Subvariety containment for idempotent semirings

Gavin St. John

gavin.stjohn@du.edu

Ongoing joint work with Nick Galatos University of Denver

BLAST 2019 University of Colorado Boulder

$21 \ \mathrm{May} \ 2019$

Residuated Lattices

A (commutative) **residuated lattice** is an algebraic structure $\mathbf{R} = (R, \lor, \land, \cdot, \backslash, /, 1)$, such that

- (R, \lor, \land) is a lattice
- $(R, \cdot, 1)$ is a (commutative) monoid
- For all $x, y, z \in R$

$$x \cdot y \leq z \iff y \leq x \setminus z \iff x \leq z/y,$$

where \leq is the induced lattice order.

Residuated Lattices

A (commutative) **residuated lattice** is an algebraic structure $\mathbf{R} = (R, \lor, \land, \cdot, \backslash, /, 1)$, such that

- (R, \lor, \land) is a lattice
- $(R, \cdot, 1)$ is a (commutative) monoid
- For all $x, y, z \in R$

$$x \cdot y \leq z \iff y \leq x \setminus z \iff x \leq z/y,$$

where \leq is the induced lattice order.

• (C)RL denotes the variety of (commutative) residuated lattices.

Residuated Lattices

A (commutative) **residuated lattice** is an algebraic structure $\mathbf{R} = (R, \lor, \land, \cdot, \backslash, /, 1)$, such that

- (R, \lor, \land) is a lattice
- $(R, \cdot, 1)$ is a (commutative) monoid
- For all $x, y, z \in R$

$$x \cdot y \leq z \iff y \leq x \setminus z \iff x \leq z/y,$$

where \leq is the induced lattice order.

- (C)RL denotes the **variety** of (commutative) residuated lattices.
- multiplication is order preserving:

$$x \leq y \implies zx \leq zy \quad \& \quad xz \leq yz$$

• multiplication distributes of join:

$$x(y \lor z) = xy \lor xz \quad \& \quad (y \lor z)x = yx \lor zx$$

Gavin St. John

Residuated structures are the algebraic semantics of substructural logics (i.e., axiomatic extension of the **Full Lambek Calculus**) **FL**.

Structural rules have an algebraic meaning.

$$\begin{array}{ll} \frac{\Gamma, \alpha, \beta, \Delta \Rightarrow \Pi}{\Gamma, \beta, \alpha, \Delta \Rightarrow \Pi} \ (\mathbf{e}) & \Leftrightarrow & xy \leq yx \\ \\ \frac{\Gamma, \Delta \Rightarrow \Pi}{\Gamma, \alpha, \Delta \Rightarrow \Pi} \ (\mathbf{w}) & \Leftrightarrow & x \leq 1 \\ \\ \frac{\Gamma, \alpha, \alpha, \Delta \Rightarrow \Pi}{\Gamma, \alpha, \Delta \Rightarrow \Pi} \ (\mathbf{c}) & \Leftrightarrow & x < x^2 \end{array}$$

We can use algebraic methods to answer questions about the logics.

ISR and ISR_\perp

The $\{\lor, \cdot, 1\}$ -fragment of RL is an idempotent semiring (ISR).

Definition

An **idempotent semiring** is an algebra $\mathbf{S} = (S, \lor, \cdot, 1)$ where:

- (S, \lor) is an idempotent semigroup
- $(S, \cdot, 1)$ is a monoid
- multiplication distributes over join, i.e.,

$$a(b \lor c) = ab \lor ac \quad \& \quad (b \lor c)a = ba \lor ca$$

ISR and ISR_\perp

The $\{\vee,\cdot,1\}\text{-fragment}$ of RL is an idempotent semiring (ISR).

Definition

An idempotent semiring is an algebra $\mathbf{S}=(S,\vee,\cdot,1)$ where:

- (S, \lor) is an idempotent semigroup
- $(S, \cdot, 1)$ is a monoid
- multiplication distributes over join, i.e.,

$$a(b \lor c) = ab \lor ac \quad \& \quad (b \lor c)a = ba \lor ca$$

An algebra $\mathbf{S} = (S, \lor, \cdot, \bot, 1)$ is an **idempotent semiring with** \bot if $(S, \lor, \cdot, 1)$ is an ISR where additionally (S, \lor, \bot) is monoid and $\bot x = x \bot = \bot$ for all $x \in S$.

