Subvariety containment for idempotent semirings

Gavin St. John

gavin.stjohn@du.edu
Ongoing joint work with Nick Galatos
University of Denver
BLAST 2019
University of Colorado Boulder

21 May 2019

Residuated Lattices

A (commutative) residuated lattice is an algebraic structure $\mathbf{R}=(R, \vee, \wedge, \cdot, \backslash, /, 1)$, such that

- (R, \vee, \wedge) is a lattice
- $(R, \cdot, 1)$ is a (commutative) monoid
- For all $x, y, z \in R$

$$
x \cdot y \leq z \Longleftrightarrow y \leq x \backslash z \Longleftrightarrow x \leq z / y
$$

where \leq is the induced lattice order.

Residuated Lattices

A (commutative) residuated lattice is an algebraic structure $\mathbf{R}=(R, \vee, \wedge, \cdot, \backslash, /, 1)$, such that

- (R, \vee, \wedge) is a lattice
- $(R, \cdot, 1)$ is a (commutative) monoid
- For all $x, y, z \in R$

$$
x \cdot y \leq z \Longleftrightarrow y \leq x \backslash z \Longleftrightarrow x \leq z / y
$$

where \leq is the induced lattice order.

- (C)RL denotes the variety of (commutative) residuated lattices.

Residuated Lattices

A (commutative) residuated lattice is an algebraic structure $\mathbf{R}=(R, \vee, \wedge, \cdot, \backslash, /, 1)$, such that

- (R, \vee, \wedge) is a lattice
- $(R, \cdot, 1)$ is a (commutative) monoid
- For all $x, y, z \in R$

$$
x \cdot y \leq z \Longleftrightarrow y \leq x \backslash z \Longleftrightarrow x \leq z / y
$$

where \leq is the induced lattice order.

- (C)RL denotes the variety of (commutative) residuated lattices.
- multiplication is order preserving:

$$
x \leq y \Longrightarrow z x \leq z y \quad \& \quad x z \leq y z
$$

- multiplication distributes of join:

$$
x(y \vee z)=x y \vee x z \quad \& \quad(y \vee z) x=y x \vee z x
$$

Residuated structures are the algebraic semantics of substructural logics (i.e., axiomatic extension of the Full Lambek Calculus) FL.

Structural rules have an algebraic meaning.

$$
\begin{aligned}
& \frac{\Gamma, \alpha, \beta, \Delta \Rightarrow \Pi}{\Gamma, \beta, \alpha, \Delta \Rightarrow \Pi}(\mathrm{e}) \quad \Leftrightarrow \quad x y \leq y x \\
& \frac{\Gamma, \Delta \Rightarrow \Pi}{\Gamma, \alpha, \Delta \Rightarrow \Pi}(\mathrm{w}) \quad \Leftrightarrow \quad x \leq 1 \\
& \frac{\Gamma, \alpha, \alpha, \Delta \Rightarrow \Pi}{\Gamma, \alpha, \Delta \Rightarrow \Pi}(\mathrm{c}) \quad \Leftrightarrow \quad x \leq x^{2}
\end{aligned}
$$

We can use algebraic methods to answer questions about the logics.

ISR and $I S R_{\perp}$

The $\{V, \cdot, 1\}$-fragment of $R L$ is an idempotent semiring (ISR).

Definition

An idempotent semiring is an algebra $\mathbf{S}=(S, \vee, \cdot, 1)$ where:

- (S, \vee) is an idempotent semigroup
- $(S, \cdot, 1)$ is a monoid
- multiplication distributes over join, i.e.,

$$
a(b \vee c)=a b \vee a c \quad \& \quad(b \vee c) a=b a \vee c a
$$

ISR and $I S R_{\perp}$

The $\{V, \cdot, 1\}$-fragment of $R L$ is an idempotent semiring (ISR).

Definition

An idempotent semiring is an algebra $\mathbf{S}=(S, \vee, \cdot, 1)$ where:

- (S, \vee) is an idempotent semigroup
- $(S, \cdot, 1)$ is a monoid
- multiplication distributes over join, i.e.,

$$
a(b \vee c)=a b \vee a c \quad \& \quad(b \vee c) a=b a \vee c a
$$

An algebra $\mathbf{S}=(S, \vee, \cdot, \perp, 1)$ is an idempotent semiring with \perp if $(S, \vee, \cdot, 1)$ is an ISR where additionally (S, \vee, \perp) is monoid and $\perp x=x \perp=\perp$ for all $x \in S$.

We denote the variety of idempotent semirings (with \perp) by ISR (ISR_{\perp}).

Decidability and the $\{\vee, \cdot, 1\}$-fragment

Let Γ be any finite set of $\{\vee, \cdot, 1\}$-equations and $n, m \geq 0$ distinct.

Decidability and the $\{\mathrm{V}, \cdot, 1\}$-fragment

Let Γ be any finite set of $\{\vee, \cdot, 1\}$-equations and $n, m \geq 0$ distinct.

- Van Alten (2005) showed CRL $+\left(x^{n} \leq x^{m}\right)$ has the finite embedability property (FEP).

Decidability and the $\{\mathrm{V}, \cdot, 1\}$-fragment

Let Γ be any finite set of $\{\vee, \cdot, 1\}$-equations and $n, m \geq 0$ distinct.

