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Residuated Lattices

|
A (commutative) residuated lattice is an algebraic structure
R=(R,V,A,-\,/,1), such that

> (R,V,A)is a lattice
» (R,-, 1) is a (commutative) monoid

> Forallz,y,z € R
z-y<z <= y<z\z < z<z/y,

where < is the induced lattice order.
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|
A (commutative) residuated lattice is an algebraic structure
R=(R,V,A,-\,/,1), such that

> (R,V,A)is a lattice
» (R,-, 1) is a (commutative) monoid

> Forallz,y,z € R
z-y<z <= y<z\z < z<z/y,
where < is the induced lattice order.

o (C)RL denotes the variety of (commutative) residuated lattices.
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Residuated Lattices

|
A (commutative) residuated lattice is an algebraic structure
R=(R,V,A,-\,/,1), such that

> (R,V,A)is a lattice
» (R,-, 1) is a (commutative) monoid

> Forallz,y,z € R
z-y<z <= y<z\z < z<z/y,
where < is the induced lattice order.

o (C)RL denotes the variety of (commutative) residuated lattices.
o multiplication is order preserving:

r<y = zz<zy & xz<yz

o multiplication distributes of join:

x(yVz)=xzyVez & (yVz)r=yxVzx
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|
Residuated structures are the algebraic semantics of substructural
logics (i.e., axiomatic extension of the Full Lambek Calculus) FL.

Structural rules have an algebraic meaning.

F,a,ﬂ,AﬁH()
g a A=1I © o zy < yx

INA=1I
I'a, A=1I (w) < <1

F,a,a,A:>H()
o A=11 RPN xr < a?

We can use algebraic methods to answer questions about the logics.
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ISR and ISR |

The {V, -, 1}-fragment of RL is an idempotent semiring (ISR).

An idempotent semiring is an algebra S = (S, V, -, 1) where:

» (S,V) is an idempotent semigroup

> (S,-,1) is a monoid

» multiplication distributes over join, i.e.,
a(bVe)=abVac & (bVc)a=baV ca
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ISR and ISR |

The {V, -, 1}-fragment of RL is an idempotent semiring (ISR).

An idempotent semiring is an algebra S = (S, V, -, 1) where:

> (S, V) is an idempotent semigroup
> (S,-,1) is a monoid
» multiplication distributes over join, i.e.,
a(bVe)=abVac & (bVc)a=baV ca
An algebra S = (S,V,+, L, 1) is an idempotent semiring with L
if (S, V, -, 1) is an ISR where additionally (S, V, L) is monoid and
lex=2xl =_1forallz € S.

We denote the variety of idempotent semirings (with L) by ISR
(ISRY).
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Decidability and the {V, -, 1}-fragment

Let I be any finite set of {V, -, 1 }-equations and n, m > 0 distinct.
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Decidability and the {V, -, 1}-fragment

Let I be any finite set of {V, -, 1 }-equations and n, m > 0 distinct.

» Van Alten (2005) showed CRL + (2™ < 2) has the finite
embedability property (FEP).
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Decidability and the {V, -, 1}-fragment

Let I be any finite set of {V, -, 1 }-equations and n, m > 0 distinct.

» Van Alten (2005) showed CRL + (2™ < 2) has the finite
embedability property (FEP).
o Galatos & Jipsen (2013) CRL + (2™ < 2™) + I has the FEP.
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Decidability and the {V, -, 1}-fragment

Let I be any finite set of {V, -, 1 }-equations and n, m > 0 distinct.

» Van Alten (2005) showed CRL + (2™ < 2) has the finite
embedability property (FEP).
o Galatos & Jipsen (2013) CRL + (2™ < 2™) + I has the FEP.

» In (S. PhD Thesis [2019]), we prove CRL + (2™ = 2™) + T has
a primitive recursive decision procedure.

Gavin St.John Subvariety containment for idempotent semirings



Decidability and the {V, -, 1}-fragment

Let I be any finite set of {V, -, 1 }-equations and n, m > 0 distinct.

» Van Alten (2005) showed CRL + (2™ < 2) has the finite
embedability property (FEP).
o Galatos & Jipsen (2013) CRL + (2™ < 2™) 4+ T has the FEP.
» In (S. PhD Thesis [2019]), we prove CRL + (2™ = 2™) + T has
a primitive recursive decision procedure.