We denote the variety of idempotent semirings (with $\bot)$ by ISR (ISR $_{\bot}).$

Let Γ be any finite set of $\{\lor, \cdot, 1\}$ -equations and $n, m \ge 0$ distinct.

► Van Alten (2005) showed CRL + (xⁿ ≤ x^m) has the finite embedability property (FEP).

Let Γ be any finite set of $\{\vee,\cdot,1\}$ -equations and $n,m\geq 0$ distinct.

► Van Alten (2005) showed CRL + (xⁿ ≤ x^m) has the finite embedability property (FEP).

 \circ Galatos & Jipsen (2013) $\mathsf{CRL} + (x^n \leq x^m) + \Gamma$ has the FEP.

- Van Alten (2005) showed CRL + (xⁿ ≤ x^m) has the finite embedability property (FEP).
 Galatos & Jipsen (2013) CRL + (xⁿ ≤ x^m) + Γ has the FEP.
- ► In (S. PhD Thesis [2019]), we prove $CRL + (x^n = x^m) + \Gamma$ has a primitive recursive decision procedure.

- Van Alten (2005) showed CRL + (xⁿ ≤ x^m) has the finite embedability property (FEP).
 Galatos & Jipsen (2013) CRL + (xⁿ ≤ x^m) + Γ has the FEP.
- ► In (S. PhD Thesis [2019]), we prove $CRL + (x^n = x^m) + \Gamma$ has a primitive recursive decision procedure.
- ► Horčík (2015) showed that any variety in the interval RL + (x² = x³) to RL has an undecidable word problem.

- Van Alten (2005) showed CRL + (xⁿ ≤ x^m) has the finite embedability property (FEP).
 Galatos & Jipsen (2013) CRL + (xⁿ ≤ x^m) + Γ has the FEP.
- ► In (S. PhD Thesis [2019]), we prove $CRL + (x^n = x^m) + \Gamma$ has a primitive recursive decision procedure.
- ▶ Horčík (2015) showed that any variety in the interval RL + (x² = x³) to RL has an undecidable word problem.
 Chvalovský & Horčík (2016) prove the undecidability of the equational theory for RL + (xⁿ ≤ x^{n+k}) for n, k ≥ 1.

- Van Alten (2005) showed CRL + (xⁿ ≤ x^m) has the finite embedability property (FEP).
 Galatos & Jipsen (2013) CRL + (xⁿ ≤ x^m) + Γ has the FEP.
- ► In (S. PhD Thesis [2019]), we prove $CRL + (x^n = x^m) + \Gamma$ has a primitive recursive decision procedure.
- ▶ Horčík (2015) showed that any variety in the interval RL + (x² = x³) to RL has an undecidable word problem.
 Chvalovský & Horčík (2016) prove the undecidability of the equational theory for RL + (xⁿ ≤ x^{n+k}) for n, k ≥ 1.
- In (S. PhD Thesis [2019]), we prove undecidability of the (Eq. Th) word problem for any variety in the interval CRL + Σ to RL, where Σ is any (expansive) non-spinal equations finite set of {∨, ·, 1}-equations.

For sets of $\{\lor, \cdot, 1\}$ -equations Γ, Σ , we want to know:

$$\mathsf{RL} + \Gamma \models \Sigma?$$

Or equivalently:

 $\mathsf{RL} + \Gamma \subseteq \mathsf{RL} + \Sigma?$

We call an equation s=t in the signature $\{\vee,\cdot,1\}$ is ISR-equivalent to a **basic equation**

$$[A]: \quad a_0 \le \bigvee_{a \in A} a$$

where

- *a* is a monoid term
- A is a finite nonempty set of monoid terms
- We associate [A] with the pair (a_0, A)

Simple equations

Definition

Let $[A] = (a_0, A)$ be a basic equation

$$[A]: \quad a_0 \le \bigvee_{a \in A} a.$$

We say [A] is:

- **Linear** if a_0 is linear, i.e., $a_0 = x_1 \cdots x_n$ for some n > 1.
- **Proper** if all variables present in *A* are present in *a*₀.
- **Simple** if [A] is proper and linear.
- ▶ Degenerate if for each a ∈ A there appears a variable not appearing in a₀.

