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Definition of an MV-algebra

An MV-algebra can be defined as an algebra (A, @, —,0) of type
(2,1,0) satisfying:

MV-1: (A, ®,0) is an Abelian monoid;

MV-2: = : A— Ais an involution;

MV-3: 1 := =0 is absorbant;

MV-4: =(=x @ y)dy = -(-y & x) D x.

Note: The rule x <y iff ~x @ y = 1, defines a bounded distributive
lattice order on A.
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1. Boolean algebras. If (B,V,A,”,0,1) is a Boolean algebra,
then B is an MV-algebra with the following operations.
x=Xand x®y=xVy.

2. The standard MV-algebra defined on the unit interval [0, 1] by
x®y=Min(l,x+y)and ~x=1—x.
3. The following subalgebras of [0,1]. For every n > 2,

1 k
= _— = 0< k<n-— .
ty=[0,1N2— {n_l 0< k<n 1}

4. Let X be any topological space and A :=C(X, [0, 1]) be the
set of continuous functions from X — [0, 1].
Given f,g € Aand x € X,

> (-F)(x) =1-f(x)
> (f @ g)(x) = Min(1, f(x) + g(x))
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1.

MV-algebras homomorphisms are maps that preserve the
MV-algebras operations.

Ideals of MV-algebras are kernels of homomorphisms.
Equivalently, they are lattice ideals that are closed under &.

Each ideal / of an MV-algebra A correspond to a unique
congruence 0, (and conversely) and the quotient MV-algebra
formed is denoted by A/.

Ex. Let X be any topological space and A :=C(X,[0,1]) be
the MV-algebra above. For every p € X, let

Op :={f € A: f vanishes on some neighborhood U of p}

Then O, is an ideal of A.
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1. Given an MV-algebra A, ids(A) be the set of all ideals / of A
such that A// is finite.

2. Forevery I, J € idf(A) such that | C J, let ¢y : A/l — A/J
be the natural homomorphism, i.e., ¢ ([a];) = [a]y for all
acA

3. (idf(A), D) is a directed set, and {(idf(A), 2),{A/I},{du}}
is an inverse system of MV-algebras.

4. The inverse limit of this inverse system is called the profinite
completion of the MV-algebra A, and is commonly denoted by
A.

5. As in most varieties of algebras, the is a natural isomorphism
A {a € Iycia, o A/1: da(all)) = a(J) whenever | C J}
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» Equally known that the profinite completion of a Heyting
algebra with Esakia space X is isomorphic to the Heyting
algebra Up(Xsy,) of the upsets of Xg,.

> Also known hat the profinite completion of a bounded
distributive lattice with Priestley space X is isomorphic to the
lattice Up(X) of upsets of X.

» We add to this literature the profinite completion of
MV-algebras



Main Theorem

For every MV-algebra A, its profinite completion is algebraically
and topologically isomorphic to

I A/m

MeMax¢(A)

Where Max¢(A) denotes the set of maximal ideals of A with finite
rank, i .e., A/M =t for some integer n > 2.
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Sketch of the proof-1

The proof will use the following important lemmas.

» Lemma 1: If / € idf(A), then there exist
My, My, ..., M, € Max¢(A) such that | = MinM,N...N M,
and A/ = T]i_{ A/M;.

» Lemma 2: The ideal / is uniquely determined by the set
S(I) = {Ml7 M27 R Mr} - MaXf(A)-

» Lemma 3: For every I, J € id¢(A), if | C J, then
S(J) € S(().
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» Consider the embedding

LA H A/l

Icids(A)

> followed by the natural projection

= [[ A— [ AM

I€id(A) MeMax(A)

» Using the lemma and other tools, one proves that the
homomorphism thus obtained is a a topological and algebraic
isomorphism.
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Some consequences

We easily deduce the following previously obtained results.

» The profinite completion of any Boolean algebra B with Stone
space X is given by

» An MV-algebra A is isomorphic to its profinite completion if
and only if A is profinite and every maximal ideal of A of finite
rank is principal.

> Let A be a regular MV-algebra in which every maximal ideal
has finite rank. Then,
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The profinite completion functor for MV-algebras

» Another consequence of the main result is a concrete
description of the profinite completion as a functor.

» Proposition: The profinite completion is a functor from the
category MV of MV-algebras and their homomorphisms to
the category StoneMV of Stone MV-algebras and continuous
homomorphisms.

