On the Number of Clonoids

Athena Sparks

CU Boulder

BLAST 2019

A B F A B F

Introduction

• Clonoids are a generalization of clones that have connections to the complexity of Promise Constraint Satisfaction Problems.

프 문 문 프 문

Introduction

- Clonoids are a generalization of clones that have connections to the complexity of Promise Constraint Satisfaction Problems.
- Post showed there are only countably many clones on a 2-element set. In contrast, there are continuum many such clonoids.

Minors and Clonoids

Let $[k] := \{1, \dots, k\}.$

Definition

Let A, B be sets, $k \in \mathbb{N}$, and $f : A^k \to B$. For $\ell \in \mathbb{N}$ and $\sigma : [k] \to [\ell]$, the function

$$f^{\sigma}: A^{\ell} \rightarrow B, (x_1, \ldots, x_{\ell}) \mapsto f(x_{\sigma(1)}, \ldots, x_{\sigma(k)})$$

is a *minor* of f.

イロト イポト イヨト イヨト

Minors and Clonoids

Let $[k] := \{1, ..., k\}.$

Definition

Let A, B be sets, $k \in \mathbb{N}$, and $f : A^k \to B$. For $\ell \in \mathbb{N}$ and $\sigma : [k] \to [\ell]$, the function

$$f^{\sigma}: A^{\ell} o B, (x_1, \dots, x_{\ell}) \mapsto f(x_{\sigma(1)}, \dots, x_{\sigma(k)})$$

is a *minor* of f.

Let A be a set and $\mathbf{B} = (B, \mathcal{F})$ an algebra. A subset C of $\bigcup_{n \in \mathbb{N}} B^{A^n}$ is a *clonoid* with *source set* A and *target algebra* **B** if

C is closed under taking minors, and

@ for all $k \in \mathbb{N}$, the *k*-ary functions of *C* form a subalgebra of \mathbf{B}^{A^k} .

The set of all clonoids with source A and target algebra **B** is denoted $C_{A,B}$.

- 4 同 1 4 日 1 4 日 1

Post's Classification of Boolean Clones

Lattice of all clones on a two-element set $\{0,1\}$, ordered by inclusion.

A E > A E >

Post's Classification of Boolean Clones

Lattice of all clones on a two-element set $\{0,1\}$, ordered by inclusion.

Question:

How many clonoids are there with a finite source A and a Boolean target algebra **B**?

Number of Boolean Clonoids

Theorem (A.S., submitted 2018) Let C a denote the set of all close

Let $C_{A,\mathbf{B}}$ denote the set of all clonoids with finite source A (|A| > 1) and target algebra **B** of size 2. Then

- C_{A,B} is finite iff B has an near-unanimity (NU) term;
- C_{A,B} is countably infinite iff B has a cube term but no NU-term;
- C_{A,B} has size continuum iff B has no cube term.

• • = • • = •

Definition

A *k*-cube term of **B** is a $(2^k - 1)$ -ary term *c* in the operations of **B** such that

э

イロト イポト イヨト イヨト

Definition

A *k*-cube term of **B** is a $(2^k - 1)$ -ary term *c* in the operations of **B** such that

An *NU-term* of **B** is an *k*-ary ($k \ge 3$) term *f* in the operations of **B** which satisfies

$$f(y,x,x,\ldots,x,x) = f(x,y,x,\ldots,x,x) = \cdots = f(x,x,x,\ldots,x,y) = x$$

for all $x, y \in B$.

・ロン ・四と ・ヨン ・ヨン

B has a NU-term

Case 1: \mathbf{B} has a NU-term

Proof Idea:

 Let C ∈ C_{A,B} where B has a n-ary NU-term.

Image: A Image: A

Case 1: **B** has a NU-term

Proof Idea:

- Let $C \in C_{A,B}$ where **B** has a *n*-ary NU-term.
- By the Baker-Pixley Theorem
 C_k ≤ B^{A^k} is uniquely determined by its projections on the subsets of A^k of size < n.

