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Residuated La�ices

A (commutative) residuated la�ice is an algebraic structure
R = (R,∨,∧, ·, \, /, 1), such that
I (R,∨,∧) is a la�ice
I (R, ·, 1) is a (commutative) monoid
I For all x, y, z ∈ R

x · y ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y,

where ≤ is the induced la�ice order.

◦ (C)RL denotes the variety of (commutative) residuated la�ices.
◦ multiplication is order preserving:

x ≤ y =⇒ zx ≤ zy & xz ≤ yz
◦ multiplication distributes of join:

x(y ∨ z) = xy ∨ xz & (y ∨ z)x = yx ∨ zx
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Residuated structures are the algebraic semantics of substructural
logics (i.e., axiomatic extension of the Full Lambek Calculus) FL.

Structural rules have an algebraic meaning.

Γ, α, β,∆⇒ Π

Γ, β, α,∆⇒ Π
(e) ⇔ xy ≤ yx

Γ,∆⇒ Π

Γ, α,∆⇒ Π
(w) ⇔ x ≤ 1

Γ, α, α,∆⇒ Π

Γ, α,∆⇒ Π
(c) ⇔ x ≤ x2

We can use algebraic methods to answer questions about the logics.

Gavin St. John Subvariety containment for idempotent semirings 3 / 25



ISR and ISR⊥

The {∨, ·, 1}-fragment of RL is an idempotent semiring (ISR).

Definition
An idempotent semiring is an algebra S = (S,∨, ·, 1) where:
I (S,∨) is an idempotent semigroup
I (S, ·, 1) is a monoid
I multiplication distributes over join, i.e.,

a(b ∨ c) = ab ∨ ac & (b ∨ c)a = ba ∨ ca

An algebra S = (S,∨, ·,⊥, 1) is an idempotent semiring with ⊥
if (S,∨, ·, 1) is an ISR where additionally (S,∨,⊥) is monoid and
⊥x = x⊥ = ⊥ for all x ∈ S.

We denote the variety of idempotent semirings (with ⊥) by ISR
(ISR⊥).
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Decidability and the {∨, ·, 1}-fragment

Let Γ be any finite set of {∨, ·, 1}-equations and n,m ≥ 0 distinct.

I Van Alten (2005) showed CRL + (xn ≤ xm) has the finite
embedability property (FEP).
◦ Galatos & Jipsen (2013) CRL + (xn ≤ xm) + Γ has the FEP.

I In (S. PhD Thesis [2019]), we prove CRL + (xn = xm) + Γ has
a primitive recursive decision procedure.

I Horčík (2015) showed that any variety in the interval
RL + (x2 = x3) to RL has an undecidable word problem.
◦ Chvalovský & Horčík (2016) prove the undecidability of the
equational theory for RL + (xn ≤ xn+k) for n, k ≥ 1.

I In (S. PhD Thesis [2019]), we prove undecidability of the
(Eq. Th) word problem for any variety in the interval CRL + Σ
to RL, where Σ is any (expansive) non-spinal equations
finite set of {∨, ·, 1}-equations.
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For sets of {∨, ·, 1}-equations Γ,Σ, we want to know:

RL + Γ |= Σ?

Or equivalently:

RL + Γ ⊆ RL + Σ?
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Equations in the signature {∨, ·, 1}

We call an equation s = t in the signature {∨, ·, 1} is ISR-equivalent
to a basic equation

[A] : a0 ≤
∨
a∈A

a

where
I a is a monoid term
I A is a finite nonempty set of monoid terms
I We associate [A] with the pair (a0, A)
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Simple equations

Definition
Let [A] = (a0, A) be a basic equation

[A] : a0 ≤
∨
a∈A

a.

We say [A] is:
I Linear if a0 is linear, i.e., a0 = x1 · · ·xn for some n > 1.
I Proper if all variables present in A are present in a0.
I Simple if [A] is proper and linear.
I Degenerate if for each a ∈ A there appears a variable not

appearing in a0.
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Linearization

Proposition

The following hold:
I In ISR, every basic equation is equivalent to a linear equation.
I In RL and ISR⊥, every non-degenerate equation is equivalent to a

simple equation.
I In RL and ISR⊥, every degenerate equation is equivalent to 1 ≤ x.

