum_{j \cdot k=\ell} x(j) \cdot y(k)$. Then $(\mathcal{A},+, *)$ is a ring. The ring \mathcal{A} has identity e defined by $e(k)=0$ for $k>1$ and $e(1)=1$. If $x \in \mathcal{A}, x(1) \neq 0$, then x is invertible.
Define an automorphism $T: \mathcal{A} \rightarrow \mathcal{A}$ by letting $T(a)(k)=k \cdot a(k)$ for $k>0$.
Define $1 \in \mathcal{A}$ by letting $1(n)=1$ for all n. Define $\mu \in \mathcal{A}$ by letting $\mu\left(n^{2} x\right)=0$ whenever $n>1$ and $\mu\left(p_{1} \ldots p_{k}\right)=(-1)^{k}$ whenever p_{1}, \ldots, p_{k} are distinct primes.
Define $1^{\sharp}, \mu^{\sharp} \in \mathcal{A}$ by letting $1^{\sharp}(n)=(-1)^{n}$ and $\mu^{\sharp}\left(2^{n} \cdot(2 k+1)\right)=-2^{\max (n-1,0)} \cdot \mu(2 k+1)$. Then $\mu, 1$ are inverses in $(\mathcal{A},+, *)$ and $\mu^{\sharp}, 1^{\sharp}$ are inverses in $(\mathcal{A},+, *)$.

Arithmetic functions

Let \mathcal{A} be the set of all functions $f: \omega \backslash\{0\} \rightarrow \mathbb{C}$. Define the Dirichlet convolution $*$ on \mathcal{A} by letting $x * y(\ell)=\sum_{j \cdot k=\ell} x(j) \cdot y(k)$. Then $(\mathcal{A},+, *)$ is a ring. The ring \mathcal{A} has identity e defined by $e(k)=0$ for $k>1$ and $e(1)=1$. If $x \in \mathcal{A}, x(1) \neq 0$, then x is invertible.
Define an automorphism $T: \mathcal{A} \rightarrow \mathcal{A}$ by letting $T(a)(k)=k \cdot a(k)$ for $k>0$.
Define $1 \in \mathcal{A}$ by letting $1(n)=1$ for all n. Define $\mu \in \mathcal{A}$ by letting $\mu\left(n^{2} x\right)=0$ whenever $n>1$ and $\mu\left(p_{1} \ldots p_{k}\right)=(-1)^{k}$ whenever p_{1}, \ldots, p_{k} are distinct primes.
Define $1^{\sharp}, \mu^{\sharp} \in \mathcal{A}$ by letting $1^{\sharp}(n)=(-1)^{n}$ and $\mu^{\sharp}\left(2^{n} \cdot(2 k+1)\right)=-2^{\max (n-1,0)} \cdot \mu(2 k+1)$. Then $\mu, 1$ are inverses in $(\mathcal{A},+, *)$ and $\mu^{\sharp}, 1^{\sharp}$ are inverses in $(\mathcal{A},+, *)$.

Arithmetic functions

Let \mathcal{A} be the set of all functions $f: \omega \backslash\{0\} \rightarrow \mathbb{C}$. Define the Dirichlet convolution $*$ on \mathcal{A} by letting $x * y(\ell)=\sum_{j \cdot k=\ell} x(j) \cdot y(k)$. Then $(\mathcal{A},+, *)$ is a ring. The ring \mathcal{A} has identity e defined by $e(k)=0$ for $k>1$ and $e(1)=1$. If $x \in \mathcal{A}, x(1) \neq 0$, then x is invertible.
Define an automorphism $T: \mathcal{A} \rightarrow \mathcal{A}$ by letting $T(a)(k)=k \cdot a(k)$ for $k>0$.
Define $1 \in \mathcal{A}$ by letting $1(n)=1$ for all n. Define $\mu \in \mathcal{A}$ by letting $\mu\left(n^{2} x\right)=0$ whenever $n>1$ and $\mu\left(p_{1} \ldots p_{k}\right)=(-1)^{k}$ whenever p_{1}, \ldots, p_{k} are distinct primes.
Define $1^{\sharp}, \mu^{\sharp} \in \mathcal{A}$ by letting $1^{\sharp}(n)=(-1)^{n}$ and $\mu^{\sharp}\left(2^{n} \cdot(2 k+1)\right)=-2^{\max (n-1,0)} \cdot \mu(2 k+1)$. Then $\mu, 1$ are inverses in $(\mathcal{A},+, *)$ and $\mu^{\sharp}, 1^{\sharp}$ are inverses in $(\mathcal{A},+, *)$.