» Hor¢ik (2015) showed that any variety in the interval
RL + (22 = %) to RL has an undecidable word problem.
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Decidability and the {V, -, 1}-fragment

Let I be any finite set of {V, -, 1 }-equations and n, m > 0 distinct.
» Van Alten (2005) showed CRL + (2™ < 2) has the finite
embedability property (FEP).
o Galatos & Jipsen (2013) CRL + (2™ < 2™) 4+ T has the FEP.
» In (S. PhD Thesis [2019]), we prove CRL + (2™ = 2™) + T has
a primitive recursive decision procedure.
» Hor¢ik (2015) showed that any variety in the interval
RL + (22 = %) to RL has an undecidable word problem.
o Chvalovsky & Hor¢ik (2016) prove the undecidability of the
equational theory for RL + (2" < 2™%%) for n, k > 1.
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Decidability and the {V, -, 1}-fragment

Let I be any finite set of {V, -, 1 }-equations and n, m > 0 distinct.

» Van Alten (2005) showed CRL + (2™ < 2) has the finite
embedability property (FEP).
o Galatos & Jipsen (2013) CRL + (2™ < 2™) 4+ T has the FEP.

» In (S. PhD Thesis [2019]), we prove CRL + (2™ = 2™) + T has
a primitive recursive decision procedure.

» Hor¢ik (2015) showed that any variety in the interval
RL + (22 = %) to RL has an undecidable word problem.
o Chvalovsky & Hor¢ik (2016) prove the undecidability of the
equational theory for RL + (2" < 2™%%) for n, k > 1.

> In (S. PhD Thesis [2019]), we prove undecidability of the
(Eq. Th) word problem for any variety in the interval CRL + X
to RL, where ¥ is any (expansive) non-spinal equations
finite set of {V, -, 1}-equations.
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For sets of {V, -, 1 }-equations I', 2, we want to know:
RL4+T 2

Or equivalently:

RL+T CRL+ X7
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Equations in the signature {V, -, 1}

We call an equation s = ¢ in the signature {V, -, 1} is ISR-equivalent
to a basic equation

[A]: ap< \ a

acA
where
> a is a monoid term
> A is a finite nonempty set of monoid terms

» We associate [A] with the pair (ag, A)
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Simple equations

Let [A] = (ag, A) be a basic equation

[A]: aq < \/ a.
a€A

We say [A] is:
» Linear if ag is linear, i.e., ag = x7 - - - x,, for some n > 1.

> Proper if all variables present in A are present in ag.

v

Simple if [A] is proper and linear.
» Degenerate if for each a € A there appears a variable not
appearing in ag.
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Linearization

Proposition

The following hold:
> In ISR, every basic equation is equivalent to a linear equation.

» InRL and ISR |, every non-degenerate equation is equivalent to a
simple equation.

» InRL and ISR, every degenerate equation is equivalent to1 < x.

Such conjoins can be determined by the properties of ISR by
linearization
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Linearization

Proposition

The following hold:
> In ISR, every basic equation is equivalent to a linear equation.

» InRL and ISR |, every non-degenerate equation is equivalent to a
simple equation.

» InRL and ISR, every degenerate equation is equivalent to1 < x.

Such conjoins can be determined by the properties of ISR by
linearization

(Vu) (Vo) u?v < ud V uv
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Linearization

Proposition

The following hold:
> In ISR, every basic equation is equivalent to a linear equation.

» InRL and ISR |, every non-degenerate equation is equivalent to a
simple equation.

» InRL and ISR, every degenerate equation is equivalent to1 < x.

Such conjoins can be determined by the properties of ISR by
linearization

(Vu) (Vo) v < ud vV uw
is equivalent to, via the substitution o: u 2V yand v s 2,

(Vo) (Vy)(V2) 2yz < 23V 2Py Vay? VB Vaz Vyz
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Simple Equations and Simple Rules

Any simple equation [R] corresponds to a simple structural rule
(R). For example

Al,F,F,A2:>H Al,\I/,A2:>H
R]:zy <a?Vy — AT, U, Ay =11

(R)
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Simple Equations and Simple Rules

Any simple equation [R] corresponds to a simple structural rule
(R). For example

Al,F,F,AQ =11 Al,\I/,AQ =11

R]:zy <2?Vy — A, T,U, Ay =11 (R)
In general,
{Al,TFL(Fl,...,Fn),AQ:>H}7~GR R
[R}xlxng \/T'<:> AT, .., Ty, A = 11 ( )
reR

Theorem [Galatos & Jipsen 2013]

Extensions of FL by simple rules enjoy cut-elimination.
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Residuated frames

A residuated frame is a structure W = (W, W' N, o\, /,1), s.t.
» (W, 0,1) is a monoid and W' is a set.
» NCW x W',
» \:W x W' = W and ) : W x W — W' such that

» N is nuclear, i.e. for all u,v € Wand w € W/,
(uov) Nw iff uN (w/)v) iff vN (ul w).
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Residuated frames

A residuated frame is a structure W = (W, W' N, o\, /,1), s.t.
» (W, 0,1) is a monoid and W' is a set.
» NCW x W',

\:WxW = Whand J: W x W — W such that

N is nuclear, i.e. for all u,v € W and w € W/,
(uov) Nw iff uN (w/)v) iff vN (ul w).

v

v

>
p(W) = p(W'): XP={ye W : X Ny}

<
Yi={zeW:2NY}

v

(7, 9) is a Galois connection.

