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Definition of an MV-algebra

An MV-algebra can be defined as an algebra (A,⊕,¬, 0) of type
(2, 1, 0) satisfying:

MV-1: (A,⊕, 0) is an Abelian monoid;

MV-2: ¬ : A→ A is an involution;

MV-3: 1 := ¬0 is absorbant;

MV-4: ¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x .

Note: The rule x ≤ y iff ¬x ⊕ y = 1, defines a bounded distributive
lattice order on A.



Examples of MV-algebras

1. Boolean algebras. If (B,∨,∧,− , 0, 1) is a Boolean algebra,
then B is an MV-algebra with the following operations.
¬x = x̄ and x ⊕ y = x ∨ y .

2. The standard MV-algebra defined on the unit interval [0, 1] by
x ⊕ y = Min(1, x + y) and ¬x = 1− x .

3. The following subalgebras of [0, 1]. For every n ≥ 2,

 Ln = [0, 1] ∩ Z
1

n − 1
=

{
k

n − 1
: 0 ≤ k ≤ n − 1

}
.

4. Let X be any topological space and A := C(X , [0, 1]) be the
set of continuous functions from X → [0, 1].
Given f , g ∈ A and x ∈ X ,
I (¬f )(x) = 1− f (x)

I (f ⊕ g)(x) = Min(1, f (x) + g(x))
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Ideals of MV-algebras

1. MV-algebras homomorphisms are maps that preserve the
MV-algebras operations.

2. Ideals of MV-algebras are kernels of homomorphisms.
Equivalently, they are lattice ideals that are closed under ⊕.

3. Each ideal I of an MV-algebra A correspond to a unique
congruence θI (and conversely) and the quotient MV-algebra
formed is denoted by A/I .

4. Ex. Let X be any topological space and A := C(X , [0, 1]) be
the MV-algebra above. For every p ∈ X , let

Op := {f ∈ A : f vanishes on some neighborhood U of p}

Then Op is an ideal of A.
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Definition of the profinite completion for MV-algebras

1. Given an MV-algebra A, idf (A) be the set of all ideals I of A
such that A/I is finite.

2. For every I , J ∈ idf (A) such that I ⊆ J, let φJI : A/I → A/J
be the natural homomorphism, i.e., φJI ([a]I ) = [a]J for all
a ∈ A.

3. (idf (A),⊇) is a directed set, and {(idf (A),⊇), {A/I}, {φJI}}
is an inverse system of MV-algebras.

4. The inverse limit of this inverse system is called the profinite
completion of the MV-algebra A, and is commonly denoted by
Â.

5. As in most varieties of algebras, the is a natural isomorphism

Â ∼=
{
α ∈

∏
I∈idf (A) A/I : φJI (α(I )) = α(J) whenever I ⊆ J

}
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Main Goal

I It is known that the profinite completion of a Boolean algebra
is isomorphic to the power set of its Stone space

I Equally known that the profinite completion of a Heyting
algebra with Esakia space X is isomorphic to the Heyting
algebra Up(Xfin) of the upsets of Xfin.

I Also known hat the profinite completion of a bounded
distributive lattice with Priestley space X is isomorphic to the
lattice Up(X ) of upsets of X .

I We add to this literature the profinite completion of
MV-algebras
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Main Theorem

For every MV-algebra A, its profinite completion is algebraically
and topologically isomorphic to∏

M∈Maxf (A)

A/M

Where Maxf (A) denotes the set of maximal ideals of A with finite
rank, i .e., A/M ∼=  Ln for some integer n ≥ 2.



Sketch of the proof-1

The proof will use the following important lemmas.

I Lemma 1: If I ∈ idf (A), then there exist
M1,M2, . . . ,Mr ∈ Maxf (A) such that I = M1 ∩M2 ∩ . . . ∩Mr

and A/I ∼=
∏r

i=1 A/Mi .

I Lemma 2: The ideal I is uniquely determined by the set
S(I ) := {M1,M2, . . . ,Mr} ⊆ Maxf (A).

I Lemma 3: For every I , J ∈ idf (A), if I ⊆ J, then
S(J) ⊆ S(I ).
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Sketch of the proof-2

I Consider the embedding

ι : Â ↪→
∏

I∈idf (A)

A/I

...

I followed by the natural projection

π :
∏

I∈idf (A)

A/I �
∏

M∈Maxf (A)

A/M

I Using the lemma and other tools, one proves that the
homomorphism thus obtained is a a topological and algebraic
isomorphism.
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Some consequences

We easily deduce the following previously obtained results.

I The profinite completion of any Boolean algebra B with Stone
space X is given by

B̂ ∼= P(X )

I An MV-algebra A is isomorphic to its profinite completion if
and only if A is profinite and every maximal ideal of A of finite
rank is principal.

I Let A be a regular MV-algebra in which every maximal ideal
has finite rank. Then,

B(Â) ∼= B̂(A)
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The profinite completion functor for MV-algebras

I Another consequence of the main result is a concrete
description of the profinite completion as a functor.