Such conjoins can be determined by the properties of ISR by
linearization

(∀u)(∀v) u2v ≤ u3 ∨ uv

is equivalent to, via the substitution σ: u σ7−→ x ∨ y and v σ7−→ z,

(∀x)(∀y)(∀z) xyz ≤ x3 ∨ x2y ∨ xy2 ∨ y3 ∨ xz ∨ yz
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Simple Equations and Simple Rules

Any simple equation [R] corresponds to a simple structural rule
(R). For example

[R] : xy ≤ x2 ∨ y ⇐⇒
∆1,Γ,Γ,∆2 ⇒ Π ∆1,Ψ,∆2 ⇒ Π

∆1,Γ,Ψ,∆2 ⇒ Π
(R)

In general,

[R] : x1 · · ·xn ≤
∨
r∈R

r ⇐⇒
{∆1, r

FL(Γ1, . . . ,Γn),∆2 ⇒ Π}r∈R

∆1,Γ1, . . . ,Γn,∆2 ⇒ Π
(R)

Theorem [Galatos & Jipsen 2013]

Extensions of FL by simple rules enjoy cut-elimination.
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Residuated frames

Definition
A residuated frame is a structure W = (W,W ′, N, ◦,
,�, 1), s.t.
I (W, ◦, 1) is a monoid and W ′ is a set.
I N ⊆W ×W ′,
I 
 : W ×W ′ →W ′ and � : W ′ ×W →W ′ such that
I N is nuclear, i.e. for all u, v ∈W and w ∈W ′,

(u ◦ v) N w i� u N (w � v) i� v N (u 
 w).

℘(W )
.
�
/
℘(W ′) : X. = {y ∈W ′ : X N y}

Y / = {x ∈W : xN Y }

I (., /) is a Galois connection.
I The map X

γN7−−→ X./ is a closure operator on P(W ).
I N is nuclear i� γN is a nucleus.
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Residuated frames cont.

Theorem [Galatos & Jipsen 2013]

W+ := (γN [P(W )],∪γN ,∩, ◦γN , \, /, γN ({1})),

X ∪γN Y = γN (X ∪ Y ) and X ◦γN Y = γN (X ◦ Y ),

is a residuated la�ice.

Lemma [Galatos & Jipsen 2013]

All simple equations [R] are preserved by (−)+:

W |= (R) i� W+ |= [R],

where

(R) : (∀r ∈ R) r(x1, . . . , xn)N w =⇒ x1 ◦ · · · ◦ xnN w

for all x1, . . . , xn ∈W and w ∈W ′.

Gavin St. John Subvariety containment for idempotent semirings 12 / 25



Residuated frames cont.

Theorem [Galatos & Jipsen 2013]

W+ := (γN [P(W )],∪γN ,∩, ◦γN , \, /, γN ({1})),

X ∪γN Y = γN (X ∪ Y ) and X ◦γN Y = γN (X ◦ Y ),

is a residuated la�ice.

Lemma [Galatos & Jipsen 2013]

All simple equations [R] are preserved by (−)+:

W |= (R) i� W+ |= [R],

where

(R) : (∀r ∈ R) r(x1, . . . , xn)N w =⇒ x1 ◦ · · · ◦ xnN w

for all x1, . . . , xn ∈W and w ∈W ′.
Gavin St. John Subvariety containment for idempotent semirings 12 / 25



Basic equations as consequence relations

Let Var be a countable set of variables, and Var∗ denote the free
monoid generated by Var with identity 1.

For Γ a finite set of basic equations, we define `Γ be the smallest
relation on ℘(Var∗)×Var∗ satisfying the following for all X ⊆ Var∗

I X `Γ x for all x ∈ X ,
I For all [A] = (a0, A) ∈ Γ, u, v ∈ Var∗, and substitutions σ,

(∀a ∈ A) X `Γ σ(uav) =⇒ X `Γ σ(ua0v).

The relation `Γ is a substitution invariant consequence relation.
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Lemma
Let Γ ∪ {[A]} be a set of basic equations. Then

A `Γ a0 =⇒ ISR + Γ |= [A],

where [A] = (a0, A).

Proof.
Induct on the height of the proof-tree witnessing A `Γ a0.
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Example

Let ΦΓ be the associated closure operator on ℘(Var∗), i.e.,
ΦΓ(X) = {x : X `Γ x}.

Let Γ = {[R]} where [R] : x ≤ x2 ∨ 1. Let

[A] : x2 ≤ x5 ∨ x

Here, A := {x5, x}.

Now

A `Γ x
5 = x · (x2)2

A `Γ x = x · (1)
=⇒ A `Γ x · (x2) = x3

=⇒ A `Γ x · (x) = x2

Hence A `Γ x
2. In fact ΦΓ(A) = {x5, x4, x3, x2, x}.

ISR + Γ |= x2 ≤ x3 ∨ x ≤ (x5 ∨ x) ∨ x = x5 ∨ x .
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[B] : xy ≤ xy2x ∨ x2

Here, B := {xy2x, x2}.

Now

B `Γ xy
2x = x · y2 · x

B `Γ x
2 = x · (1) · x =⇒ B `Γ x · (y) · x = xyx

Now other consequences on B are possible,
xy 6∈ ΦΓ(B) = {xy2x, xyx, x2} =⇒ B 0Γ xy

Does this imply ISR + Γ 6|= [B], or even RL + Γ 6|= [B]?
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Frame construction

For a finite set Σ of simple equations, define
I W = Var∗

I W ′ = Var∗ × ℘(Var∗)× Var∗

I NΣ ⊆W ×W ′ via

xNΣ (u,X, v) ⇐⇒ X `Σ uxv

Lemma
WΣ = (W,W ′,NΣ) is a residuated frame.