Linearization

Proposition

The following hold:

- In ISR, every basic equation is equivalent to a linear equation.
- In RL and ISR⊥, every non-degenerate equation is equivalent to a simple equation.
- ▶ In RL and ISR_⊥, every degenerate equation is equivalent to $1 \le x$.

Such conjoins can be determined by the properties of ISR by **linearization**

Linearization

Proposition

The following hold:

- In ISR, every basic equation is equivalent to a linear equation.
- In RL and ISR⊥, every non-degenerate equation is equivalent to a simple equation.
- ▶ In RL and ISR_⊥, every degenerate equation is equivalent to $1 \le x$.

Such conjoins can be determined by the properties of ISR by **linearization**

$$(\forall u)(\forall v) \ u^2 v \leq u^3 \lor uv$$

Linearization

Proposition

The following hold:

- In ISR, every basic equation is equivalent to a linear equation.
- In RL and ISR⊥, every non-degenerate equation is equivalent to a simple equation.
- ▶ In RL and ISR_⊥, every degenerate equation is equivalent to $1 \le x$.

Such conjoins can be determined by the properties of ISR by **linearization**

$$(\forall u)(\forall v) \ u^2 v \leq u^3 \lor uv$$

is equivalent to, via the substitution $\sigma: u \xrightarrow{\sigma} x \lor y$ and $v \xrightarrow{\sigma} z$,

 $(\forall x)(\forall y)(\forall z) \ xyz \leq x^3 \lor x^2y \lor xy^2 \lor y^3 \lor xz \lor yz$

Simple Equations and Simple Rules

Any simple equation $[\mathrm{R}]$ corresponds to a simple structural rule $(\mathrm{R}).$ For example

$$[\mathbf{R}]: xy \le x^2 \lor y \iff \frac{\Delta_1, \Gamma, \Gamma, \Delta_2 \Rightarrow \Pi \quad \Delta_1, \Psi, \Delta_2 \Rightarrow \Pi}{\Delta_1, \Gamma, \Psi, \Delta_2 \Rightarrow \Pi} \ (\mathbf{R})$$

Simple Equations and Simple Rules

Any simple equation $[\rm R]$ corresponds to a simple structural rule $(\rm R).$ For example

$$[\mathbf{R}]: xy \le x^2 \lor y \iff \frac{\Delta_1, \Gamma, \Gamma, \Delta_2 \Rightarrow \Pi \quad \Delta_1, \Psi, \Delta_2 \Rightarrow \Pi}{\Delta_1, \Gamma, \Psi, \Delta_2 \Rightarrow \Pi} \ (\mathbf{R})$$

In general,

$$[\mathbf{R}]: x_1 \cdots x_n \le \bigvee_{r \in \mathbf{R}} r \iff \frac{\{\Delta_1, r^{\mathbf{FL}}(\Gamma_1, \dots, \Gamma_n), \Delta_2 \Rightarrow \Pi\}_{r \in \mathbf{R}}}{\Delta_1, \Gamma_1, \dots, \Gamma_n, \Delta_2 \Rightarrow \Pi}$$
(R)

Theorem [Galatos & Jipsen 2013]

Extensions of ${\bf FL}$ by simple rules enjoy ${\bf cut}{-}{\bf elimination}.$

Gavin St. John

Subvariety containment for idempotent semirings 10 / 25

Residuated frames

Definition

A residuated frame is a structure $\mathbf{W} = (W, W', N, \circ, \mathbb{N}, //, 1)$, s.t.

- $(W, \circ, 1)$ is a monoid and W' is a set.
- $\blacktriangleright N \subseteq W \times W',$
- $\blacktriangleright \ \|: W \times W' \to W' \text{ and } /\!\!/ : W' \times W \to W' \text{ such that}$
- ▶ N is **nuclear**, i.e. for all $u, v \in W$ and $w \in W'$, $(u \circ v) N w$ iff u N (w / v) iff $v N (u \ w)$.

Residuated frames

Definition

A residuated frame is a structure $\mathbf{W} = (W, W', N, \circ, \mathbb{N}, //, 1)$, s.t.

