On the Number of Clonoids

Athena Sparks

CU Boulder

BLAST 2019

Introduction

- Clonoids are a generalization of clones that have connections to the complexity of Promise Constraint Satisfaction Problems.

Introduction

- Clonoids are a generalization of clones that have connections to the complexity of Promise Constraint Satisfaction Problems.
- Post showed there are only countably many clones on a 2-element set. In contrast, there are continuum many such clonoids.

Minors and Clonoids

Let $[k]:=\{1, \ldots, k\}$.
Definition
Let A, B be sets, $k \in \mathbb{N}$, and $f: A^{k} \rightarrow B$. For $\ell \in \mathbb{N}$ and $\sigma:[k] \rightarrow[\ell]$, the function

$$
f^{\sigma}: A^{\ell} \rightarrow B,\left(x_{1}, \ldots, x_{\ell}\right) \mapsto f\left(x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right)
$$

is a minor of f.

Minors and Clonoids

Let $[k]:=\{1, \ldots, k\}$.

Definition

Let A, B be sets, $k \in \mathbb{N}$, and $f: A^{k} \rightarrow B$. For $\ell \in \mathbb{N}$ and $\sigma:[k] \rightarrow[\ell]$, the function

$$
f^{\sigma}: A^{\ell} \rightarrow B,\left(x_{1}, \ldots, x_{\ell}\right) \mapsto f\left(x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right)
$$

is a minor of f.
Let A be a set and $\mathbf{B}=(B, \mathcal{F})$ an algebra. A subset C of $\bigcup_{n \in \mathbb{N}} B^{A^{n}}$ is a clonoid with source set A and target algebra \mathbf{B} if
(1) C is closed under taking minors, and
(2) for all $k \in \mathbb{N}$, the k-ary functions of C form a subalgebra of $\mathbf{B}^{A^{k}}$.

The set of all clonoids with source A and target algebra \mathbf{B} is denoted $\mathcal{C}_{A, \mathbf{B}}$.

Post's Classification of Boolean Clones

Lattice of all clones on a two-element set $\{0,1\}$, ordered by inclusion.

Post's Classification of Boolean Clones

Lattice of all clones on a two-element set $\{0,1\}$, ordered by inclusion.

Question:

How many clonoids are there with a finite source A and a Boolean target algebra B?

Number of Boolean Clonoids

Theorem (A.S., submitted 2018)
Let $\mathcal{C}_{A, B}$ denote the set of all clonoids with finite source $A(|A|>1)$ and target algebra \mathbf{B} of size 2. Then
(1) $\mathcal{C}_{A, B}$ is finite iff \mathbf{B} has an near-unanimity (NU) term;
(2) $\mathcal{C}_{A, B}$ is countably infinite iff B has a cube term but no NU-term;
(3) $\mathcal{C}_{A, B}$ has size continuum iff B has no cube term.

Definition

A k-cube term of \mathbf{B} is a $\left(2^{k}-1\right)$-ary term c in the operations of \mathbf{B} such that

Definition

A k-cube term of \mathbf{B} is a $\left(2^{k}-1\right)$-ary term c in the operations of \mathbf{B} such that

An NU-term of \mathbf{B} is an k-ary $(k \geq 3)$ term f in the operations of \mathbf{B} which satisfies

$$
f(y, x, x, \ldots, x, x)=f(x, y, x, \ldots, x, x)=\cdots=f(x, x, x, \ldots, x, y)=x
$$

for all $x, y \in B$.

Case 1: B has a NU-term

Proof Idea:

- Let $C \in \mathcal{C}_{A, \mathbf{B}}$ where \mathbf{B} has a n-ary NU-term.

Case 1: B has a NU-term

Proof Idea:

- Let $C \in \mathcal{C}_{A, \mathbf{B}}$ where \mathbf{B} has a n-ary NU-term.
- By the Baker-Pixley Theorem $C_{k} \leq \mathbf{B}^{A^{k}}$ is uniquely determined by its projections on the subsets of A^{k} of size $<n$.

Case 1: B has a NU-term

Proof Idea:

- Let $C \in \mathcal{C}_{A, \mathbf{B}}$ where \mathbf{B} has a n-ary NU-term.
- By the Baker-Pixley Theorem $C_{k} \leq \mathbf{B}^{A^{k}}$ is uniquely determined by its projections on the subsets of A^{k} of size $<n$.
- C is uniquely determined by its
$|A|^{n-1}$ elements, $C_{|A|^{n-1}}$.