- Van Alten (2005) showed CRL $+\left(x^{n} \leq x^{m}\right)$ has the finite embedability property (FEP).
- Galatos \& Jipsen (2013) CRL $+\left(x^{n} \leq x^{m}\right)+\Gamma$ has the FEP.

Decidability and the $\{\mathrm{V}, \cdot, 1\}$-fragment

Let Γ be any finite set of $\{\vee, \cdot, 1\}$-equations and $n, m \geq 0$ distinct.

- Van Alten (2005) showed CRL $+\left(x^{n} \leq x^{m}\right)$ has the finite embedability property (FEP).
- Galatos \& Jipsen (2013) CRL $+\left(x^{n} \leq x^{m}\right)+\Gamma$ has the FEP.
- In (S. PhD Thesis [2019]), we prove CRL $+\left(x^{n}=x^{m}\right)+\Gamma$ has a primitive recursive decision procedure.

Decidability and the $\{\mathrm{V}, \cdot, 1\}$-fragment

Let Γ be any finite set of $\{\vee, \cdot, 1\}$-equations and $n, m \geq 0$ distinct.

- Van Alten (2005) showed CRL $+\left(x^{n} \leq x^{m}\right)$ has the finite embedability property (FEP).
- Galatos \& Jipsen (2013) CRL $+\left(x^{n} \leq x^{m}\right)+\Gamma$ has the FEP.
- In (S. PhD Thesis [2019]), we prove CRL $+\left(x^{n}=x^{m}\right)+\Gamma$ has a primitive recursive decision procedure.
- Horčík (2015) showed that any variety in the interval $\mathrm{RL}+\left(x^{2}=x^{3}\right)$ to RL has an undecidable word problem.

Decidability and the $\{\mathrm{V}, \cdot, 1\}$-fragment

Let Γ be any finite set of $\{\vee, \cdot, 1\}$-equations and $n, m \geq 0$ distinct.

- Van Alten (2005) showed CRL $+\left(x^{n} \leq x^{m}\right)$ has the finite embedability property (FEP).
- Galatos \& Jipsen (2013) CRL $+\left(x^{n} \leq x^{m}\right)+\Gamma$ has the FEP.
- In (S. PhD Thesis [2019]), we prove CRL $+\left(x^{n}=x^{m}\right)+\Gamma$ has a primitive recursive decision procedure.
- Horčík (2015) showed that any variety in the interval $\mathrm{RL}+\left(x^{2}=x^{3}\right)$ to RL has an undecidable word problem. - Chvalovský \& Horčík (2016) prove the undecidability of the equational theory for $\mathrm{RL}+\left(x^{n} \leq x^{n+k}\right)$ for $n, k \geq 1$.

Decidability and the $\{\vee, \cdot, 1\}$-fragment

Let Γ be any finite set of $\{\vee, \cdot, 1\}$-equations and $n, m \geq 0$ distinct.

- Van Alten (2005) showed CRL $+\left(x^{n} \leq x^{m}\right)$ has the finite embedability property (FEP).
- Galatos \& Jipsen (2013) CRL $+\left(x^{n} \leq x^{m}\right)+\Gamma$ has the FEP.
- In (S. PhD Thesis [2019]), we prove CRL $+\left(x^{n}=x^{m}\right)+\Gamma$ has a primitive recursive decision procedure.
- Horčík (2015) showed that any variety in the interval $\mathrm{RL}+\left(x^{2}=x^{3}\right)$ to RL has an undecidable word problem. - Chvalovský \& Horčík (2016) prove the undecidability of the equational theory for $\mathrm{RL}+\left(x^{n} \leq x^{n+k}\right)$ for $n, k \geq 1$.
- In (S. PhD Thesis [2019]), we prove undecidability of the (Eq. Th) word problem for any variety in the interval CRL $+\Sigma$ to RL, where Σ is any (expansive) non-spinal equations finite set of $\{\vee, \cdot, 1\}$-equations.

For sets of $\{\vee, \cdot, 1\}$-equations Γ, Σ, we want to know:

$$
\mathrm{RL}+\Gamma \models \Sigma ?
$$

Or equivalently:

$$
\mathrm{RL}+\Gamma \subseteq \mathrm{RL}+\Sigma ?
$$

Equations in the signature $\{\mathrm{V}, \cdot, 1\}$

We call an equation $s=t$ in the signature $\{\vee, \cdot, 1\}$ is ISR-equivalent to a basic equation

$$
[A]: \quad a_{0} \leq \bigvee_{a \in A} a
$$

where

- a is a monoid term
- A is a finite nonempty set of monoid terms
- We associate $[A]$ with the pair $\left(a_{0}, A\right)$

Simple equations

Definition

Let $[A]=\left(a_{0}, A\right)$ be a basic equation

$$
[A]: \quad a_{0} \leq \bigvee_{a \in A} a
$$

We say $[A]$ is:

- Linear if a_{0} is linear, i.e., $a_{0}=x_{1} \cdots x_{n}$ for some $n>1$.
- Proper if all variables present in A are present in a_{0}.
- Simple if $[A]$ is proper and linear.
- Degenerate if for each $a \in A$ there appears a variable not appearing in a_{0}.

Linearization

Proposition

The following hold:

- In ISR, every basic equation is equivalent to a linear equation.
- In RL and ISR_{\perp}, every non-degenerate equation is equivalent to a simple equation.
- In RL and ISR_{\perp}, every degenerate equation is equivalent to $1 \leq x$.