- $(W, \circ, 1)$ is a monoid and W' is a set.
- $\blacktriangleright N \subseteq W \times W',$
- $\blacktriangleright \ \|: W \times W' \to W' \text{ and } /\!\!/ : W' \times W \to W' \text{ such that}$
- ▶ N is nuclear, i.e. for all $u, v \in W$ and $w \in W'$, $(u \circ v) N w$ iff u N (w / v) iff $v N (u \ w)$.

$$\wp(W) \underset{\triangleleft}{\stackrel{\triangleright}{\underset{\triangleleft}{\leftarrow}}} \wp(W'): \quad X^{\triangleright} = \{ y \in W' : X \ N \ y \}$$
$$Y^{\triangleleft} = \{ x \in W : x \ N \ Y \}$$

- $({}^{\triangleright},{}^{\triangleleft})$ is a Galois connection.
- The map $X \xrightarrow{\gamma_N} X^{\triangleright \triangleleft}$ is a closure operator on $\mathcal{P}(W)$.
- *N* is nuclear iff γ_N is a nucleus.

Gavin St. John

Residuated frames cont.

Theorem [Galatos & Jipsen 2013]

 $\mathbf{W}^+ := (\gamma_N[\mathcal{P}(W)], \cup_{\gamma_N}, \cap, \circ_{\gamma_N}, \backslash, /, \gamma_N(\{1\})),$

 $X\cup_{\gamma_N}Y=\gamma_N(X\cup Y) \text{ and } X\circ_{\gamma_N}Y=\gamma_N(X\circ Y),$

is a residuated lattice.

Residuated frames cont.

Theorem [Galatos & Jipsen 2013]

 $\mathbf{W}^+ := (\gamma_N[\mathcal{P}(W)], \cup_{\gamma_N}, \cap, \circ_{\gamma_N}, \backslash, /, \gamma_N(\{1\})),$

 $X\cup_{\gamma_N}Y=\gamma_N(X\cup Y) \text{ and } X\circ_{\gamma_N}Y=\gamma_N(X\circ Y),$

is a residuated lattice.

Lemma [Galatos & Jipsen 2013]

All simple equations $[\mathrm{R}]$ are preserved by $(-)^+ {:}$

 $\mathbf{W} \models (\mathbf{R}) \text{ iff } \mathbf{W}^+ \models [\mathbf{R}],$

where

$$(\mathbf{R}): \quad (\forall r \in \mathbf{R}) \ r(x_1, \dots, x_n) \ N \ w \implies x_1 \circ \dots \circ x_n \ N \ w$$

for all $x_1, \ldots, x_n \in W$ and $w \in W'$.

Let Var be a countable set of variables, and Var^{*} denote the free monoid generated by Var with identity 1.

For Γ a finite set of basic equations, we define \vdash_{Γ} be the smallest relation on $\wp(Var^*) \times Var^*$ satisfying the following for all $X \subseteq Var^*$

•
$$X \vdash_{\Gamma} x$$
 for all $x \in X$,

► For all
$$[A] = (a_0, A) \in \Gamma$$
, $u, v \in Var^*$, and substitutions σ ,
 $(\forall a \in A) \ X \vdash_{\Gamma} \sigma(uav) \implies X \vdash_{\Gamma} \sigma(ua_0v).$

Let Var be a countable set of variables, and Var^{*} denote the free monoid generated by Var with identity 1.

For Γ a finite set of basic equations, we define \vdash_{Γ} be the smallest relation on $\wp(Var^*) \times Var^*$ satisfying the following for all $X \subseteq Var^*$

•
$$X \vdash_{\Gamma} x$$
 for all $x \in X$,

► For all
$$[A] = (a_0, A) \in \Gamma$$
, $u, v \in Var^*$, and substitutions σ ,
 $(\forall a \in A) \ X \vdash_{\Gamma} \sigma(uav) \implies X \vdash_{\Gamma} \sigma(ua_0v).$

The relation \vdash_{Γ} is a substitution invariant consequence relation.

Lemma

Let $\Gamma \cup \{[A]\}$ be a set of basic equations. Then

$$A \vdash_{\Gamma} a_0 \implies \mathsf{ISR} + \Gamma \models [A],$$

where $[A] = (a_0, A)$.

Proof.

Induct on the height of the proof-tree witnessing $A \vdash_{\Gamma} a_0$.

Let
$$\Gamma = \{[\mathbf{R}]\}$$
 where $[\mathbf{R}]: x \le x^2 \lor 1$. Let $[A]: x^2 \le x^5 \lor x$

Here,
$$A := \{x^5, x\}$$
.