I Proposition: The profinite completion is a functor from the
category MV of MV-algebras and their homomorphisms to
the category StoneMV of Stone MV-algebras and continuous
homomorphisms.

I Sketch of proof: Given an MV-algebras homomorphism
ϕ : A→ B, define ϕ̂ : Â→ B̂ by ϕ̂(α)(N) := α(ϕ−1(N)) for
α ∈

∏
M∈Maxf (A) A/M and N ∈ Maxf (B)

I Remark: The profinite completion is a functor when
considered over any variety of algebras and the corresponding
Stone algebras. In our case, we simply get a more concrete
description.
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ϕ : A→ B, define ϕ̂ : Â→ B̂ by ϕ̂(α)(N) := α(ϕ−1(N)) for
α ∈

∏
M∈Maxf (A) A/M and N ∈ Maxf (B)

I Remark: The profinite completion is a functor when
considered over any variety of algebras and the corresponding
Stone algebras. In our case, we simply get a more concrete
description.



The profinite completion functor for MV-algebras

I Another consequence of the main result is a concrete
description of the profinite completion as a functor.

I Proposition: The profinite completion is a functor from the
category MV of MV-algebras and their homomorphisms to
the category StoneMV of Stone MV-algebras and continuous
homomorphisms.

I Sketch of proof: Given an MV-algebras homomorphism
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An Example

I Let B = {f ∈
∏∞

n=1  Ln+1 : f is convergent},

I B is a sub-MV-algebra of
∏∞

n=1  Ln+1, and is therefore an
MV-algebra on its own.

I On represents B as a separating subalgebra of the MV-algebra
of continuous functions on the one-point compactification of
the discrete space N. The computation of maximal ideals of
finite ranks becomes simpler.

I In particular, the only one with infinite rank comes from the
point at infinity, while the other maximal ideals have the
 Ln+1’s for quotients.

I It follows from the Main thoerem that B̂ ∼=
∏∞

n=1  Ln+1
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Profinite MV-algebras versus profinite completions

Let A :=
∏

x∈X  Lnx be a profinite MV-algebra. TFAE

I A is isomorphic to the profinite completion of some
MV-algebra;

I There exists a compact Hausdorff space Y containing X as a
dense subspace and a separating subalgebra A′ of Cont(Y )
satisfying:

(i) For every x ∈ X , Jx has rank nx in A′, where
Jx := {f ∈ A′ : f (x) = 0}; and

(ii) For every y ∈ Y \ X , Jy has infinite rank in A′;

I A is isomorphic to the profinite completion of some
sub-MV-algebra of A.
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Sketch of proof
I 1.⇒ 2.: Suppose that A is isomorphic to the profinite

completion of some MV-algebra, say B. Then A is isomorphic
to the profinite completion of B/Rad(B), so may assume B is
semisimple.

I B is isomorphic to a separating MV-algebra of [0, 1]-valued
continuous functions on some nonempty compact Hausdorff
space Z , with pointwise operations.

I The maximal ideals of B are exactly Jy , y ∈ Z . Let
X ′ := {y ∈ Z : Jy has finite rank in C}.

I There is bijection τ : X → X ′ such that nx = rank(Jτ(x)) for
all x ∈ X . Let Y = X ∪ (Z \ X ′), then τ clearly extends to a
bijection τ from Y onto Z .

I This leads to a natural isomorphism Θ from Cont(Z ) onto
Cont(Y ), namely Θ(f ) = f ◦ τ . Take A′ = Θ(B), which is
easily verified to be a separating subalgebra of Cont(Y ) and
satisfy (i)&(ii).

I Finally, the density clause can be added by simply replacing Y
with the closure of X if needed.
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Classes of profinite MV-algebras that are profinite
completion of some MV-algebras

Any profinite MV-algebra of A :=
∏

x∈X  Lnx of each of the
following form.

I The set n(A) := {nx : x ∈ X} has a maximum element.

I There exists n0 ∈ n(A) with the property that n0 − 1 divides
all but finitely many n ∈ n(A).

I For every t ∈ [0, 1] and ε > 0, (t − ε, t + ε) ∩  Lnx 6= ∅, for all
but finitely many x ∈ X .
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Sketch of the proof of 2. above

We may assume that X is infinite.

I Topologize X so that the space obtained is the one-point
compactification of the discrete space X \ {x0}

I Let

C = {f ∈ Cont(X ) : f (x) ∈  Lnx for all x ∈ X} = A ∩ Cont(X )

I One proves that C/Jx ∼=  Lnx for all x ∈ X

I And C/Jx0
∼= [0, 1]

I Thus A ∼= Ĉ .

Remark: Just like the case of Heyting algebras, it remains unclear
whether or not there exists a profinite MV-algebra that is not the
profinite completion of some MV-algebras.
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