Case 1: B has a NU-term

Proof Idea:

- Let $C \in \mathcal{C}_{A, \mathbf{B}}$ where \mathbf{B} has a n-ary NU-term.
- By the Baker-Pixley Theorem $C_{k} \leq \mathbf{B}^{A^{k}}$ is uniquely determined by its projections on the subsets of A^{k} of size $<n$.
- C is uniquely determined by its
$|A|^{n-1}$ elements, $C_{|A|^{n-1}}$.
- $\mathcal{C}_{A, B}$ is finite.

Case 2: B has a cube term but no NU-term

Note: If $\operatorname{Clo}(\mathbf{B}) \subseteq \operatorname{Clo}\left(\mathbf{B}^{\prime}\right)$, then

$$
\mathcal{C}_{A, \mathbf{B}^{\prime}} \subseteq \mathcal{C}_{A, \mathbf{B}}
$$

Case 2: B has a cube term but no NU-term

Note: If $\mathrm{Clo}(\mathbf{B}) \subseteq \operatorname{Clo}\left(\mathbf{B}^{\prime}\right)$, then

$$
\mathcal{C}_{A, \mathbf{B}^{\prime}} \subseteq \mathcal{C}_{A, \mathbf{B}}
$$

Enough to show
(1) $\left|\mathcal{C}_{A, \mathbf{B}}\right| \leq \aleph_{0}$ when \mathbf{B} has a cube term, and
(2) $\left|\mathcal{C}_{A, B}\right|=\aleph_{0}$ when $\mathrm{Clo}(\mathbf{B})=\langle+, \mathbf{0}, \mathbf{1}\rangle$.

Claim 1: $\left|\mathcal{C}_{A, \mathbf{B}}\right| \leq \aleph_{0}$ when \mathbf{B} has a cube term.
Proof Idea (Aichinger, Mayr, 2016):
Show each $C \in \mathcal{C}_{A, B}$ is finitely related, i.e. there exists a pair of relations (P, Q) such that C is the set of all functions that preserves (P, Q).

Claim 1: $\left|\mathcal{C}_{A, \mathbf{B}}\right| \leq \aleph_{0}$ when \mathbf{B} has a cube term.
Proof Idea (Aichinger, Mayr, 2016):
Show each $C \in \mathcal{C}_{A, B}$ is finitely related, i.e. there exists a pair of relations (P, Q) such that C is the set of all functions that preserves (P, Q).

Claim 2: $\left|\mathcal{C}_{A, \mathbf{B}}\right|=\aleph_{0}$ when $\operatorname{Clo}(\mathbf{B})=\langle+, \mathbf{0}, \mathbf{1}\rangle$.
Proof Idea:
Construct an infinite family of clonoids with target algebra B.
Let $0,1 \in A$ and for $k \in \mathbb{N}$ define

$$
e_{k}: A^{k} \rightarrow\{0,1\}, x \mapsto \begin{cases}1 & \text { if } x=(1, \ldots, 1) \\ 0 & \text { else }\end{cases}
$$

Show $\left\langle e_{1}\right\rangle \subsetneq\left\langle e_{2}\right\rangle \subsetneq \ldots$

Case 3: B does not have a cube term

Case 3: B does not have a cube term

Enough to show

$$
\left|\mathcal{C}_{A, \mathbf{B}}\right|=2^{\aleph_{0}}
$$

when $\operatorname{Clo}(\mathbf{B})$ is one of the following:

- $\langle\wedge, \mathbf{0}, \mathbf{1}\rangle$
- $\langle\vee, \mathbf{0}, \mathbf{1}\rangle$
- $\langle\rightarrow\rangle$
- $\langle\nrightarrow\rangle$
- $\langle\neg, \mathbf{0}\rangle$

Case 3: B does not have a cube term

Enough to show

$$
\left|\mathcal{C}_{A, \mathbf{B}}\right|=2^{\aleph_{0}}
$$

when $\operatorname{Clo}(\mathbf{B})$ is one of the following:

- $\langle\wedge, \mathbf{0}, \mathbf{1}\rangle$
- $\langle\vee, 0,1\rangle$
- $\langle\rightarrow\rangle$
- $\langle\nrightarrow\rangle$
- $\langle\neg, \mathbf{0}\rangle$

$\mathcal{C}_{A, \mathbf{B}}$ when $\mathbf{B}=(\{0,1\}, \wedge, \mathbf{0}, \mathbf{1})$

- $\operatorname{Clo}(\mathbf{B})=\operatorname{Clo}\left(\mathbf{B}^{\prime}\right) \cup\{\mathbf{0}, \mathbf{1}\}$ where $\mathbf{B}^{\prime}=(\{0,1\}, \wedge)$
- Goal: Show there are continuum many clonoids with target algebra \mathbf{B}^{\prime}.