Let
$$\Gamma = \{[\mathbf{R}]\}$$
 where $[\mathbf{R}] : x \le x^2 \lor 1$. Let
 $[A] : x^2 \le x^5 \lor x$
Here, $A := \{x^5, x\}$. Now
 $A \vdash_{\Gamma} x^5 = x \cdot (x^2)^2$
 $A \vdash_{\Gamma} x = x \cdot (1)$

Let
$$\Gamma = \{[\mathbf{R}]\}$$
 where $[\mathbf{R}] : x \le x^2 \lor 1$. Let
 $[A] : x^2 \le x^5 \lor x$
Here, $A := \{x^5, x\}$. Now
 $A \vdash_{\Gamma} x^5 = x \cdot (x^2)^2$
 $A \vdash_{\Gamma} x = x \cdot (1) \implies A \vdash_{\Gamma} x \cdot (x^2) = x^3$

Let
$$\Gamma = \{[\mathbf{R}]\}$$
 where $[\mathbf{R}] : x \le x^2 \lor 1$. Let
 $[A] : x^2 \le x^5 \lor x$
Here, $A := \{x^5, x\}$. Now
 $A \vdash_{\Gamma} x^5 = x \cdot (x^2)^2$
 $A \vdash_{\Gamma} x = x \cdot (1)$ $\implies A \vdash_{\Gamma} x \cdot (x^2) = x^3$
 $\implies A \vdash_{\Gamma} x \cdot (x) = x^2$

Let
$$\Gamma = \{[\mathbf{R}]\}$$
 where $[\mathbf{R}] : x \le x^2 \lor 1$. Let
 $[A] : x^2 \le x^5 \lor x$
Here, $A := \{x^5, x\}$. Now
 $A \vdash_{\Gamma} x^5 = x \cdot (x^2)^2$
 $A \vdash_{\Gamma} x = x \cdot (1) \implies A \vdash_{\Gamma} x \cdot (x^2) = x^3$
 $\implies A \vdash_{\Gamma} x \cdot (x) = x^2$
Hence $A \vdash_{\Gamma} x^2$. In fact $\Phi_{\Gamma}(A) = \{x^5, x^4, x^3, x^2, x\}$.

Let Φ_{Γ} be the associated closure operator on $\wp(\mathsf{Var}^*)$, i.e., $\Phi_{\Gamma}(X) = \{x : X \vdash_{\Gamma} x\}.$

Let
$$\Gamma = \{[\mathbf{R}]\}$$
 where $[\mathbf{R}] : x \leq x^2 \vee 1$. Let

$$[A] : x^2 \leq x^5 \vee x$$
Here, $A := \{x^5, x\}$. Now
 $A \vdash_{\Gamma} x^5 = x \cdot (x^2)^2$
 $A \vdash_{\Gamma} x = x \cdot (1) \implies A \vdash_{\Gamma} x \cdot (x^2) = x^3$
 $\implies A \vdash_{\Gamma} x \cdot (x) = x^2$
Hence $A \vdash_{\Gamma} x^2$. In fact $\Phi_{\Gamma}(A) = \{x^5, x^4, x^3, x^2, x\}$.

 $\mathsf{ISR} + \Gamma \models x^2 \leq x^3 \lor x$

Let Φ_{Γ} be the associated closure operator on $\wp(\mathsf{Var}^*)$, i.e., $\Phi_{\Gamma}(X) = \{x : X \vdash_{\Gamma} x\}.$

Let
$$\Gamma = \{[\mathbf{R}]\}$$
 where $[\mathbf{R}] : x \le x^2 \lor 1$. Let
 $[A] : x^2 \le x^5 \lor x$
Here, $A := \{x^5, x\}$. Now
 $A \vdash_{\Gamma} x^5 = x \cdot (x^2)^2$
 $A \vdash_{\Gamma} x = x \cdot (1) \implies A \vdash_{\Gamma} x \cdot (x^2) = x^3$
 $\implies A \vdash_{\Gamma} x \cdot (x) = x^2$
Hence $A \vdash_{\Gamma} x^2$. In fact $\Phi_{\Gamma}(A) = \{x^5, x^4, x^3, x^2, x\}$.