< 3 > < 3 >

Case 1: \mathbf{B} has a NU-term

Proof Idea:

- Let $C \in C_{A,B}$ where **B** has a *n*-ary NU-term.
- By the Baker-Pixley Theorem
 C_k ≤ B^{A^k} is uniquely determined by its projections on the subsets of A^k of size < n.
- C is uniquely determined by its $|A|^{n-1}$ elements, $C_{|A|^{n-1}}$.

Case 1: \mathbf{B} has a NU-term

Proof Idea:

- Let $C \in C_{A,B}$ where **B** has a *n*-ary NU-term.
- By the Baker-Pixley Theorem
 C_k ≤ B^{A^k} is uniquely determined by its projections on the subsets of A^k of size < n.
- C is uniquely determined by its $|A|^{n-1}$ elements, $C_{|A|^{n-1}}$.
- $\mathcal{C}_{A,B}$ is finite.

< 3 > < 3 >

Case 2: **B** has a cube term but no NU-term

Note: If $Clo(\mathbf{B}) \subseteq Clo(\mathbf{B}')$, then

 $\mathcal{C}_{A,\mathbf{B}'} \subseteq \mathcal{C}_{A,\mathbf{B}}.$

A B < A B </p>

Case 2: B has a cube term but no NU-term

Note: If $\operatorname{Clo}(B) \subseteq \operatorname{Clo}(B')$, then

$$\mathcal{C}_{A,\mathbf{B}'} \subseteq \mathcal{C}_{A,\mathbf{B}}.$$

Enough to show

- $\textcircled{\ } |\mathcal{C}_{\mathcal{A},\mathbf{B}}|\leq\aleph_0 \text{ when } \mathbf{B} \text{ has a cube term, and }$
- $\begin{array}{ll} & |\mathcal{C}_{A,B}| = \aleph_0 \text{ when} \\ & \operatorname{Clo}(B) = \langle +, 0, 1 \rangle. \end{array}$

A B < A B </p>

Claim 1: $|C_{A,B}| \leq \aleph_0$ when **B** has a cube term.

Proof Idea (Aichinger, Mayr, 2016): Show each $C \in C_{A,B}$ is finitely related, i.e. there exists a pair of relations (P, Q) such that C is the set of all functions that preserves (P, Q).

Claim 1: $|\mathcal{C}_{A,\mathbf{B}}| \leq \aleph_0$ when **B** has a cube term.

Proof Idea (Aichinger, Mayr, 2016): Show each $C \in C_{A,\mathbf{B}}$ is finitely related, i.e. there exists a pair of relations (P, Q) such that C is the set of all functions that preserves (P, Q).

Claim 2:
$$|\mathcal{C}_{A,\mathbf{B}}| = \aleph_0$$
 when $\operatorname{Clo}(\mathbf{B}) = \langle +, \mathbf{0}, \mathbf{1} \rangle$.

Proof Idea:

Construct an infinite family of clonoids with target algebra **B**. Let $0, 1 \in A$ and for $k \in \mathbb{N}$ define

$$e_k \colon \mathcal{A}^k \to \{0,1\}, x \mapsto egin{cases} 1 & ext{if } x = (1,\ldots,1), \ 0 & ext{else.} \end{cases}$$

Show $\langle e_1 \rangle \subsetneq \langle e_2 \rangle \subsetneq \ldots$

Case 3: **B** does not have a cube term

イロト イポト イヨト イヨト

3

Case 3: **B** does not have a cube term

Enough to show

$$|\mathcal{C}_{A,\mathbf{B}}| = 2^{\aleph_0}$$

when Clo(B) is one of the following:

- $\langle \wedge, \mathbf{0}, \mathbf{1} \rangle$
- $\langle \lor, \mathbf{0}, \mathbf{1} \rangle$
- $\langle \rightarrow \rangle$
- $\langle \not\rightarrow \rangle$
- <¬,0>

4 ∃ > < ∃ >

Case 3: **B** does not have a cube term

Enough to show

$$|\mathcal{C}_{A,\mathbf{B}}| = 2^{\aleph_0}$$

when Clo(B) is one of the following:

- $\langle \wedge, \mathbf{0}, \mathbf{1} \rangle$
- $\langle \lor, 0, 1 \rangle$
- $\langle \rightarrow \rangle$
- $\langle \not\rightarrow \rangle$
- <¬,0>

A B > A B >

$\mathcal{C}_{A,\mathbf{B}}$ when $\mathbf{B}=(\{0,1\},\wedge,\mathbf{0},\mathbf{1})$

- $\operatorname{Clo}(\mathsf{B}) = \operatorname{Clo}(\mathsf{B}') \cup \{\mathbf{0},\mathbf{1}\}$ where $\mathsf{B}' = (\{0,1\},\wedge)$
- Goal: Show there are continuum many clonoids with target algebra **B**'.