Proof.
xyNΣ (u,X, v) ⇐⇒ xNΣ (u,X, yv) ⇐⇒ yNΣ (ux,X, v)
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Equivalences

Theorem
Let Σ be a set of simple equations. Then for a given proper equation
[A] = (a0,A), the following are equivalent:

1. RL + Σ |= [A].

2. A `Σ a0.

3. ISR + Σ |= [A].

Proof.
(1⇒ 2): Since [A] is proper, it is ISR-equivalent to a simple
equation [R] = (r0,R) (i.e., r0 is linear)

A 0Σ a0 =⇒ R 0Σ r0 =⇒ r0 6NΣ(1,R, 1)
=⇒ WΣ 6|= (R)
=⇒ W+

Σ 6|= [R] ⇐⇒ W+
Σ 6|= [A]

But W+
Σ ∈ RL + Σ since Σ is a set of simple equations.

Gavin St. John Subvariety containment for idempotent semirings 18 / 25



Equivalences

Theorem
Let Σ be a set of simple equations. Then for a given proper equation
[A] = (a0,A), the following are equivalent:

1. RL + Σ |= [A].

2. A `Σ a0.

3. ISR + Σ |= [A].

Proof.
(1⇒ 2): Since [A] is proper, it is ISR-equivalent to a simple
equation [R] = (r0,R) (i.e., r0 is linear)

A 0Σ a0 =⇒ R 0Σ r0 =⇒ r0 6NΣ(1,R, 1)
=⇒ WΣ 6|= (R)
=⇒ W+

Σ 6|= [R] ⇐⇒ W+
Σ 6|= [A]

But W+
Σ ∈ RL + Σ since Σ is a set of simple equations.

Gavin St. John Subvariety containment for idempotent semirings 18 / 25



Non-proper equations

If [A] is a non-proper linear equation (e.g., x ≤ x2 ∨ xy2), it is not
true in general that [A] is preserved through (−)+.

However:

Lemma
Let [A] be a non-proper linear equation and W a residuated frame.
If ⊥W+ 6= ∅, then

W |= (A) ⇐⇒ W+ |= [A].

By adding a bo�om element ⊥ to the signature and suitably
defining a consequence relation `Γ⊥, we obtain a stronger
correspondence.
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Theorem
Let Γ ∪ {[A]} be a set of basic equations where [A] = (a0, A). The
following are equivalent:

1. RL + Σ |= [A].

2. A `Γ⊥ a0.

3. ISR⊥ + Σ |= [A].

Gavin St. John Subvariety containment for idempotent semirings 20 / 25



Let Γ be a set of basic equations.

Definition

I Γ is called degenerate if it contains a degenerate equation.
I For Γ not degenerate, the simplification of Γ is the set ΣΓ

containing all the equivalent simple equations from Γ.

Corollary

RL + Γ is the trivial variety if and only if Γ contains a degenerate
equation.

Corollary

If Γ is a non-degenerate set of basic equations, then

RL + Γ |= [A] ⇐⇒ A `Σ a0,

where [A] = (a0, A) is an ISR-equation and Σ = ΣΓ is the
simplification of Γ.
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Definition
Let [A] be an basic equation. We say [A] is:
I kno�ed if [A] : xn ≤ xm for some n 6= m.
I expansive if [A] : xn ≤ xn+c1 ∨ · · · ∨ xn+ck , for some n, k ≥ 1

and positive c1, . . . , ck.
I compressive if [A] : xn ≤ xn−c1 ∨ · · · ∨ xn−ck , for some
n, k ≥ 1 and 1 ≤ c1, . . . , ck < n.

◦ For the above properties, we say [A] = (a0, A) is pre-(property)
if there exists a substitution σ such that [σA] = (σa0,σA) is
(property).

◦ For a set of equations Σ, we say Σ is pre-(property) if it contains
an equation that is pre-(property).
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We say a variety V ⊆ RL is kno�ed, expansive, or compressive if
V |= [A] for some equation [A] that is kno�ed, expansive, or
compressive.

Theorem
Let Σ be a set of simple equations.

1. RL + Σ is kno�ed i� Σ is pre-kno�ed.

2. RL + Σ is expansive i� Σ is pre-expansive.

3. RL + Σ is compressive i� Σ is pre-compressive.

4. RL + Σ is integral i� Σ contains a strictly proper equation.

A variety V ⊆ RL is called potent if V |= xn = xm for some n 6= m.

Theorem
Let Σ be a set of simple equations. Then RL + Σ is potent if and
only if Σ is pre-compressive [or resp. pre-expansive] and contains an
expansive [resp. compressive] pre-kno�ed equation.
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Decidability?

I For many sets Σ of simple equations, the equational theory for
ISR + Σ is decidable.

Open �estion

Let [R] be any simple equation. Is the equational theory for
ISR + [R] decidable?
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Thank you!
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