Such conjoins can be determined by the properties of ISR by linearization

Linearization

Proposition

The following hold:

- In ISR, every basic equation is equivalent to a linear equation.
- In RL and ISR_{\perp}, every non-degenerate equation is equivalent to a simple equation.
- In RL and ISR_{\perp}, every degenerate equation is equivalent to $1 \leq x$.

Such conjoins can be determined by the properties of ISR by linearization

$$
(\forall u)(\forall v) u^{2} v \leq u^{3} \vee u v
$$

Linearization

Proposition

The following hold:

- In ISR, every basic equation is equivalent to a linear equation.
- In RL and ISR_{\perp}, every non-degenerate equation is equivalent to a simple equation.
- $\operatorname{In} \mathrm{RL}$ and ISR_{\perp}, every degenerate equation is equivalent to $1 \leq x$.

Such conjoins can be determined by the properties of ISR by linearization

$$
(\forall u)(\forall v) u^{2} v \leq u^{3} \vee u v
$$

is equivalent to, via the substitution $\sigma: u \stackrel{\sigma}{\mapsto} x \vee y$ and $v \stackrel{\sigma}{\mapsto} z$,

$$
(\forall x)(\forall y)(\forall z) x y z \leq x^{3} \vee x^{2} y \vee x y^{2} \vee y^{3} \vee x z \vee y z
$$

Simple Equations and Simple Rules

Any simple equation $[\mathrm{R}]$ corresponds to a simple structural rule (R). For example

$$
\begin{equation*}
[\mathrm{R}]: x y \leq x^{2} \vee y \Longleftrightarrow \frac{\Delta_{1}, \Gamma, \Gamma, \Delta_{2} \Rightarrow \Pi \quad \Delta_{1}, \Psi, \Delta_{2} \Rightarrow \Pi}{\Delta_{1}, \Gamma, \Psi, \Delta_{2} \Rightarrow \Pi} \tag{R}
\end{equation*}
$$

Simple Equations and Simple Rules

Any simple equation $[\mathrm{R}]$ corresponds to a simple structural rule (R). For example

$$
\begin{equation*}
[\mathrm{R}]: x y \leq x^{2} \vee y \Longleftrightarrow \frac{\Delta_{1}, \Gamma, \Gamma, \Delta_{2} \Rightarrow \Pi \quad \Delta_{1}, \Psi, \Delta_{2} \Rightarrow \Pi}{\Delta_{1}, \Gamma, \Psi, \Delta_{2} \Rightarrow \Pi} \tag{R}
\end{equation*}
$$

In general,

$$
\begin{equation*}
[\mathrm{R}]: x_{1} \cdots x_{n} \leq \bigvee_{r \in \mathrm{R}} r \Longleftrightarrow \frac{\left\{\Delta_{1}, r^{\mathbf{F L}}\left(\Gamma_{1}, \ldots, \Gamma_{n}\right), \Delta_{2} \Rightarrow \Pi\right\}_{r \in \mathrm{R}}}{\Delta_{1}, \Gamma_{1}, \ldots, \Gamma_{n}, \Delta_{2} \Rightarrow \Pi} \tag{R}
\end{equation*}
$$

Theorem [Galatos \& Jipsen 2013]

Extensions of FL by simple rules enjoy cut-elimination.

Residuated frames

Definition

A residuated frame is a structure $\mathbf{W}=\left(W, W^{\prime}, N, \circ, \|, / / /, 1\right)$, s.t.

- $(W, \circ, 1)$ is a monoid and W^{\prime} is a set.
- $N \subseteq W \times W^{\prime}$,
- $\mathbb{V}: W \times W^{\prime} \rightarrow W^{\prime}$ and $/ /: W^{\prime} \times W \rightarrow W^{\prime}$ such that
- N is nuclear, i.e. for all $u, v \in W$ and $w \in W^{\prime}$,

$$
(u \circ v) N w \quad \text { iff } \quad u N(w / / v) \quad \text { iff } \quad v N(u \backslash w) .
$$

Residuated frames

Definition

A residuated frame is a structure $\mathbf{W}=\left(W, W^{\prime}, N, \circ, \|, / /, 1\right)$, s.t.

- $(W, \circ, 1)$ is a monoid and W^{\prime} is a set.
- $N \subseteq W \times W^{\prime}$,
- $\mathbb{V}: W \times W^{\prime} \rightarrow W^{\prime}$ and $/ /: W^{\prime} \times W \rightarrow W^{\prime}$ such that
- N is nuclear, i.e. for all $u, v \in W$ and $w \in W^{\prime}$,

$$
(u \circ v) N w \quad \text { iff } \quad u N(w / / v) \quad \text { iff } \quad v N(u \backslash w) .
$$

$$
\begin{aligned}
\wp(W) \underset{\triangleleft}{\stackrel{\triangleright}{\rightleftarrows}} \wp\left(W^{\prime}\right): & X^{\triangleright}=\left\{y \in W^{\prime}: X N y\right\} \\
& Y^{\triangleleft}=\{x \in W: x N Y\}
\end{aligned}
$$

- $\left({ }^{\triangleright},{ }^{\triangleleft}\right)$ is a Galois connection.
- The map $X \xrightarrow{\gamma_{N}} X^{\triangleright \triangleleft}$ is a closure operator on $\mathcal{P}(W)$.
- N is nuclear iff γ_{N} is a nucleus.

