
On interpretations between propositional logics

Tommaso Moraschini
joint with Ramon Jansana

Institute of Computer Science
Czech Academy of Sciences

BLAST 2019
University of Colorado, Boulder

Aim of the talk
To introduce a notion of interpretability between propositional
logics and investigate the resulting “poset of all logics”.

Remark. In most results, propositional logics can be replaced by
infinitary universal Horn theories without equality.
Some sources of inspiration:

▶ Matrix semantics for logics (Łukasiewicz, Tarski, Łos,
Suszko, Wójcicki . . .)

▶ Blok and Pigozzi’s seminal work on algebraizable logics
▶ Leibniz hierarchy of propositional logics (Czelakowski, Font,

Herrmann, Jansana, Raftery . . .)
▶ Maltsev conditions (Day, Maltsev, Jónsson, Pixley, Kiss,

Kearnes, McKenzie, Szendrei . . .)
▶ Interpretations between varieties (Taylor, Neumann, Garcia,

Opršal, Tschantz . . .)

Aim of the talk
To introduce a notion of interpretability between propositional
logics and investigate the resulting “poset of all logics”.

Remark. In most results, propositional logics can be replaced by
infinitary universal Horn theories without equality.

Some sources of inspiration:

▶ Matrix semantics for logics (Łukasiewicz, Tarski, Łos,
Suszko, Wójcicki . . .)

▶ Blok and Pigozzi’s seminal work on algebraizable logics
▶ Leibniz hierarchy of propositional logics (Czelakowski, Font,

Herrmann, Jansana, Raftery . . .)
▶ Maltsev conditions (Day, Maltsev, Jónsson, Pixley, Kiss,

Kearnes, McKenzie, Szendrei . . .)
▶ Interpretations between varieties (Taylor, Neumann, Garcia,

Opršal, Tschantz . . .)

Aim of the talk
To introduce a notion of interpretability between propositional
logics and investigate the resulting “poset of all logics”.

Remark. In most results, propositional logics can be replaced by
infinitary universal Horn theories without equality.
Some sources of inspiration:

▶ Matrix semantics for logics (Łukasiewicz, Tarski, Łos,
Suszko, Wójcicki . . .)

▶ Blok and Pigozzi’s seminal work on algebraizable logics
▶ Leibniz hierarchy of propositional logics (Czelakowski, Font,

Herrmann, Jansana, Raftery . . .)
▶ Maltsev conditions (Day, Maltsev, Jónsson, Pixley, Kiss,

Kearnes, McKenzie, Szendrei . . .)
▶ Interpretations between varieties (Taylor, Neumann, Garcia,

Opršal, Tschantz . . .)

Interpretations between logics

Basic questions:
▶ What do we mean by an interpretation between logics?
▶ And what do we mean by logic?

Interpretations between logics

Basic questions:

▶ What do we mean by an interpretation between logics?
▶ And what do we mean by logic?

Interpretations between logics

Basic questions:
▶ What do we mean by an interpretation between logics?

▶ And what do we mean by logic?

Interpretations between logics

Basic questions:
▶ What do we mean by an interpretation between logics?
▶ And what do we mean by logic?

Equality-free model theory
Let T be a first-order theory without equality.

▶ Every model M of T is associated with an indiscernibility
relation ≡ that mimics equality: for every a, c ∈ M,

a≡ c ⇐⇒ a and c satisfies the same
equality-free types with constants

⇐⇒ for every non-equality atomic formula ϕ(x , y1, . . . , yn)
and for every b1, . . . , bn ∈ M,

M ⊨ ϕ(a, b1, . . . , bn) iff M ⊨ ϕ(c , b1, . . . , bn).

▶ The indiscernibility relation is a congruence on M, and the
indiscernibility relation of the quotient M/≡ is the identity.

▶ M/≡ satisfies the same sentences without equality than M.
▶ Thus, the natural models of T are the ones whose

indiscernibility relation is the identity relation.
▶ This setting subsumes model theory with equality.

Equality-free model theory
Let T be a first-order theory without equality.

▶ Every model M of T is associated with an indiscernibility
relation ≡ that mimics equality: for every a, c ∈ M,

a≡ c ⇐⇒ a and c satisfies the same
equality-free types with constants

⇐⇒ for every non-equality atomic formula ϕ(x , y1, . . . , yn)
and for every b1, . . . , bn ∈ M,

M ⊨ ϕ(a, b1, . . . , bn) iff M ⊨ ϕ(c , b1, . . . , bn).

▶ The indiscernibility relation is a congruence on M, and the
indiscernibility relation of the quotient M/≡ is the identity.

▶ M/≡ satisfies the same sentences without equality than M.
▶ Thus, the natural models of T are the ones whose

indiscernibility relation is the identity relation.
▶ This setting subsumes model theory with equality.

Equality-free model theory
Let T be a first-order theory without equality.

▶ Every model M of T is associated with an indiscernibility
relation ≡ that mimics equality: for every a, c ∈ M,

a≡ c ⇐⇒ a and c satisfies the same
equality-free types with constants

⇐⇒ for every non-equality atomic formula ϕ(x , y1, . . . , yn)
and for every b1, . . . , bn ∈ M,

M ⊨ ϕ(a, b1, . . . , bn) iff M ⊨ ϕ(c , b1, . . . , bn).

▶ The indiscernibility relation is a congruence on M, and the
indiscernibility relation of the quotient M/≡ is the identity.