The map X % X" s a closure operator on P(W).
N is nuclear iff vy is a nucleus.

v

v
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Residuated frames cont.

Theorem [Galatos & Jipsen 2013]
W= (PYN[P(W)LUWN? ) ’7N7\ / PYN({l}))

XUy Y=9nv(XUY)and X oy, Y =n(X oY),

is a residuated lattice.
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Residuated frames cont.

Theorem [Galatos & Jipsen 2013]
Wt .= (’YN[P(W)LUWN? ) ’7N7\ / PYN({l}))

XUy Y=9nv(XUY)and X oy, Y =n(X oY),

is a residuated lattice.

Lemma [Galatos & Jipsen 2013]

All simple equations [R] are preserved by (—):
W = (R) iff W = [R],
where

(R): (VreR)r(z1,...,2n) Nw = z10---0ox, Nw

forall z1,...,2, € Wandw € W',
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Basic equations as consequence relations

Let Var be a countable set of variables, and Var* denote the free
monoid generated by Var with identity 1.

|
For I' a finite set of basic equations, we define I be the smallest
relation on p(Var®) x Var* satisfying the following for all X C Var*

» Xtraxforallz € X,

» Forall [A] = (ap, A) € ', u,v € Var®, and substitutions o,
(Va € A) X br o(uav) = X Fp o(uagv).
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Basic equations as consequence relations

Let Var be a countable set of variables, and Var* denote the free
monoid generated by Var with identity 1.

|
For I' a finite set of basic equations, we define I be the smallest
relation on p(Var®) x Var* satisfying the following for all X C Var*

» Xtraxforallz € X,
» Forall [A] = (ap, A) € ', u,v € Var®, and substitutions o,
(Va € A) X br o(uav) = X Fp o(uagv).

The relation F is a substitution invariant consequence relation.
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Lemma

Let I' U {[A]} be a set of basic equations. Then

AFrag = ISR+T [ [A4],
where [A] = (ag, A).

Induct on the height of the proof-tree witnessing A Fr ay. Ol
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Example

Let @ be the associated closure operator on p(Var®), i.e.,
Op(X)={z: X Fr x}.

|
Let ' = {[R]} where [R] : 2 < 2% V 1. Let

[A]: 22 < 2°Vvzx

Here, A := {2°,z}.

Gavin St.John Subvariety containment for idempotent semirings



Example

Let @ be the associated closure operator on p(Var®), i.e.,
Op(X)={z: X Fr x}.

Let ' = {[R]} where [R] : 2 < 2% V 1. Let

[A]: 22 < 2°Vvzx
Here, A := {2°,2}. Now

Abr 25 =z - (2?)?
Abrz =xz-(1)
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Example

Let @ be the associated closure operator on p(Var®), i.e.,
Op(X)={z: X Fr x}.

|
Let ' = {[R]} where [R] : 2 < 2% V 1. Let

[A]: 22 < 2°Vvzx
Here, A := {2°,2}. Now

Abr2® =z (2?)?
Afrz —x-él)) = Abrz- (@) =2’
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Example

Let @ be the associated closure operator on p(Var®), i.e.,
Op(X)={z: X Fr x}.

|
Let ' = {[R]} where [R] : 2 < 2% V 1. Let

[A]: 22 < 2°Vvzx
Here, A := {2°,2}. Now

Abr2® =z (2?)?
Afrz —x-él)) = Abrz- (@) =2’

— Ablrz-(z) =22
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Example

Let @ be the associated closure operator on p(Var®), i.e.,
Op(X)={z: X Fr x}.

|
Let ' = {[R]} where [R] : 2 < 2% V 1. Let

[A]: 22 < 2°Vvzx
Here, A := {2°,2}. Now

Abr 25 =z - (2?)?

(2 — 3
Abrz =z-(1) = Ablrz-(z%) =z

2

— Atrz-(z)==x

Hence A Fr 22. In fact ®p(A) = {2°, 2%, 23,22, 2}.
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Example

Let @ be the associated closure operator on p(Var®), i.e.,
Op(X)={z: X Fr x}.

|
Let ' = {[R]} where [R] : 2 < 2% V 1. Let

[A]: 22 < 2°Vvzx
Here, A := {2°,2}. Now

Abr 25 =z - (2?)?