Residuated frames cont.

Theorem [Galatos \& Jipsen 2013]

$$
\begin{aligned}
\mathbf{W}^{+}:= & \left(\gamma_{N}[\mathcal{P}(W)], \cup_{\gamma_{N}}, \cap, \circ \circ_{\gamma_{N}}, \backslash, /, \gamma_{N}(\{1\})\right), \\
& X \cup_{\gamma_{N}} Y=\gamma_{N}(X \cup Y) \text { and } X \circ \circ_{\gamma_{N}} Y=\gamma_{N}(X \circ Y),
\end{aligned}
$$

is a residuated lattice.

Residuated frames cont.

Theorem [Galatos \& Jipsen 2013]

$$
\begin{aligned}
\mathbf{W}^{+}:= & \left(\gamma_{N}[\mathcal{P}(W)], \cup_{\gamma_{N}}, \cap, \circ_{\gamma_{N}}, \backslash, /, \gamma_{N}(\{1\})\right), \\
& X \cup_{\gamma_{N}} Y=\gamma_{N}(X \cup Y) \text { and } X \circ_{\gamma_{N}} Y=\gamma_{N}(X \circ Y),
\end{aligned}
$$

is a residuated lattice.

Lemma [Galatos \& Jipsen 2013]

All simple equations $[\mathrm{R}]$ are preserved by $(-)^{+}$:

$$
\mathbf{W} \models(\mathrm{R}) \text { iff } \mathbf{W}^{+} \models[\mathrm{R}],
$$

where

$$
(\mathrm{R}): \quad(\forall r \in \mathrm{R}) r\left(x_{1}, \ldots, x_{n}\right) N w \Longrightarrow x_{1} \circ \cdots \circ x_{n} N w
$$

for all $x_{1}, \ldots, x_{n} \in W$ and $w \in W^{\prime}$.

Basic equations as consequence relations

Let Var be a countable set of variables, and Var* denote the free monoid generated by Var with identity 1.

For Γ a finite set of basic equations, we define \vdash_{Γ} be the smallest relation on $\wp\left(\operatorname{Var}^{*}\right) \times \operatorname{Var}^{*}$ satisfying the following for all $X \subseteq \operatorname{Var}^{*}$

- $X \vdash_{\Gamma} x$ for all $x \in X$,
- For all $[A]=\left(a_{0}, A\right) \in \Gamma, u, v \in \operatorname{Var}^{*}$, and substitutions $\boldsymbol{\sigma}$,

$$
(\forall a \in A) X \vdash_{\Gamma} \boldsymbol{\sigma}(u a v) \Longrightarrow X \vdash_{\Gamma} \boldsymbol{\sigma}\left(u a_{0} v\right)
$$

Basic equations as consequence relations

Let Var be a countable set of variables, and Var* denote the free monoid generated by Var with identity 1.

$$
\begin{aligned}
& \text { For } \Gamma \text { a finite set of basic equations, we define } \vdash_{\Gamma} \text { be the smallest } \\
& \text { relation on } \wp\left(\text { Var }^{*}\right) \times \mathrm{Var}^{*} \text { satisfying the following for all } X \subseteq \mathrm{Var}^{*} \\
& \vdash_{\Gamma} x \text { for all } x \in X, \\
& \text { For all }[A]=\left(a_{0}, A\right) \in \Gamma, u, v \in \mathrm{Var}^{*} \text {, and substitutions } \boldsymbol{\sigma}, \\
& \qquad(\forall a \in A) X \vdash_{\Gamma} \boldsymbol{\sigma}(u a v) \Longrightarrow X \vdash_{\Gamma} \boldsymbol{\sigma}\left(u a_{0} v\right) .
\end{aligned}
$$

The relation \vdash_{Γ} is a substitution invariant consequence relation.

Lemma

Let $\Gamma \cup\{[A]\}$ be a set of basic equations. Then

$$
A \vdash_{\Gamma} a_{0} \Longrightarrow \mathrm{ISR}+\Gamma \models[A],
$$

where $[A]=\left(a_{0}, A\right)$.

Proof.

Induct on the height of the proof-tree witnessing $A \vdash_{\Gamma} a_{0}$.

Example

Let Φ_{Γ} be the associated closure operator on $\wp\left(\operatorname{Var}^{*}\right)$, i.e., $\Phi_{\Gamma}(X)=\left\{x: X \vdash_{\Gamma} x\right\}$.

Let $\Gamma=\{[\mathrm{R}]\}$ where $[\mathrm{R}]: x \leq x^{2} \vee 1$. Let

$$
[A]: x^{2} \leq x^{5} \vee x
$$

Here, $A:=\left\{x^{5}, x\right\}$.

Example

Let Φ_{Γ} be the associated closure operator on $\wp\left(\operatorname{Var}^{*}\right)$, i.e., $\Phi_{\Gamma}(X)=\left\{x: X \vdash_{\Gamma} x\right\}$.