 $\mathsf{ISR} + \Gamma \models x^2 \leq x^3 \lor x \leq (x^5 \lor x) \lor x$

Let Φ_{Γ} be the associated closure operator on $\wp(\mathsf{Var}^*)$, i.e., $\Phi_{\Gamma}(X) = \{x : X \vdash_{\Gamma} x\}.$

Let
$$\Gamma = \{[\mathbf{R}]\}$$
 where $[\mathbf{R}] : x \leq x^2 \vee 1$. Let
 $[A] : x^2 \leq x^5 \vee x$
Here, $A := \{x^5, x\}$. Now
 $A \vdash_{\Gamma} x^5 = x \cdot (x^2)^2$
 $A \vdash_{\Gamma} x = x \cdot (1)$ $\implies A \vdash_{\Gamma} x \cdot (x^2) = x^3$
 $\implies A \vdash_{\Gamma} x \cdot (x) = x^2$
Hence $A \vdash_{\Gamma} x^2$. In fact $\Phi_{\Gamma}(A) = \{x^5, x^4, x^3, x^2, x\}$.
ISR + $\Gamma \models x^2 \leq x^3 \vee x \leq (x^5 \vee x) \vee x = x^5 \vee x$.

Gavin St. John

Let
$$\Gamma = \{[\mathbf{R}]\}$$
 where $[\mathbf{R}]: x \le x^2 \lor 1$. Let
 $[B]: xy \le xy^2x \lor x^2$
Here, $B := \{xy^2x, x^2\}.$

Let
$$\Gamma = \{[\mathbf{R}]\}$$
 where $[\mathbf{R}] : x \le x^2 \lor 1$. Let
 $[B] : xy \le xy^2x \lor x^2$
Here, $B := \{xy^2x, x^2\}$. Now
 $B \vdash_{\Gamma} xy^2x = x \cdot y^2 \cdot x$
 $B \vdash_{\Gamma} x^2 = x \cdot (1) \cdot x$

Let
$$\Gamma = \{[R]\}$$
 where $[R] : x \le x^2 \lor 1$. Let
 $[B] : xy \le xy^2x \lor x^2$
Here, $B := \{xy^2x, x^2\}$. Now
 $B \vdash_{\Gamma} xy^2x = x \cdot y^2 \cdot x$
 $B \vdash_{\Gamma} x^2 = x \cdot (1) \cdot x \implies B \vdash_{\Gamma} x \cdot (y) \cdot x = xyx$

Let Φ_{Γ} be the associated closure operator on $\wp(\mathsf{Var}^*)$, i.e., $\Phi_{\Gamma}(X) = \{x : X \vdash_{\Gamma} x\}.$

Let
$$\Gamma = \{[R]\}$$
 where $[R] : x \le x^2 \lor 1$. Let
 $[B] : xy \le xy^2x \lor x^2$
Here, $B := \{xy^2x, x^2\}$. Now
 $B \vdash_{\Gamma} xy^2x = x \cdot y^2 \cdot x$
 $B \vdash_{\Gamma} x^2 = x \cdot (1) \cdot x \implies B \vdash_{\Gamma} x \cdot (y) \cdot x = xyx$

Now other consequences on B are possible, $xy \notin \Phi_{\Gamma}(B) = \{xy^2x, xyx, x^2\} \implies B \nvDash_{\Gamma} xy$

Let Φ_{Γ} be the associated closure operator on $\wp(\mathsf{Var}^*)$, i.e., $\Phi_{\Gamma}(X) = \{x : X \vdash_{\Gamma} x\}.$

Let
$$\Gamma = \{[R]\}$$
 where $[R] : x \le x^2 \lor 1$. Let
 $[B] : xy \le xy^2x \lor x^2$
Here, $B := \{xy^2x, x^2\}$. Now
 $B \vdash_{\Gamma} xy^2x = x \cdot y^2 \cdot x$
 $B \vdash_{\Gamma} x^2 = x \cdot (1) \cdot x \implies B \vdash_{\Gamma} x \cdot (y) \cdot x = xyx$

Now other consequences on B are possible, $xy \notin \Phi_{\Gamma}(B) = \{xy^2x, xyx, x^2\} \implies B \nvDash_{\Gamma} xy$

Does this imply $\mathsf{ISR} + \Gamma \not\models [B]$, or even $\mathsf{RL} + \Gamma \not\models [B]$?