$\mathcal{C}_{A, \mathbf{B}}$ when $\mathbf{B}=(\{0,1\}, \wedge, \mathbf{0}, \mathbf{1})$

- $\operatorname{Clo}(\mathbf{B})=\operatorname{Clo}\left(\mathbf{B}^{\prime}\right) \cup\{\mathbf{0}, \mathbf{1}\}$ where $\mathbf{B}^{\prime}=(\{0,1\}, \wedge)$
- Goal: Show there are continuum many clonoids with target algebra \mathbf{B}^{\prime}.

Theorem (A.S., submitted 2018)
Let A be a finite set and \mathbf{B} a finite idempotent algebra with $|A|,|B|>1$. Then $\mathcal{C}_{A, \mathbf{B}}$ has size continuum iff \mathbf{B} has no cube term.

Note
We have already discussed the forward direction.

B finite idempotent with no cube term

- Take a set A and finite idempotent algebra \mathbf{B} without a cube term with $|A|,|B|>1$.

B finite idempotent with no cube term

- Take a set A and finite idempotent algebra \mathbf{B} without a cube term with $|A|,|B|>1$.
- B must have cube term blocker (Kearnes, Szendrei, 2016), i.e. there exists a nonempty proper subset V of B such that

$$
T_{n}:=B^{n} \backslash(B \backslash V)^{n}
$$

is a subuniverse of \mathbf{B} for all n.

B finite idempotent with no cube term

- Take a set A and finite idempotent algebra \mathbf{B} without a cube term with $|A|,|B|>1$.
- B must have cube term blocker (Kearnes, Szendrei, 2016), i.e. there exists a nonempty proper subset V of B such that

$$
T_{n}:=B^{n} \backslash(B \backslash V)^{n}
$$

is a subuniverse of \mathbf{B} for all n.

- WLOG assume $0 \in V$ and $1 \in B \backslash V$. Thus

$$
\{0,1\}^{n} \backslash\{(1, \ldots, 1)\} \subseteq T_{n} \leq \mathbf{B}
$$

Construction (cf. Yanov, Muchnik, 1959)

$$
\text { Let } P_{n}:=\{(1,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)\} \subseteq A^{n} \text {. }
$$

Construction (cf. Yanov, Muchnik, 1959)

Let $P_{n}:=\{(1,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)\} \subseteq A^{n}$. Define

$$
\begin{aligned}
f_{k}: A^{k} & \rightarrow\{0,1\} \\
x & \mapsto \begin{cases}1 & \text { if } x \in P_{k}, \\
0 & \text { else }\end{cases}
\end{aligned}
$$

Construction (cf. Yanov, Muchnik, 1959)

Let $P_{n}:=\{(1,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)\} \subseteq A^{n}$. Define

$$
\begin{aligned}
f_{k}: A^{k} & \rightarrow\{0,1\} \\
x & \mapsto \begin{cases}1 & \text { if } x \in P_{k} \\
0 & \text { else }\end{cases}
\end{aligned}
$$

For $U \subseteq \mathbb{N}, F_{U}:=\left\{f_{k}: k \in U\right\}$.
Let $\left\langle F_{U}\right\rangle_{\mathbf{B}}$ denote the clonoid generated by F_{U}.

Construction (cf. Yanov, Muchnik, 1959)

Let $P_{n}:=\{(1,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)\} \subseteq A^{n}$. Define

$$
\begin{aligned}
f_{k}: A^{k} & \rightarrow\{0,1\} \\
x & \mapsto \begin{cases}1 & \text { if } x \in P_{k} \\
0 & \text { else }\end{cases}
\end{aligned}
$$

For $U \subseteq \mathbb{N}, F_{U}:=\left\{f_{k}: k \in U\right\}$.
Let $\left\langle F_{U}\right\rangle_{\mathbf{B}}$ denote the clonoid generated by F_{U}.
Claim: $\left\langle F_{U}\right\rangle_{\mathbf{B}} \cap F_{\mathbb{N}}=F_{U}$ for each $U \subseteq \mathbb{N}$.