Let $\Gamma=\{[\mathrm{R}]\}$ where $[\mathrm{R}]: x \leq x^{2} \vee 1$. Let

$$
[A]: x^{2} \leq x^{5} \vee x
$$

Here, $A:=\left\{x^{5}, x\right\}$. Now

$$
\begin{aligned}
& A \vdash_{\Gamma} x^{5}=x \cdot\left(x^{2}\right)^{2} \\
& A \vdash_{\Gamma} x=x \cdot(1)
\end{aligned}
$$

Example

Let Φ_{Γ} be the associated closure operator on $\wp\left(\operatorname{Var}^{*}\right)$, i.e., $\Phi_{\Gamma}(X)=\left\{x: X \vdash_{\Gamma} x\right\}$.

Let $\Gamma=\{[\mathrm{R}]\}$ where $[\mathrm{R}]: x \leq x^{2} \vee 1$. Let

$$
[A]: x^{2} \leq x^{5} \vee x
$$

Here, $A:=\left\{x^{5}, x\right\}$. Now

$$
\begin{aligned}
& A \vdash_{\Gamma} x^{5}=x \cdot\left(x^{2}\right)^{2} \\
& A \vdash_{\Gamma} x=x \cdot(1)
\end{aligned} \quad \Longrightarrow \quad A \vdash_{\Gamma} x \cdot\left(x^{2}\right)=x^{3}
$$

Example

Let Φ_{Γ} be the associated closure operator on $\wp\left(\operatorname{Var}^{*}\right)$, i.e., $\Phi_{\Gamma}(X)=\left\{x: X \vdash_{\Gamma} x\right\}$.

Let $\Gamma=\{[\mathrm{R}]\}$ where $[\mathrm{R}]: x \leq x^{2} \vee 1$. Let

$$
[A]: x^{2} \leq x^{5} \vee x
$$

Here, $A:=\left\{x^{5}, x\right\}$. Now

$$
\begin{array}{lll}
A \vdash_{\Gamma} x^{5}=x \cdot\left(x^{2}\right)^{2} & \Longrightarrow & A \vdash_{\Gamma} x \cdot\left(x^{2}\right)=x^{3} \\
A \vdash_{\Gamma} x=x \cdot(1) & \Longrightarrow & A \vdash_{\Gamma} x \cdot(x)=x^{2}
\end{array}
$$

Example

Let Φ_{Γ} be the associated closure operator on $\wp\left(\operatorname{Var}^{*}\right)$, i.e., $\Phi_{\Gamma}(X)=\left\{x: X \vdash_{\Gamma} x\right\}$.

Let $\Gamma=\{[\mathrm{R}]\}$ where $[\mathrm{R}]: x \leq x^{2} \vee 1$. Let

$$
[A]: x^{2} \leq x^{5} \vee x
$$

Here, $A:=\left\{x^{5}, x\right\}$. Now

$$
\begin{array}{lll}
A \vdash_{\Gamma} x^{5}=x \cdot\left(x^{2}\right)^{2} & \Longrightarrow & A \vdash_{\Gamma} x \cdot\left(x^{2}\right)=x^{3} \\
A \vdash_{\Gamma} x=x \cdot(1) & \Longrightarrow & A \vdash_{\Gamma} x \cdot(x)=x^{2}
\end{array}
$$

Hence $A \vdash_{\Gamma} x^{2}$. In fact $\Phi_{\Gamma}(A)=\left\{x^{5}, x^{4}, x^{3}, x^{2}, x\right\}$.

Example

Let Φ_{Γ} be the associated closure operator on $\wp\left(\operatorname{Var}^{*}\right)$, i.e., $\Phi_{\Gamma}(X)=\left\{x: X \vdash_{\Gamma} x\right\}$.

Let $\Gamma=\{[\mathrm{R}]\}$ where $[\mathrm{R}]: x \leq x^{2} \vee 1$. Let

$$
[A]: x^{2} \leq x^{5} \vee x
$$

Here, $A:=\left\{x^{5}, x\right\}$. Now

$$
\begin{array}{lll}
A \vdash_{\Gamma} x^{5}=x \cdot\left(x^{2}\right)^{2} & \Longrightarrow & A \vdash_{\Gamma} x \cdot\left(x^{2}\right)=x^{3} \\
A \vdash_{\Gamma} x=x \cdot(1) & \Longrightarrow & A \vdash_{\Gamma} x \cdot(x)=x^{2}
\end{array}
$$

Hence $A \vdash_{\Gamma} x^{2}$. In fact $\Phi_{\Gamma}(A)=\left\{x^{5}, x^{4}, x^{3}, x^{2}, x\right\}$.
$\mathrm{ISR}+\Gamma \models x^{2} \leq x^{3} \vee x$

Example

Let Φ_{Γ} be the associated closure operator on $\wp\left(\operatorname{Var}^{*}\right)$, i.e., $\Phi_{\Gamma}(X)=\left\{x: X \vdash_{\Gamma} x\right\}$.

Let $\Gamma=\{[\mathrm{R}]\}$ where $[\mathrm{R}]: x \leq x^{2} \vee 1$. Let

$$
[A]: x^{2} \leq x^{5} \vee x
$$

Here, $A:=\left\{x^{5}, x\right\}$. Now

$$
\begin{array}{lll}
A \vdash_{\Gamma} x^{5}=x \cdot\left(x^{2}\right)^{2} & \Longrightarrow & A \vdash_{\Gamma} x \cdot\left(x^{2}\right)=x^{3} \\
A \vdash_{\Gamma} x=x \cdot(1) & \Longrightarrow & A \vdash_{\Gamma} x \cdot(x)=x^{2}
\end{array}
$$

Hence $A \vdash_{\Gamma} x^{2}$. In fact $\Phi_{\Gamma}(A)=\left\{x^{5}, x^{4}, x^{3}, x^{2}, x\right\}$.
$\mathrm{ISR}+\Gamma \models x^{2} \leq x^{3} \vee x \leq\left(x^{5} \vee x\right) \vee x$

Example

Let Φ_{Γ} be the associated closure operator on $\wp\left(\operatorname{Var}^{*}\right)$, i.e., $\Phi_{\Gamma}(X)=\left\{x: X \vdash_{\Gamma} x\right\}$.