Gavin St. John

Frame construction

For a finite set Σ of **simple equations**, define

•
$$W = Var^*$$

•
$$W' = Var^* \times \wp(Var^*) \times Var^*$$

• $N_{\Sigma} \subseteq W \times W'$ via

$$x N_{\Sigma}(u, X, v) \iff X \vdash_{\Sigma} uxv$$

Lemma

 $\mathbf{W}_{\Sigma} = (W, W', N_{\Sigma})$ is a residuated frame.

Proof.

 $xy N_{\Sigma}(u, X, v) \iff x N_{\Sigma}(u, X, yv) \iff y N_{\Sigma}(ux, X, v)$

Equivalences

Theorem

Let Σ be a set of simple equations. Then for a given proper equation
[A] = (a₀, A), the following are equivalent:
1. RL + Σ ⊨ [A].
2. A ⊢_Σ a₀.
3. ISR + Σ ⊨ [A].

Equivalences

Theorem

Let Σ be a set of simple equations. Then for a given proper equation
[A] = (a₀, A), the following are equivalent:
1. RL + Σ ⊨ [A].
2. A ⊢_Σ a₀.
3. ISR + Σ ⊨ [A].

Proof.

 $(1\Rightarrow2):$ Since [A] is proper, it is ISR-equivalent to a simple equation $[R]=(r_0,R)$ (i.e., r_0 is linear)

$$\begin{array}{rcl} \mathbf{A} \nvDash_{\Sigma} a_{0} \implies \mathbf{R} \nvDash_{\Sigma} r_{0} \implies & r_{0} \not \mathbb{M}_{\Sigma}(\mathbf{1}, \mathbf{R}, \mathbf{1}) \\ \implies & \mathbf{W}_{\Sigma} \not\models (\mathbf{R}) \\ \implies & \mathbf{W}_{\Sigma}^{+} \not\models [\mathbf{R}] \iff \mathbf{W}_{\Sigma}^{+} \not\models [\mathbf{A}] \end{array}$$

But $\mathbf{W}_{\Sigma}^{+} \in \mathsf{RL} + \Sigma$ since Σ is a set of simple equations.

If [A] is a non-proper linear equation (e.g., $x \le x^2 \lor xy^2$), it is not true in general that [A] is preserved through $(-)^+$.

If [A] is a non-proper linear equation (e.g., $x \le x^2 \lor xy^2$), it is not true in general that [A] is preserved through $(-)^+$. However:

Lemma

Let [A] be a non-proper linear equation and ${\bf W}$ a residuated frame. If $\bot^{{\bf W}^+} \neq \emptyset,$ then

$$\mathbf{W} \models (A) \iff \mathbf{W}^+ \models [A].$$

If [A] is a non-proper linear equation (e.g., $x \le x^2 \lor xy^2$), it is not true in general that [A] is preserved through $(-)^+$. However:

Lemma

Let [A] be a non-proper linear equation and ${\bf W}$ a residuated frame. If $\bot^{{\bf W}^+} \neq \emptyset,$ then

$$\mathbf{W} \models (A) \iff \mathbf{W}^+ \models [A].$$

By adding a bottom element \perp to the signature and suitably defining a consequence relation $\vdash_{\Gamma \perp}$, we obtain a stronger correspondence.

Theorem

Let $\Gamma \cup \{[A]\}$ be a set of basic equations where $[A] = (a_0, A)$. The following are equivalent:

- 1. $\mathsf{RL} + \Sigma \models [A]$.
- 2. $A \vdash_{\Gamma \perp} a_0$.
- 3. $\mathsf{ISR}_{\perp} + \Sigma \models [A].$

Let Γ be a set of basic equations.

Definition

- Γ is called *degenerate* if it contains a degenerate equation.
- For Γ not degenerate, the simplification of Γ is the set Σ_Γ containing all the equivalent simple equations from Γ.

Let Γ be a set of basic equations.

Definition

- Γ is called *degenerate* if it contains a degenerate equation.
- For Γ not degenerate, the *simplification* of Γ is the set Σ_Γ containing all the equivalent simple equations from Γ.

Corollary

 $\mathsf{RL}+\Gamma$ is the trivial variety if and only if Γ contains a degenerate equation.

Let Γ be a set of basic equations.

Definition

- Γ is called *degenerate* if it contains a degenerate equation.
- For Γ not degenerate, the simplification of Γ is the set Σ_Γ containing all the equivalent simple equations from Γ.