Arithmetic functions

Let \mathcal{A} be the set of all functions $f: \omega \backslash\{0\} \rightarrow \mathbb{C}$. Define the Dirichlet convolution $*$ on \mathcal{A} by letting $x * y(\ell)=\sum_{j \cdot k=\ell} x(j) \cdot y(k)$. Then $(\mathcal{A},+, *)$ is a ring. The ring \mathcal{A} has identity e defined by $e(k)=0$ for $k>1$ and $e(1)=1$. If $x \in \mathcal{A}, x(1) \neq 0$, then x is invertible.
Define an automorphism $T: \mathcal{A} \rightarrow \mathcal{A}$ by letting $T(a)(k)=k \cdot a(k)$ for $k>0$.
Define $1 \in \mathcal{A}$ by letting $1(n)=1$ for all n. Define $\mu \in \mathcal{A}$ by letting $\mu\left(n^{2} x\right)=0$ whenever $n>1$ and $\mu\left(p_{1} \ldots p_{k}\right)=(-1)^{k}$ whenever p_{1}, \ldots, p_{k} are distinct primes.
Define $1^{\sharp}, \mu^{\sharp} \in \mathcal{A}$ by letting $1^{\sharp}(n)=(-1)^{n}$ and $\mu^{\sharp}\left(2^{n} \cdot(2 k+1)\right)=-2^{\max (n-1,0)} \cdot \mu(2 k+1)$. Then $\mu, 1$ are inverses in $(\mathcal{A},+, *)$ and $\mu^{\sharp}, 1^{\sharp}$ are inverses in $(\mathcal{A},+, *)$.

The solution to the infinite product equation

The solution to the infinite product equation
If u is a function holomorphic on a neighborhood of 0 with $u(0)=1$, then define $R_{u}, r_{u} \in \mathcal{A}$ by letting

$$
\ln (u(z))=\sum_{j=1}^{\infty} R_{u}(j) z^{j} ; r_{u}=T\left(R_{u}\right) ; \frac{z u^{\prime}(z)}{u(z)}=\sum_{k=1}^{\infty} r_{u}(k) x^{k} .
$$

The solution to the infinite product equation

If u is a function holomorphic on a neighborhood of 0 with $u(0)=1$, then define $R_{u}, r_{u} \in \mathcal{A}$ by letting

$$
\ln (u(z))=\sum_{j=1}^{\infty} R_{u}(j) z^{j} ; r_{u}=T\left(R_{u}\right) ; \frac{z u^{\prime}(z)}{u(z)}=\sum_{k=1}^{\infty} r_{u}(k) x^{k} .
$$

Theorem

Suppose that u is a function holomorphic on a neighborhood of 0 with $u(0)=1, a \in \mathcal{A}$ and

$$
\prod_{k=1}^{\infty}\left(1+z^{k}\right)^{a(k)}=\frac{1}{u(z)}
$$

for z in a neighborhood of 0 . Then

$$
a=R_{u} * T^{-1}\left(\mu^{\sharp}\right)=T^{-1}\left(r_{u} * \mu^{\sharp}\right) .
$$

The solution to the infinite product equation

If u is a function holomorphic on a neighborhood of 0 with $u(0)=1$, then define $R_{u}, r_{u} \in \mathcal{A}$ by letting

$$
\ln (u(z))=\sum_{j=1}^{\infty} R_{u}(j) z^{j} ; r_{u}=T\left(R_{u}\right) ; \frac{z u^{\prime}(z)}{u(z)}=\sum_{k=1}^{\infty} r_{u}(k) x^{k} .
$$

Theorem

Suppose that u is a function holomorphic on a neighborhood of 0 with $u(0)=1, a \in \mathcal{A}$ and

$$
\prod_{k=1}^{\infty}\left(1+z^{k}\right)^{a(k)}=\frac{1}{u(z)}
$$

for z in a neighborhood of 0 . Then

$$
a=R_{u} * T^{-1}\left(\mu^{\sharp}\right)=T^{-1}\left(r_{u} * \mu^{\sharp}\right) .
$$

The solution to the infinite product equation

If u is a function holomorphic on a neighborhood of 0 with $u(0)=1$, then define $R_{u}, r_{u} \in \mathcal{A}$ by letting

$$
\ln (u(z))=\sum_{j=1}^{\infty} R_{u}(j) z^{j} ; r_{u}=T\left(R_{u}\right) ; \frac{z u^{\prime}(z)}{u(z)}=\sum_{k=1}^{\infty} r_{u}(k) x^{k} .
$$

Theorem

Suppose that u is a function holomorphic on a neighborhood of 0 with $u(0)=1, a \in \mathcal{A}$ and

$$
\prod_{k=1}^{\infty}\left(1+z^{k}\right)^{a(k)}=\frac{1}{u(z)}
$$

for z in a neighborhood of 0 . Then

$$
a=R_{u} * T^{-1}\left(\mu^{\sharp}\right)=T^{-1}\left(r_{u} * \mu^{\sharp}\right) .
$$

The solution to the infinite product equation

If u is a function holomorphic on a neighborhood of 0 with $u(0)=1$, then define $R_{u}, r_{u} \in \mathcal{A}$ by letting

$$
\ln (u(z))=\sum_{j=1}^{\infty} R_{u}(j) z^{j} ; r_{u}=T\left(R_{u}\right) ; \frac{z u^{\prime}(z)}{u(z)}=\sum_{k=1}^{\infty} r_{u}(k) x^{k} .
$$