伺下 くきト くきト

$\mathcal{C}_{A,\mathbf{B}}$ when $\mathbf{B} = (\{0,1\}, \wedge, \mathbf{0}, \mathbf{1})$

• $\operatorname{Clo}(\mathsf{B}) = \operatorname{Clo}(\mathsf{B}') \cup \{\mathbf{0},\mathbf{1}\}$ where $\mathsf{B}' = (\{0,1\},\wedge)$

• Goal: Show there are continuum many clonoids with target algebra **B**'.

Theorem (A.S., submitted 2018)

Let A be a finite set and **B** a finite idempotent algebra with |A|, |B| > 1. Then $C_{A,B}$ has size continuum iff **B** has no cube term.

Note

We have already discussed the forward direction.

B finite idempotent with no cube term

• Take a set A and finite idempotent algebra **B** without a cube term with |A|, |B| > 1.

イロト イポト イヨト イヨト

B finite idempotent with no cube term

- Take a set A and finite idempotent algebra B without a cube term with |A|, |B| > 1.
- **B** must have cube term blocker (Kearnes, Szendrei, 2016), i.e. there exists a nonempty proper subset V of B such that

$$T_n := B^n \setminus (B \setminus V)^n$$

is a subuniverse of **B** for all n.

B finite idempotent with no cube term

- Take a set A and finite idempotent algebra B without a cube term with |A|, |B| > 1.
- **B** must have cube term blocker (Kearnes, Szendrei, 2016), i.e. there exists a nonempty proper subset V of B such that

$$T_n := B^n \setminus (B \setminus V)^n$$

is a subuniverse of \mathbf{B} for all n.

• WLOG assume $0 \in V$ and $1 \in B \setminus V$. Thus

$$\{0,1\}^n \setminus \{(1,\ldots,1)\} \subseteq T_n \leq \mathbf{B}$$

Let $P_n := \{(1, 0, \dots, 0), (0, 1, 0, \dots, 0), \dots, (0, \dots, 0, 1)\} \subseteq A^n$.

3

イロン イロン イヨン イヨン

Let
$$P_n := \{(1, 0, \dots, 0), (0, 1, 0, \dots, 0), \dots, (0, \dots, 0, 1)\} \subseteq A^n$$
.
Define

$$egin{aligned} &f_k\colon A^k o \{0,1\}\ &x\mapsto egin{cases} 1 & ext{if } x\in P_k,\ 0 & ext{else} \end{aligned}$$

3

・ロト ・聞 ト ・ヨト ・ヨト

Let
$$P_n := \{(1, 0, \dots, 0), (0, 1, 0, \dots, 0), \dots, (0, \dots, 0, 1)\} \subseteq A^n$$
.
Define

$$egin{aligned} &f_k\colon A^k o \{0,1\}\ &x\mapsto egin{cases} 1 & ext{if } x\in P_k,\ 0 & ext{else} \end{aligned}$$

For $U \subseteq \mathbb{N}$, $F_U := \{f_k : k \in U\}$. Let $\langle F_U \rangle_{\mathbf{B}}$ denote the clonoid generated by F_U .

イロト イヨト イヨト イヨト

Let
$$P_n := \{(1, 0, \dots, 0), (0, 1, 0, \dots, 0), \dots, (0, \dots, 0, 1)\} \subseteq A^n$$
.
Define

$$egin{aligned} &f_k\colon A^k o \{0,1\}\ &x\mapsto egin{cases} 1 & ext{if } x\in P_k,\ 0 & ext{else} \end{aligned}$$

For $U \subseteq \mathbb{N}$, $F_U := \{f_k : k \in U\}$. Let $\langle F_U \rangle_{\mathbf{B}}$ denote the clonoid generated by F_U .