Let $\Gamma=\{[\mathrm{R}]\}$ where $[\mathrm{R}]: x \leq x^{2} \vee 1$. Let

$$
[A]: x^{2} \leq x^{5} \vee x
$$

Here, $A:=\left\{x^{5}, x\right\}$. Now

$$
\begin{array}{lll}
A \vdash_{\Gamma} x^{5}=x \cdot\left(x^{2}\right)^{2} & \Longrightarrow & A \vdash_{\Gamma} x \cdot\left(x^{2}\right)=x^{3} \\
A \vdash_{\Gamma} x=x \cdot(1) & \Longrightarrow & A \vdash_{\Gamma} x \cdot(x)=x^{2}
\end{array}
$$

Hence $A \vdash_{\Gamma} x^{2}$. In fact $\Phi_{\Gamma}(A)=\left\{x^{5}, x^{4}, x^{3}, x^{2}, x\right\}$. $\mathrm{ISR}+\Gamma \models x^{2} \leq x^{3} \vee x \leq\left(x^{5} \vee x\right) \vee x=x^{5} \vee x$.

Example

Let Φ_{Γ} be the associated closure operator on $\wp\left(\operatorname{Var}^{*}\right)$, i.e., $\Phi_{\Gamma}(X)=\left\{x: X \vdash_{\Gamma} x\right\}$.

Let $\Gamma=\{[\mathrm{R}]\}$ where $[\mathrm{R}]: x \leq x^{2} \vee 1$. Let

$$
[B]: \quad x y \leq x y^{2} x \vee x^{2}
$$

Here, $B:=\left\{x y^{2} x, x^{2}\right\}$.

Example

Let Φ_{Γ} be the associated closure operator on $\wp\left(\operatorname{Var}^{*}\right)$, i.e., $\Phi_{\Gamma}(X)=\left\{x: X \vdash_{\Gamma} x\right\}$.

Let $\Gamma=\{[\mathrm{R}]\}$ where $[\mathrm{R}]: x \leq x^{2} \vee 1$. Let

$$
[B]: \quad x y \leq x y^{2} x \vee x^{2}
$$

Here, $B:=\left\{x y^{2} x, x^{2}\right\}$. Now

$$
\begin{aligned}
B \vdash_{\Gamma} x y^{2} x & =x \cdot y^{2} \cdot x \\
B \vdash_{\Gamma} x^{2} & =x \cdot(1) \cdot x
\end{aligned}
$$

Example

Let Φ_{Γ} be the associated closure operator on $\wp\left(\operatorname{Var}^{*}\right)$, i.e., $\Phi_{\Gamma}(X)=\left\{x: X \vdash_{\Gamma} x\right\}$.

Let $\Gamma=\{[\mathrm{R}]\}$ where $[\mathrm{R}]: x \leq x^{2} \vee 1$. Let

$$
[B]: \quad x y \leq x y^{2} x \vee x^{2}
$$

Here, $B:=\left\{x y^{2} x, x^{2}\right\}$. Now

$$
\begin{aligned}
& B \vdash_{\Gamma} x y^{2} x=x \cdot y^{2} \cdot x \\
& B \vdash_{\Gamma} x^{2}=x \cdot(1) \cdot x \quad \Longrightarrow \quad B \vdash_{\Gamma} x \cdot(y) \cdot x=x y x
\end{aligned}
$$

Example

Let Φ_{Γ} be the associated closure operator on $\wp\left(\operatorname{Var}^{*}\right)$, i.e., $\Phi_{\Gamma}(X)=\left\{x: X \vdash_{\Gamma} x\right\}$.

Let $\Gamma=\{[\mathrm{R}]\}$ where $[\mathrm{R}]: x \leq x^{2} \vee 1$. Let

$$
[B]: \quad x y \leq x y^{2} x \vee x^{2}
$$

Here, $B:=\left\{x y^{2} x, x^{2}\right\}$. Now

$$
\begin{aligned}
& B \vdash_{\Gamma} x y^{2} x=x \cdot y^{2} \cdot x \\
& B \vdash_{\Gamma} x^{2}=x \cdot(1) \cdot x \quad \Longrightarrow \quad B \vdash_{\Gamma} x \cdot(y) \cdot x=x y x
\end{aligned}
$$

Now other consequences on B are possible, $x y \notin \Phi_{\Gamma}(B)=\left\{x y^{2} x, x y x, x^{2}\right\} \Longrightarrow B \nvdash_{\Gamma} x y$

Example

Let Φ_{Γ} be the associated closure operator on $\wp\left(\operatorname{Var}^{*}\right)$, i.e., $\Phi_{\Gamma}(X)=\left\{x: X \vdash_{\Gamma} x\right\}$.