(2 — 3
Abrz =z-(1) = Ablrz-(z%) =z

2

— Atrz-(z)==x
Hence A Fr 22. In fact ®p(A) = {2°, 2%, 23,22, 2}.

ISR+T E2?2<a’Vvaz
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Example

Let @ be the associated closure operator on p(Var®), i.e.,
Op(X)={z: X Fr x}.

|
Let ' = {[R]} where [R] : 2 < 2% V 1. Let

[A]: 22 < 2°Vvzx
Here, A := {2°,2}. Now

Abr 25 =z - (2?)?

(2 — 3
Abrz =z-(1) = Ablrz-(z%) =z

2

— Atrz-(z)==x
Hence A Fr 22. In fact ®p(A) = {2°, 2%, 23,22, 2}.

ISR+TE22<2?va<(@®Va)Vae
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Example

Let @ be the associated closure operator on p(Var®), i.e.,
Op(X)={z: X Fr x}.

|
Let ' = {[R]} where [R] : 2 < 2% V 1. Let

[A]: 22 < 2°Vvzx
Here, A := {2°,2}. Now

Abr 25 =z - (2?)?

(2 — 3
Abrz =z-(1) = Ablrz-(z%) =z

2

— Atrz-(z)==x
Hence A Fr 22. In fact ®p(A) = {2°, 2%, 23,22, 2}.

ISR+T E2?<a3Vvz<(@®Vz)Vz=a"Vaz.
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Example

Let @ be the associated closure operator on p(Var®), i.e.,

Or(X) = {z: X Fra).

|
Let ' = {[R]} where [R] : z < 22V 1. Let

[B]: zy < zy*xVa?

Here, B := {zy%x, 2%}.
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Example

Let @ be the associated closure operator on p(Var®), i.e.,

Or(X) = {z: X Fra).

|
Let ' = {[R]} where [R] : z < 22V 1. Let

[B]: zy < zy*xVa?
Here, B := {zy?x,2%}. Now

Btrray’z=z-y>
Brrz? =z-(1)-z
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Example

Let @ be the associated closure operator on p(Var®), i.e.,

Or(X) = {z: X Fra).

|
Let ' = {[R]} where [R] : z < 22V 1. Let

[B]: zy < zy*xVa?
Here, B := {zy?x,2%}. Now

Btrray’z=z-y>
Brrz? =z-(1)-z

= Btrz-(y) z=ayz
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Example

Let @ be the associated closure operator on p(Var®), i.e.,

Or(X) = {z: X Fra).

|
Let ' = {[R]} where [R] : z < 22V 1. Let

[B]: zy < zy*xVa?
Here, B := {zy?x,2%}. Now

Btrray’z=z-y>

Bbra? =z-(1)-z - Srrel)-e=ae

Now other consequences on B are possible,
vy & or(B) = {zy’z, ayz,2”} = B¥ray
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Example

Let @ be the associated closure operator on p(Var®), i.e.,

Or(X) = {z: X Fra).

|
Let ' = {[R]} where [R] : z < 22V 1. Let

[B]: zy < zy*xVa?
Here, B := {zy?x,2%}. Now

Btrray’z=z-y>

Bbra? =z-(1)-z - Srrel)-e=ae

Now other consequences on B are possible,
vy & or(B) = {zy’z, ayz,2”} = B¥ray

Does this imply ISR +T' }= [B], or even RL +T" }~ [B]?
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Frame construction

For a finite set X of simple equations, define
» W = Var*
» W' = Var* x p(Var®) x Var*
» Ny CW x W' via
z Ns (u, X,v) <= X by uzv

Lemma
Wy = (W, W' Ny) is a residuated frame.

Proof.

2y Ny (u, X,v) <= Ny (u,X,yv) <= y Ny (uz,X,v) O
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Equivalences

Let X be a set of simple equations. Then for a given proper equation
[A] = (ag, A), the following are equivalent:

1. RL+ X = [A].
2. AbFs ag.
3. ISR+ X E [A]
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Equivalences

Let X be a set of simple equations. Then for a given proper equation
[A] = (ao, A), the following are equivalent:

1. RL+ X = [A].
2. AbFs ag.
3. ISR+ X E [A]

(1 = 2): Since [A] is proper, it is ISR-equivalent to a simple
equation [R] = (7o, R) (i.e., rq is linear)

A Fs ap =— RFsrg = 19 Nz(l,R, 1)
= W3}~ (R)
= Wi E[R] <= W [£[A]