> Sketch of proof: Given an MV-algebras homomorphism
©:A— B, define p: A— B by 3(a)(N) := a(e~(N)) for
@ € [Tmemaxs(a) A/M and N € Max¢(B)

» Remark: The profinite completion is a functor when
considered over any variety of algebras and the corresponding
Stone algebras. In our case, we simply get a more concrete
description.



An Example

> Let B={f € [[2,tns1:fis convergent},



An Example

> Let B={f € [[2,tns1:fis convergent},

> B is a sub-MV-algebra of Hiozl t 11, and is therefore an
MV-algebra on its own.



An Example

> Let B={f € [[2,tns1:fis convergent},

> B is a sub-MV-algebra of Hf’:l t 11, and is therefore an
MV-algebra on its own.

» On represents B as a separating subalgebra of the MV-algebra
of continuous functions on the one-point compactification of
the discrete space N. The computation of maximal ideals of
finite ranks becomes simpler.



An Example

> Let B={f € [[2,tns1:fis convergent},

> B is a sub-MV-algebra of Hf’:l t 11, and is therefore an
MV-algebra on its own.

» On represents B as a separating subalgebra of the MV-algebra
of continuous functions on the one-point compactification of
the discrete space N. The computation of maximal ideals of
finite ranks becomes simpler.

» In particular, the only one with infinite rank comes from the
point at infinity, while the other maximal ideals have the
t,y1's for quotients.



An Example

> Let B={f € [[2,tns1:fis convergent},

> B is a sub-MV-algebra of Hf’:l t 11, and is therefore an
MV-algebra on its own.

» On represents B as a separating subalgebra of the MV-algebra
of continuous functions on the one-point compactification of
the discrete space N. The computation of maximal ideals of
finite ranks becomes simpler.

» In particular, the only one with infinite rank comes from the
point at infinity, while the other maximal ideals have the
t,y1's for quotients.

> It follows from the Main thoerem that B = [ thtt
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Let A:=]],cxtn, be a profinite MV-algebra. TFAE

» A is isomorphic to the profinite completion of some
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» There exists a compact Hausdorff space Y containing X as a
dense subspace and a separating subalgebra A’ of Cont(Y)
satisfying:

(i) For every x € X, Jy has rank n, in A’, where
Jy :={f € A : f(x) =0}, and
(ii) For every y € Y'\ X, J, has infinite rank in A’;

» A is isomorphic to the profinite completion of some

sub-MV-algebra of A.
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> 1. = 2.: Suppose that A is isomorphic to the profinite
completion of some MV-algebra, say B. Then A is isomorphic
to the profinite completion of B/Rad(B), so may assume B is
semisimple.

» B is isomorphic to a separating MV-algebra of [0, 1]-valued
continuous functions on some nonempty compact Hausdorff
space Z, with pointwise operations.

» The maximal ideals of B are exactly J,,, y € Z. Let
X' :={y € Z: J, has finite rank in C}.

> There is bijection 7 : X — X’ such that n, = rank(J,(,)) for
all x € X. Let Y = XU (Z\ X’), then 7 clearly extends to a
bijection 7 from Y onto Z.

» This leads to a natural isomorphism © from Cont(Z) onto
Cont(Y), namely ©(f) = f o7 . Take A" = ©(B), which is
easily verified to be a separating subalgebra of Cont(Y) and
satisfy (i)&(ii).

» Finally, the density clause can be added by simply replacing Y
with the closure of X if needed.
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completion of some MV-algebras

Any profinite MV-algebra of A := [], . xts, of each of the
following form.

» The set n(A) := {ny : x € X} has a maximum element.

» There exists ny € n(A) with the property that ng — 1 divides
all but finitely many n € n(A).

» Forevery t €[0,1] and € >0, (t —e€,t +€) Nty # 0, for all
but finitely many x € X.
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Sketch of the proof of 2. above

We may assume that X is infinite.

» Topologize X so that the space obtained is the one-point
compactification of the discrete space X \ {xo}

> Let
C = {f € Cont(X) : f(x) € t,, for all x € X} = AN Cont(X)

» One proves that C/J, = t, forall x € X
> And C/Jy, = 1[0,1]
> Thus A= C.

Remark: Just like the case of Heyting algebras, it remains unclear
whether or not there exists a profinite MV-algebra that is not the
profinite completion of some MV-algebras.
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