Let $\Gamma=\{[\mathrm{R}]\}$ where $[\mathrm{R}]: x \leq x^{2} \vee 1$. Let

$$
[B]: \quad x y \leq x y^{2} x \vee x^{2}
$$

Here, $B:=\left\{x y^{2} x, x^{2}\right\}$. Now

$$
\begin{aligned}
& B \vdash_{\Gamma} x y^{2} x=x \cdot y^{2} \cdot x \\
& B \vdash_{\Gamma} x^{2} \quad=x \cdot(1) \cdot x \quad \Longrightarrow \quad B \vdash_{\Gamma} x \cdot(y) \cdot x=x y x
\end{aligned}
$$

Now other consequences on B are possible, $x y \notin \Phi_{\Gamma}(B)=\left\{x y^{2} x, x y x, x^{2}\right\} \Longrightarrow B \nvdash_{\Gamma} x y$

Does this imply ISR $+\Gamma \not \vDash[B]$, or even $\mathrm{RL}+\Gamma \not \vDash[B]$?

Frame construction

For a finite set Σ of simple equations, define

- $W=V a r^{*}$
- $W^{\prime}=\operatorname{Var}^{*} \times \wp\left(\operatorname{Var}^{*}\right) \times \operatorname{Var}^{*}$
- $N_{\Sigma} \subseteq W \times W^{\prime}$ via

$$
x N_{\Sigma}(u, X, v) \Longleftrightarrow X \vdash_{\Sigma} u x v
$$

Lemma

$\mathbf{W}_{\Sigma}=\left(W, W^{\prime}, N_{\Sigma}\right)$ is a residuated frame.

Proof.

$x y N_{\Sigma}(u, X, v) \Longleftrightarrow x N_{\Sigma}(u, X, y v) \Longleftrightarrow y N_{\Sigma}(u x, X, v)$

Equivalences

Theorem

Let Σ be a set of simple equations. Then for a given proper equation $[\mathrm{A}]=\left(a_{0}, \mathrm{~A}\right)$, the following are equivalent:

1. $\mathrm{RL}+\Sigma \models[\mathrm{A}]$.
2. $\mathrm{A} \vdash_{\Sigma} a_{0}$.
3. $\mathrm{ISR}+\Sigma \models[\mathrm{A}]$.

Equivalences

Theorem

Let Σ be a set of simple equations. Then for a given proper equation $[\mathrm{A}]=\left(a_{0}, \mathrm{~A}\right)$, the following are equivalent:

1. $\mathrm{RL}+\Sigma \models[\mathrm{A}]$.
2. $\mathrm{A} \vdash_{\Sigma} a_{0}$.
3. $\mathrm{ISR}+\Sigma \models[\mathrm{A}]$.

Proof.

$(1 \Rightarrow 2)$: Since $[A]$ is proper, it is ISR-equivalent to a simple equation $[\mathrm{R}]=\left(r_{0}, \mathrm{R}\right)$ (i.e., r_{0} is linear)

$$
\begin{aligned}
\mathrm{A} \vdash_{\Sigma} a_{0} \Longrightarrow \mathrm{R} \vdash_{\Sigma} r_{0} & \Longrightarrow r_{0} \mathbb{N}_{\Sigma}(1, \mathrm{R}, 1) \\
& \Longrightarrow \mathbf{W}_{\Sigma} \not \models(\mathrm{R}) \\
& \Longrightarrow \mathbf{W}_{\Sigma}^{+} \not \equiv[\mathrm{R}] \Longleftrightarrow \mathbf{W}_{\Sigma}^{+} \not \vDash[\mathrm{A}]
\end{aligned}
$$

But $\mathbf{W}_{\Sigma}^{+} \in \mathrm{RL}+\Sigma$ since Σ is a set of simple equations.

Non-proper equations

If $[A]$ is a non-proper linear equation (e.g., $x \leq x^{2} \vee x y^{2}$), it is not true in general that $[A]$ is preserved through $(-)^{+}$.

Non-proper equations

If $[A]$ is a non-proper linear equation (e.g., $x \leq x^{2} \vee x y^{2}$), it is not true in general that $[A]$ is preserved through $(-)^{+}$. However:

Lemma

Let $[A]$ be a non-proper linear equation and \mathbf{W} a residuated frame.
If $\perp \mathbf{W}^{+} \neq \emptyset$, then

$$
\mathbf{W} \models(A) \Longleftrightarrow \mathbf{W}^{+} \models[A] .
$$

Non-proper equations

If $[A]$ is a non-proper linear equation (e.g., $x \leq x^{2} \vee x y^{2}$), it is not true in general that $[A]$ is preserved through $(-)^{+}$. However:

Lemma

Let $[A]$ be a non-proper linear equation and \mathbf{W} a residuated frame.
If $\perp \mathbf{W}^{+} \neq \emptyset$, then

$$
\mathbf{W} \models(A) \Longleftrightarrow \mathbf{W}^{+} \models[A] .
$$

By adding a bottom element \perp to the signature and suitably defining a consequence relation $\vdash_{\Gamma \perp}$, we obtain a stronger correspondence.

Theorem

Let $\Gamma \cup\{[A]\}$ be a set of basic equations where $[A]=\left(a_{0}, A\right)$. The following are equivalent:

1. $\mathrm{RL}+\Sigma \models[A]$.
2. $A \vdash_{\Gamma \perp} a_{0}$.
3. $\mathrm{ISR}_{\perp}+\Sigma \models[A]$.