But Wy € RL + ¥ since X is a set of simple equations. O
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Non-proper equations

If [A] is a non-proper linear equation (e.g., z < 2 V zy?), it is not
true in general that [A] is preserved through (—)*
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Non-proper equations

If [A] is a non-proper linear equation (e.g., z < 2 V zy?), it is not
true in general that [A] is preserved through (—)T. However:

Lemma

Let [A] be a non-proper linear equation and W a residuated frame.
If LW £ (), then

W (4) < W E Al
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Non-proper equations

If [A] is a non-proper linear equation (e.g., z < 2 V zy?), it is not
true in general that [A] is preserved through (—)T. However:

Lemma

Let [A] be a non-proper linear equation and W a residuated frame.
If LW £ (), then

W (4) < W E Al

By adding a bottom element L to the signature and suitably
defining a consequence relation -1 , we obtain a stronger
correspondence.
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LetT" U {[A]} be a set of basic equations where [A] = (ag, A). The
following are equivalent:

1L RL+ 2 [4].
2. Abry ap.
3. ISR, + % = [4]
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Let I' be a set of basic equations.

> ['is called degenerate if it contains a degenerate equation.

> For I not degenerate, the simplification of I is the set X
containing all the equivalent simple equations from I'.
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Let I' be a set of basic equations.

> ['is called degenerate if it contains a degenerate equation.

> For I not degenerate, the simplification of I is the set X
containing all the equivalent simple equations from I'.

Corollary

RL + I' is the trivial variety if and only if I contains a degenerate
equation.
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Let I' be a set of basic equations.

Definition

> ['is called degenerate if it contains a degenerate equation.

> For I not degenerate, the simplification of I is the set X
containing all the equivalent simple equations from I'.

Corollary

RL + I' is the trivial variety if and only if I contains a degenerate
equation.

Corollary

If I is a non-degenerate set of basic equations, then
RL+T E [A] < Aty ao,

where [A] = (ap, A) is an ISR-equation and ¥ = X is the
simplification of T".
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Let [A] be an basic equation. We say [A4] is:
» knotted if [A] : 2™ < 2™ for some n # m.
» expansive if [A] : 2" < z"T V...V 2" for some n, k > 1
and positive ¢q, . . ., Ck.
» compressive if [A] : 2" < "7V ...V 2" %, for some
nk>land1<e¢p,...,cp <n.

o For the above properties, we say [A] = (ag, A) is pre-(property)
if there exists a substitution o such that [0 A] = (oag, 0 A) is

(property).
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Let [A] be an basic equation. We say [A4] is:
» knotted if [A] : 2™ < 2™ for some n # m.
» expansive if [A] : 2" < z"T V...V 2" for some n, k > 1
and positive ¢q, . . ., Ck.
» compressive if [A] : 2" < "7V ...V 2" %, for some
nk>land1<e¢p,...,cp <n.

o For the above properties, we say [A] = (ag, A) is pre-(property)
if there exists a substitution o such that [0 A] = (oag, 0 A) is
(property).

o For a set of equations X, we say Y is pre-(property) if it contains
an equation that is pre-(property).
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We say a variety V C RL is knotted, expansive, or compressive if
V |= [A] for some equation [A] that is knotted, expansive, or
compressive.

Theorem

Let 3 be a set of simple equations.
1. RL 4 X is knotted iff X is pre-knotted.
2. RL + X is expansive iff 3 is pre-expansive.
3. RL + X is compressive iff ¥ is pre-compressive.

4. RL 4 X is integral iff X contains a strictly proper equation.
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We say a variety V C RL is knotted, expansive, or compressive if
V |= [A] for some equation [A] that is knotted, expansive, or
compressive.

Theorem

Let 3 be a set of simple equations.
1. RL 4 X is knotted iff X is pre-knotted.
2. RL + X is expansive iff 3 is pre-expansive.
3. RL + X is compressive iff ¥ is pre-compressive.

4. RL 4 X is integral iff X contains a strictly proper equation.

A variety V C RL is called potent if V |= 2" = 2™ for some n # m.

Theorem

Let X be a set of simple equations. Then RL + X is potent if and
only if X is pre-compressive [or resp. pre-expansive] and contains an
expansive [resp. compressive] pre-knotted equation.
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Decidability?

» For many sets X of simple equations, the equational theory for

ISR + ¥ is decidable.
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Decidability?

» For many sets X of simple equations, the equational theory for

ISR + ¥ is decidable.

Let [R] be any simple equation. Is the equational theory for
ISR + [R] decidable?
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Thank you!
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