$$
\begin{array}{rlrl}
P_{n}=\{(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)\} \subseteq A^{n} & f_{k}: A^{k} & \rightarrow\{0,1\} \\
\{0,1\}^{n} \backslash\{(1, \ldots, 1)\} \subseteq T_{n} \leq \mathbf{B} & x & \mapsto \begin{cases}1 & \text { if } x \in P_{k}, \\
0 & \text { else }\end{cases}
\end{array}
$$

$$
\begin{array}{rlrl}
P_{n}=\{(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)\} \subseteq A^{n} & f_{k}: A^{k} & \rightarrow\{0,1\} \\
\{0,1\}^{n} \backslash\{(1, \ldots, 1)\} \subseteq T_{n} \leq \mathbf{B} & x & \mapsto \begin{cases}1 & \text { if } x \in P_{k}, \\
0 & \text { else }\end{cases}
\end{array}
$$

Lemma
f_{k} preserves $\left(P_{n}, T_{n}\right)$ iff $k \neq n$.

$$
\left.\begin{array}{rl}
P_{n}=\{(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)\} \subseteq A^{n} & f_{k}: A^{k} \\
\{0,1\}^{n} \backslash\{(1, \ldots, 1)\} \subseteq T_{n} \leq \mathbf{B} & x
\end{array}\right)\left\{\begin{array}{ll}
1 & \text { if } x \in P_{k}, \\
0 & \text { else }
\end{array},\right.
$$

Lemma
f_{k} preserves $\left(P_{n}, T_{n}\right)$ iff $k \neq n$.
Proof.
If $k=n$:

1	0	\cdots	0	$\xrightarrow{f_{k}}$	1
0	1	\cdots	0	$\xrightarrow{f_{k}}$	1
\vdots	\vdots		\vdots	\vdots	\vdots
0	0	\cdots	1	$\xrightarrow{f_{k}}$	1
\oplus	\oplus	\cdots	\oplus		\mathbb{R}
P_{k}	P_{k}	\cdots	P_{k}		T_{k}.

$$
\begin{array}{lrl}
P_{n}=\{(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)\} \subseteq A^{n} & f_{k}: A^{k} & \rightarrow\{0,1\} \\
\{0,1\}^{n} \backslash\{(1, \ldots, 1)\} \subseteq T_{n} \leq \mathbf{B} & x & \mapsto \begin{cases}1 & \text { if } x \in P_{k} \\
0 & \text { else }\end{cases}
\end{array}
$$

Lemma
f_{k} preserves $\left(P_{n}, T_{n}\right)$ iff $k \neq n$.
Proof.

If $k=n$:

1	0	\cdots	0	$\xrightarrow{f_{k}}$	1
0	1	\cdots	0	$\xrightarrow{f_{k}}$	1
\vdots	\vdots		\vdots	\vdots	\vdots
0	0	\cdots	1	$\xrightarrow{f_{k}}$	1
π	∞	\cdots	π		$\times \mathbb{Q}$
P_{k}	P_{k}	\cdots	P_{k}		T_{k}.

T_{k}.

If $k \neq n$:
For any $a_{1}, \ldots a_{n} \in P_{n}$,

$$
f_{k}\left(a_{1}, \ldots, a_{n}\right)
$$

has at least one zero entry.

$$
\begin{array}{rlrl}
P_{n}=\{(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)\} \subseteq A^{n} & f_{k}: A^{k} & \rightarrow\{0,1\} \\
\{0,1\}^{n} \backslash\{(1, \ldots, 1)\} \subseteq T_{n} \leq \mathbf{B} & x & \mapsto \begin{cases}1 & \text { if } x \in P_{k}, \\
0 & \text { else }\end{cases}
\end{array}
$$

f_{k} preserves $\left(P_{n}, T_{n}\right) \Leftrightarrow k \neq n$

$$
\begin{array}{lrl}
P_{n}=\{(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)\} \subseteq A^{n} & f_{k}: A^{k} & \rightarrow\{0,1\} \\
\{0,1\}^{n} \backslash\{(1, \ldots, 1)\} \subseteq T_{n} \leq \mathbf{B} & x & \mapsto \begin{cases}1 & \text { if } x \in P_{k}, \\
0 & \text { else }\end{cases} \\
f_{k} \text { preserves }\left(P_{n}, T_{n}\right) \Leftrightarrow k \neq n &
\end{array}
$$

Claim: $\left\langle F_{U}\right\rangle_{\mathbf{B}} \cap F_{\mathbb{N}}=F_{U}$ for each $U \subseteq \mathbb{N}$.