Theorem

Suppose that u is a function holomorphic on a neighborhood of 0 with $u(0)=1, a \in \mathcal{A}$ and

$$
\prod_{k=1}^{\infty}\left(1+z^{k}\right)^{a(k)}=\frac{1}{u(z)}
$$

for z in a neighborhood of 0 . Then

$$
a=R_{u} * T^{-1}\left(\mu^{\sharp}\right)=T^{-1}\left(r_{u} * \mu^{\sharp}\right) .
$$

Bounds from infinite products of polynomials

Define $p_{n, j_{1}, \ldots, j_{k}}^{*}(x)=p_{n, j_{1}, \ldots, j_{k}}^{*}(x, \ldots, x)$.

Theorem

(V.) Suppose that $j_{1}, \ldots, j_{k} \in \mathcal{E}_{\lambda}^{+}$. Let $X=\left\langle j_{1}, \ldots, j_{k}\right\rangle$, and let $\alpha_{n}=\operatorname{crit}_{n}\left(j_{1}, \ldots, j_{k}\right)$ for $n \in \omega$. Suppose that N is a natural number. For each natural number h,
(1) let $b(h)$ be the number of $n \geq N$ such that

$$
|X| \equiv \equiv^{\alpha_{n+1}}\left|-|X| \equiv \equiv^{\alpha_{n}}\right|=h, \text { and }
$$

(2) let $c(h)$ be the number of $n \geq N$ such that

$$
\operatorname{ht}\left(X / \equiv{ }^{\alpha_{n+1}}\right)-\operatorname{ht}\left(X / \equiv^{\alpha_{n}}\right)=h .
$$

Let $u(x)=(1-k x) \cdot p_{0, j_{1}, \ldots, j_{k}}^{*}(x) \ldots p_{N-1, j_{1}, \ldots, j_{k}}^{*}(x)$. Then
(1) Either $b=T^{-1}\left(r_{u} * \mu^{\sharp}\right)$ or there is some $h \geq 1$ with $b(h)<T^{-1}\left(r_{u} * \mu^{\sharp}\right)(h)$.
(2) Either $c=T^{-1}\left(r_{u} * \mu^{\sharp}\right)$ or there is some $h \geq 1$ with $c(h)<T^{-1}\left(r_{u} * \mu^{\sharp}\right)(h)$.

An algebraization of \mathcal{E}_{λ}.

A reduced Laver-like algebra is an algebra $(X, *, 1)$ that satisfies the identities $x *(y * z)=(x * y) *(x * z), x * 1=1,1 * x=x$ and where if $x_{n} \in X$ for $n \in \omega$, then there is some N with $x_{0} * \cdots * x_{N}=1$.
The algebras $\left(\mathcal{E}_{\lambda} / \equiv^{\gamma}, *\right)$ are always reduced Laver-like algebras, but there are many reduced Laver-like algebras that do not embed into any $\left(\mathcal{E}_{\lambda} / \equiv^{\gamma}, *\right)$. The main results of this talk could have been stated in greater generality in terms of Laver-like algebras.
Computer calculations give some evidence that the bounds on b, c are sharp, or nearly sharp, and at the very least difficult to improve upon but only when these bounds are generalized to the setting of reduced Laver-like algebras.

Photographic evidence of rank-into-rank cardinals: A_{4}

Photographic evidence of rank-into-rank cardinals: A_{5}

Photographic evidence of rank-into-rank cardinals: A_{6}

Photographic evidence of rank-into-rank cardinals: A_{7}

Photographic evidence of rank-into-rank cardinals: A_{8}

Photographic evidence of rank-into-rank cardinals: A_{9}

Photographic evidence of rank-into-rank cardinals: A_{10}

Photographic evidence of rank-into-rank cardinals: A_{3}

Photographic evidence of rank-into-rank cardinals: A_{4}

Photographic evidence of rank-into-rank cardinals: A_{5}

Photographic evidence of rank-into-rank cardinals: A_{6}

Photographic evidence of rank-into-rank cardinals: A_{7}

Photographic evidence of rank-into-rank cardinals: A_{8}

Joseph Van Name
Gaps between cardinalities of quotient algebras of rank-into-rank

Photographic evidence of rank-into-rank cardinals: A_{9}

Photographic evidence of rank-into-rank cardinals: A_{10}

Heat map

Heat map

Pictures: $F M_{5}^{-}$

Pictures: $F M_{6}^{-}$

Pictures: $F M_{7}^{-}$

Pictures:FM-

Joseph Van Name
Gaps between cardinalities of quotient algebras of rank-into-rank

Pictures: $F M_{9}^{-}$

Pictures: $F M_{10}^{-}$

Pictures:Multigenic Laver table snapshot

Pictures:Endomorphic Laver table snapshot

Pictures:Endomorphic Laver table snapshot

Other table (truncated)

The end: Happy Bitcoin Pizza Day!