Corollary

 $\mathsf{RL}+\Gamma$ is the trivial variety if and only if Γ contains a degenerate equation.

Corollary

If Γ is a non-degenerate set of basic equations, then

$$\mathsf{RL} + \Gamma \models [A] \iff A \vdash_{\Sigma} a_0,$$

where $[A]=(a_0,A)$ is an ISR-equation and $\Sigma=\Sigma_{\Gamma}$ is the simplification of $\Gamma.$

Gavin St. John

Definition

Let [A] be an basic equation. We say [A] is:

- **knotted** if $[A] : x^n \leq x^m$ for some $n \neq m$.
- expansive if $[A]: x^n \leq x^{n+c_1} \vee \cdots \vee x^{n+c_k}$, for some $n, k \geq 1$ and positive c_1, \ldots, c_k .
- **compressive** if $[A] : x^n \le x^{n-c_1} \lor \cdots \lor x^{n-c_k}$, for some $n, k \ge 1$ and $1 \le c_1, \ldots, c_k < n$.

• For the above properties, we say $[A] = (a_0, A)$ is **pre-(property)** if there exists a substitution σ such that $[\sigma A] = (\sigma a_0, \sigma A)$ is (property).

Definition

Let [A] be an basic equation. We say [A] is:

- **knotted** if $[A] : x^n \leq x^m$ for some $n \neq m$.
- expansive if $[A]: x^n \leq x^{n+c_1} \vee \cdots \vee x^{n+c_k}$, for some $n, k \geq 1$ and positive c_1, \ldots, c_k .
- **compressive** if $[A] : x^n \leq x^{n-c_1} \vee \cdots \vee x^{n-c_k}$, for some $n, k \geq 1$ and $1 \leq c_1, \ldots, c_k < n$.

• For the above properties, we say $[A] = (a_0, A)$ is **pre-(property)** if there exists a substitution $\boldsymbol{\sigma}$ such that $[\boldsymbol{\sigma} A] = (\boldsymbol{\sigma} a_0, \boldsymbol{\sigma} A)$ is (property).

 \circ For a set of equations Σ , we say Σ is **pre-(property)** if it contains an equation that is pre-(property).

We say a variety $\mathcal{V} \subseteq \mathsf{RL}$ is *knotted*, *expansive*, or *compressive* if $\mathcal{V} \models [A]$ for some equation [A] that is knotted, expansive, or compressive.

Theorem

Let Σ be a set of simple equations.

- 1. $\mathsf{RL} + \Sigma$ is knotted iff Σ is pre-knotted.
- 2. $\mathsf{RL} + \Sigma$ is expansive iff Σ is pre-expansive.
- 3. $\mathsf{RL} + \Sigma$ is compressive iff Σ is pre-compressive.
- 4. $\mathsf{RL} + \Sigma$ is integral iff Σ contains a strictly proper equation.

We say a variety $\mathcal{V} \subseteq \mathsf{RL}$ is *knotted*, *expansive*, or *compressive* if $\mathcal{V} \models [A]$ for some equation [A] that is knotted, expansive, or compressive.

Theorem

Let Σ be a set of simple equations.

- 1. $\mathsf{RL} + \Sigma$ is knotted iff Σ is pre-knotted.
- 2. $\mathsf{RL} + \Sigma$ is expansive iff Σ is pre-expansive.
- 3. $\mathsf{RL} + \Sigma$ is compressive iff Σ is pre-compressive.
- 4. $\mathsf{RL} + \Sigma$ is integral iff Σ contains a strictly proper equation.

A variety $\mathcal{V} \subseteq \mathsf{RL}$ is called **potent** if $\mathcal{V} \models x^n = x^m$ for some $n \neq m$.

Theorem

Let Σ be a set of simple equations. Then RL + Σ is potent if and only if Σ is pre-compressive [or resp. pre-expansive] and contains an expansive [resp. compressive] pre-knotted equation. For many sets Σ of simple equations, the equational theory for ISR + Σ is decidable.

For many sets Σ of simple equations, the equational theory for ISR + Σ is decidable.

Open Question

Let $[\mathrm{R}]$ be any simple equation. Is the equational theory for ISR $+\,[\mathrm{R}]$ decidable?

Thank you!