Let Γ be a set of basic equations.

Definition

- Γ is called degenerate if it contains a degenerate equation.
- For Γ not degenerate, the simplification of Γ is the set Σ_{Γ} containing all the equivalent simple equations from Γ.

Let Γ be a set of basic equations.

Definition

- Γ is called degenerate if it contains a degenerate equation.
- For Γ not degenerate, the simplification of Γ is the set Σ_{Γ} containing all the equivalent simple equations from Γ.

Corollary

$\mathrm{RL}+\Gamma$ is the trivial variety if and only if Γ contains a degenerate equation.

Let Γ be a set of basic equations.

Definition

- Γ is called degenerate if it contains a degenerate equation.
- For Γ not degenerate, the simplification of Γ is the set Σ_{Γ} containing all the equivalent simple equations from Γ.

Corollary

$R L+\Gamma$ is the trivial variety if and only if Γ contains a degenerate equation.

Corollary

If Γ is a non-degenerate set of basic equations, then

$$
\mathrm{RL}+\Gamma \models[A] \Longleftrightarrow A \vdash_{\Sigma} a_{0}
$$

where $[A]=\left(a_{0}, A\right)$ is an ISR-equation and $\Sigma=\Sigma_{\Gamma}$ is the simplification of Γ.

Definition

Let $[A]$ be an basic equation. We say $[A]$ is:

- knotted if $[A]: x^{n} \leq x^{m}$ for some $n \neq m$.
- expansive if $[A]: x^{n} \leq x^{n+c_{1}} \vee \cdots \vee x^{n+c_{k}}$, for some $n, k \geq 1$ and positive c_{1}, \ldots, c_{k}.
- compressive if $[A]: x^{n} \leq x^{n-c_{1}} \vee \cdots \vee x^{n-c_{k}}$, for some $n, k \geq 1$ and $1 \leq c_{1}, \ldots, c_{k}<n$.
- For the above properties, we say $[A]=\left(a_{0}, A\right)$ is pre-(property) if there exists a substitution $\boldsymbol{\sigma}$ such that $[\boldsymbol{\sigma} A]=\left(\boldsymbol{\sigma} a_{0}, \boldsymbol{\sigma} A\right)$ is (property).

Definition

Let $[A]$ be an basic equation. We say $[A]$ is:

- knotted if $[A]: x^{n} \leq x^{m}$ for some $n \neq m$.
- expansive if $[A]: x^{n} \leq x^{n+c_{1}} \vee \cdots \vee x^{n+c_{k}}$, for some $n, k \geq 1$ and positive c_{1}, \ldots, c_{k}.
- compressive if $[A]: x^{n} \leq x^{n-c_{1}} \vee \cdots \vee x^{n-c_{k}}$, for some $n, k \geq 1$ and $1 \leq c_{1}, \ldots, c_{k}<n$.
- For the above properties, we say $[A]=\left(a_{0}, A\right)$ is pre-(property) if there exists a substitution $\boldsymbol{\sigma}$ such that $[\boldsymbol{\sigma} A]=\left(\boldsymbol{\sigma} a_{0}, \boldsymbol{\sigma} A\right)$ is (property).
- For a set of equations Σ, we say Σ is pre-(property) if it contains an equation that is pre-(property).

We say a variety $\mathcal{V} \subseteq \mathrm{RL}$ is knotted, expansive, or compressive if $\mathcal{V} \models[A]$ for some equation $[A]$ that is knotted, expansive, or compressive.

Theorem

Let Σ be a set of simple equations.

1. $\mathrm{RL}+\Sigma$ is knotted iff Σ is pre-knotted.
2. $\mathrm{RL}+\Sigma$ is expansive iff Σ is pre-expansive.
3. $\mathrm{RL}+\Sigma$ is compressive iff Σ is pre-compressive.
4. $\mathrm{RL}+\Sigma$ is integral iff Σ contains a strictly proper equation.

We say a variety $\mathcal{V} \subseteq R L$ is knotted, expansive, or compressive if $\mathcal{V} \models[A]$ for some equation $[A]$ that is knotted, expansive, or compressive.

Theorem

Let Σ be a set of simple equations.

1. $\mathrm{RL}+\Sigma$ is knotted iff Σ is pre-knotted.
2. $R L+\Sigma$ is expansive iff Σ is pre-expansive.
3. $\mathrm{RL}+\Sigma$ is compressive iff Σ is pre-compressive.
4. $\mathrm{RL}+\Sigma$ is integral iff Σ contains a strictly proper equation.

A variety $\mathcal{V} \subseteq \mathrm{RL}$ is called potent if $\mathcal{V} \models x^{n}=x^{m}$ for some $n \neq m$.

Theorem

Let Σ be a set of simple equations. Then $\mathrm{RL}+\Sigma$ is potent if and only if Σ is pre-compressive [or resp. pre-expansive] and contains an expansive [resp. compressive] pre-knotted equation.

Decidability?

- For many sets Σ of simple equations, the equational theory for ISR $+\Sigma$ is decidable.

Decidability?

- For many sets Σ of simple equations, the equational theory for ISR $+\Sigma$ is decidable.

Open Question

Let $[R]$ be any simple equation. Is the equational theory for ISR $+[\mathrm{R}]$ decidable?

Thank you!