Claim: $\langle F_U \rangle_{\mathbf{B}} \cap F_{\mathbb{N}} = F_U$ for each $U \subseteq \mathbb{N}$.

イロト イ団ト イヨト -

$$P_n = \{(1,0,\ldots,0),\ldots,(0,\ldots,0,1)\} \subseteq A^n \quad f_k \colon A^k \to \{0,1\}$$
$$\{0,1\}^n \setminus \{(1,\ldots,1)\} \subseteq T_n \leq \mathbf{B} \qquad \qquad x \mapsto \begin{cases} 1 & \text{if } x \in P_k, \\ 0 & \text{else} \end{cases}$$

E

・ロト ・四ト ・ヨト ・ヨト

$$P_n = \{(1, 0, \dots, 0), \dots, (0, \dots, 0, 1)\} \subseteq A^n \qquad f_k \colon A^k \to \{0, 1\}$$
$$\{0, 1\}^n \setminus \{(1, \dots, 1)\} \subseteq T_n \leq \mathbf{B} \qquad \qquad x \mapsto \begin{cases} 1 & \text{if } x \in P_k, \\ 0 & \text{else} \end{cases}$$

Lemma

 f_k preserves (P_n, T_n) iff $k \neq n$.

イロト イポト イヨト イヨト

$$P_n = \{(1, 0, \dots, 0), \dots, (0, \dots, 0, 1)\} \subseteq A^n \qquad f_k \colon A^k \to \{0, 1\}$$
$$\{0, 1\}^n \setminus \{(1, \dots, 1)\} \subseteq T_n \leq \mathbf{B} \qquad \qquad x \mapsto \begin{cases} 1 & \text{if } x \in P_k, \\ 0 & \text{else} \end{cases}$$

Lemma

$$f_k$$
 preserves (P_n, T_n) iff $k \neq n$.

Proof.

If k = n:

1	0	 0	$\xrightarrow{t_k}$	1
0	1	 0	$\xrightarrow{f_k}$	1
÷	÷	÷	÷	÷
0	0	 1	$\xrightarrow{f_k}$	1
Μ	Μ	 Μ		R
P_k	P_k	 P_k		T_k .

$$P_n = \{(1,0,\ldots,0),\ldots,(0,\ldots,0,1)\} \subseteq A^n \quad f_k \colon A^k \to \{0,1\}$$
$$\{0,1\}^n \setminus \{(1,\ldots,1)\} \subseteq T_n \leq \mathbf{B} \qquad \qquad x \mapsto \begin{cases} 1 & \text{if } x \in P_k, \\ 0 & \text{else} \end{cases}$$

Lemma

$$f_k$$
 preserves (P_n, T_n) iff $k \neq n$.

Proof.

If k = n: $\xrightarrow{t_k}$ 1 0 0 1 . . . f_k 0 1 0 1 ÷ ÷ ÷ $\xrightarrow{f_k}$ 0 0 1 1 . . . A Μ T_k . $P_k \quad P_k \quad \cdots \quad P_k$

If
$$k \neq n$$
:
For any $a_1, \ldots a_n \in P_n$,

$$f_k(a_1,\ldots,a_n)$$

has at least one zero entry.

 $P_n = \{(1, 0, \dots, 0), \dots, (0, \dots, 0, 1)\} \subseteq A^n \qquad f_k \colon A^k \to \{0, 1\}$ $\{0, 1\}^n \setminus \{(1, \dots, 1)\} \subseteq T_n \leq \mathbf{B} \qquad \qquad x \mapsto \begin{cases} 1 & \text{if } x \in P_k, \\ 0 & \text{else} \end{cases}$ $f_k \text{ preserves } (P_n, T_n) \Leftrightarrow k \neq n \end{cases}$

3

イロト 不得下 イヨト イヨト

$$P_n = \{(1, 0, \dots, 0), \dots, (0, \dots, 0, 1)\} \subseteq A^n \qquad f_k \colon A^k \to \{0, 1\}$$
$$\{0, 1\}^n \setminus \{(1, \dots, 1)\} \subseteq T_n \leq \mathbf{B} \qquad \qquad x \mapsto \begin{cases} 1 & \text{if } x \in P_k, \\ 0 & \text{else} \end{cases}$$
$$f_k \text{ preserves } (P_n, T_n) \Leftrightarrow k \neq n \end{cases}$$

Claim: $\langle F_U \rangle_{\mathbf{B}} \cap F_{\mathbb{N}} = F_U$ for each $U \subseteq \mathbb{N}$.