$$
\begin{array}{lrl}
P_{n}=\{(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)\} \subseteq A^{n} & f_{k}: A^{k} & \rightarrow\{0,1\} \\
\{0,1\}^{n} \backslash\{(1, \ldots, 1)\} \subseteq T_{n} \leq \mathbf{B} & x & \mapsto \begin{cases}1 & \text { if } x \in P_{k}, \\
0 & \text { else }\end{cases} \\
f_{k} \text { preserves }\left(P_{n}, T_{n}\right) \Leftrightarrow k \neq n &
\end{array}
$$

Claim: $\left\langle F_{U}\right\rangle_{\mathbf{B}} \cap F_{\mathbb{N}}=F_{U}$ for each $U \subseteq \mathbb{N}$.
Suppose

$$
f_{n}=\varphi\left(f_{k_{1}}^{\sigma_{1}}, \ldots, f_{k_{m}}^{\sigma_{m}}\right)
$$

for $k_{1}, \ldots, k_{m} \in U, n \in \mathbb{N} \backslash\left\{k_{1}, \ldots, k_{m}\right\}$ and $\varphi \in \operatorname{Clo}(\mathbf{B})$.

$$
\begin{array}{rlrl}
P_{n}=\{(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)\} \subseteq A^{n} & f_{k}: A^{k} & \rightarrow\{0,1\} \\
\{0,1\}^{n} \backslash\{(1, \ldots, 1)\} \subseteq T_{n} \leq \mathbf{B} & x & \mapsto \begin{cases}1 & \text { if } x \in P_{k}, \\
0 & \text { else }\end{cases}
\end{array}
$$

f_{k} preserves $\left(P_{n}, T_{n}\right) \Leftrightarrow k \neq n$

Claim: $\left\langle F_{U}\right\rangle_{\mathbf{B}} \cap F_{\mathbb{N}}=F_{U}$ for each $U \subseteq \mathbb{N}$.
Suppose

$$
f_{n}=\varphi\left(f_{k_{1}}^{\sigma_{1}}, \ldots, f_{k_{m}}^{\sigma_{m}}\right)
$$

for $k_{1}, \ldots, k_{m} \in U, n \in \mathbb{N} \backslash\left\{k_{1}, \ldots, k_{m}\right\}$ and $\varphi \in \operatorname{Clo}(\mathbf{B})$.
Since all $f_{k_{i}}$ preserve (P_{n}, T_{n}) and T_{n} is closed under φ, also

$$
\varphi\left(f_{k_{1}}^{\sigma_{1}}, \ldots, f_{k_{m}}^{\sigma_{m}}\right) \text { preserves }\left(P_{n}, T_{n}\right) .
$$

However f_{n} does not preserves $\left(P_{n}, T_{n}\right)$.

Case 3: B (Boolean) does not have a cube term

Case 3: B (Boolean) does not have a cube term

- We proved $\left|\mathcal{C}_{A, \mathbf{B}}\right|$ is continuum for any finite idempotent \mathbf{B} without a cube term, in particular, for $\mathbf{B}=(\{0,1\}, \wedge)$.

Case 3: B (Boolean) does not have a cube term

- We proved $\left|\mathcal{C}_{A, \mathbf{B}}\right|$ is continuum for any finite idempotent \mathbf{B} without a cube term, in particular, for $\mathbf{B}=(\{0,1\}, \wedge)$.
- The same construction works to show $\left|\mathcal{C}_{A, \mathbf{B}}\right|$ is continuum when $\mathrm{Clo}(\mathbf{B})$ is $\langle\neg, \mathbf{0}\rangle$ or $\langle\nrightarrow\rangle$.

Case 3: B (Boolean) does not have a cube term

- We proved $\left|\mathcal{C}_{A, \mathbf{B}}\right|$ is continuum for any finite idempotent \mathbf{B} without a cube term, in particular, for

$$
\mathbf{B}=(\{0,1\}, \wedge) .
$$

- The same construction works to show $\left|\mathcal{C}_{A, \mathbf{B}}\right|$ is continuum when $\mathrm{Clo}(\mathbf{B})$ is $\langle\neg, \mathbf{0}\rangle$ or $\langle\nrightarrow\rangle\rangle$.

Corollary (A.S., submitted 2018)
For $m, n \geq 1$, there are continuum many clonoids from source $\{0,1, \ldots, m\}$ into
 the target set $\{0,1, \ldots, n\}$.

For \mathbf{B} Boolean or idempotent $\mathcal{C}_{A, \mathbf{B}}$ is countable if \mathbf{B} has a cube term; continuum otherwise.

Question: Does this generalize to clonoids with an arbitrary finite target algebra?