3

イロト イポト イヨト イヨト

$$P_n = \{(1, 0, \dots, 0), \dots, (0, \dots, 0, 1)\} \subseteq A^n \qquad f_k \colon A^k \to \{0, 1\}$$
$$\{0, 1\}^n \setminus \{(1, \dots, 1)\} \subseteq T_n \leq \mathbf{B} \qquad \qquad x \mapsto \begin{cases} 1 & \text{if } x \in P_k, \\ 0 & \text{else} \end{cases}$$
$$f_k \text{ preserves } (P_n, T_n) \Leftrightarrow k \neq n \end{cases}$$

Claim:
$$\langle F_U \rangle_{\mathbf{B}} \cap F_{\mathbb{N}} = F_U$$
 for each $U \subseteq \mathbb{N}$.
Suppose
 $f_n = \varphi(f_{k_1}^{\sigma_1}, \dots, f_{k_m}^{\sigma_m})$

for $k_1, \ldots, k_m \in U$, $n \in \mathbb{N} \setminus \{k_1, \ldots, k_m\}$ and $\varphi \in \operatorname{Clo}(\mathbf{B})$.

3

イロト イポト イヨト イヨト

$$P_n = \{(1, 0, \dots, 0), \dots, (0, \dots, 0, 1)\} \subseteq A^n \qquad f_k \colon A^k \to \{0, 1\}$$
$$\{0, 1\}^n \setminus \{(1, \dots, 1)\} \subseteq T_n \leq \mathbf{B} \qquad \qquad x \mapsto \begin{cases} 1 & \text{if } x \in P_k, \\ 0 & \text{else} \end{cases}$$
$$f_k \text{ preserves } (P_n, T_n) \Leftrightarrow k \neq n \end{cases}$$

Claim:
$$\langle F_U \rangle_{\mathbf{B}} \cap F_{\mathbb{N}} = F_U$$
 for each $U \subseteq \mathbb{N}$.
Suppose

$$f_n = \varphi(f_{k_1}^{\sigma_1}, \ldots, f_{k_m}^{\sigma_m})$$

for $k_1, \ldots, k_m \in U$, $n \in \mathbb{N} \setminus \{k_1, \ldots, k_m\}$ and $\varphi \in \operatorname{Clo}(\mathbf{B})$. Since all f_{k_i} preserve (P_n, T_n) and T_n is closed under φ , also

$$\varphi(f_{k_1}^{\sigma_1},\ldots,f_{k_m}^{\sigma_m})$$
 preserves (P_n,T_n) .

However f_n does not preserves (P_n, T_n) .

A B F A B F

• We proved $|C_{A,B}|$ is continuum for any finite idempotent **B** without a cube term, in particular, for $\mathbf{B} = (\{0, 1\}, \wedge).$

- We proved $|C_{A,B}|$ is continuum for any finite idempotent **B** without a cube term, in particular, for $\mathbf{B} = (\{0, 1\}, \wedge).$
- The same construction works to show $|C_{A,B}|$ is continuum when Clo(B) is $\langle \neg, 0 \rangle$ or $\langle \not\rightarrow \rangle$.

- We proved $|C_{A,B}|$ is continuum for any finite idempotent **B** without a cube term, in particular, for $\mathbf{B} = (\{0, 1\}, \wedge).$
- The same construction works to show |C_{A,B}| is continuum when Clo(B) is ⟨¬, 0⟩ or ⟨→⟩.

Corollary (A.S., submitted 2018)

For $m, n \ge 1$, there are continuum many clonoids from source $\{0, 1, \ldots, m\}$ into the target set $\{0, 1, \ldots, n\}$.

• • = • • = •

For **B** Boolean or idempotent $C_{A,B}$ is countable if **B** has a cube term; continuum otherwise.

Question: Does this generalize to clonoids with an arbitrary finite target algebra?

• • = • • = •