▶ M/≡ satisfies the same sentences without equality than M.
▶ Thus, the natural models of T are the ones whose

indiscernibility relation is the identity relation.
▶ This setting subsumes model theory with equality.

Equality-free model theory
Let T be a first-order theory without equality.

▶ Every model M of T is associated with an indiscernibility
relation ≡ that mimics equality: for every a, c ∈ M,

a≡ c ⇐⇒ a and c satisfies the same
equality-free types with constants

⇐⇒ for every non-equality atomic formula ϕ(x , y1, . . . , yn)
and for every b1, . . . , bn ∈ M,

M ⊨ ϕ(a, b1, . . . , bn) iff M ⊨ ϕ(c , b1, . . . , bn).

▶ The indiscernibility relation is a congruence on M, and the
indiscernibility relation of the quotient M/≡ is the identity.

▶ M/≡ satisfies the same sentences without equality than M.
▶ Thus, the natural models of T are the ones whose

indiscernibility relation is the identity relation.
▶ This setting subsumes model theory with equality.

Equality-free model theory
Let T be a first-order theory without equality.

▶ Every model M of T is associated with an indiscernibility
relation ≡ that mimics equality: for every a, c ∈ M,

a≡ c ⇐⇒ a and c satisfies the same
equality-free types with constants

⇐⇒ for every non-equality atomic formula ϕ(x , y1, . . . , yn)
and for every b1, . . . , bn ∈ M,

M ⊨ ϕ(a, b1, . . . , bn) iff M ⊨ ϕ(c , b1, . . . , bn).

▶ The indiscernibility relation is a congruence on M, and the
indiscernibility relation of the quotient M/≡ is the identity.

▶ M/≡ satisfies the same sentences without equality than M.

▶ Thus, the natural models of T are the ones whose
indiscernibility relation is the identity relation.

▶ This setting subsumes model theory with equality.

Equality-free model theory
Let T be a first-order theory without equality.

▶ Every model M of T is associated with an indiscernibility
relation ≡ that mimics equality: for every a, c ∈ M,

a≡ c ⇐⇒ a and c satisfies the same
equality-free types with constants

⇐⇒ for every non-equality atomic formula ϕ(x , y1, . . . , yn)
and for every b1, . . . , bn ∈ M,

M ⊨ ϕ(a, b1, . . . , bn) iff M ⊨ ϕ(c , b1, . . . , bn).

▶ The indiscernibility relation is a congruence on M, and the
indiscernibility relation of the quotient M/≡ is the identity.

▶ M/≡ satisfies the same sentences without equality than M.
▶ Thus, the natural models of T are the ones whose

indiscernibility relation is the identity relation.

▶ This setting subsumes model theory with equality.

Equality-free model theory
Let T be a first-order theory without equality.

▶ Every model M of T is associated with an indiscernibility
relation ≡ that mimics equality: for every a, c ∈ M,

a≡ c ⇐⇒ a and c satisfies the same
equality-free types with constants

⇐⇒ for every non-equality atomic formula ϕ(x , y1, . . . , yn)
and for every b1, . . . , bn ∈ M,

M ⊨ ϕ(a, b1, . . . , bn) iff M ⊨ ϕ(c , b1, . . . , bn).

▶ The indiscernibility relation is a congruence on M, and the
indiscernibility relation of the quotient M/≡ is the identity.

▶ M/≡ satisfies the same sentences without equality than M.
▶ Thus, the natural models of T are the ones whose

indiscernibility relation is the identity relation.
▶ This setting subsumes model theory with equality.

▶ A logic is a consequence relation ⊢ on the set Fm of formulas
of some algebraic language with infinitely many variables

▶

▶

▶ A logic is a consequence relation ⊢ on the set Fm of formulas
of some algebraic language with infinitely many variables
that, moreover, is substitution invariant in the sense that

▶

▶

▶ A logic is a consequence relation ⊢ on the set Fm of formulas
of some algebraic language with infinitely many variables
that, moreover, is substitution invariant in the sense that

if Γ ⊢ φ, then σ[Γ] ⊢ σ(φ)

for every Γ ∪ {φ} ⊆ Fm and every substitution σ.

▶

▶

▶ A logic is a consequence relation ⊢ on the set Fm of formulas
of some algebraic language with infinitely many variables
that, moreover, is substitution invariant in the sense that

if Γ ⊢ φ, then σ[Γ] ⊢ σ(φ)

for every Γ ∪ {φ} ⊆ Fm and every substitution σ.

Remark. Logics are infinitary Horn theories without equality.

▶

▶

▶ A logic is a consequence relation ⊢ on the set Fm of formulas
of some algebraic language with infinitely many variables
that, moreover, is substitution invariant in the sense that

if Γ ⊢ φ, then σ[Γ] ⊢ σ(φ)

for every Γ ∪ {φ} ⊆ Fm and every substitution σ.

Remark. Logics are infinitary Horn theories without equality.

▶ Let ⊢ be a logic and let P(x) be a unary predicate symbol.

▶

▶ A logic is a consequence relation ⊢ on the set Fm of formulas
of some algebraic language with infinitely many variables
that, moreover, is substitution invariant in the sense that

if Γ ⊢ φ, then σ[Γ] ⊢ σ(φ)

for every Γ ∪ {φ} ⊆ Fm and every substitution σ.

Remark. Logics are infinitary Horn theories without equality.

▶ Let ⊢ be a logic and let P(x) be a unary predicate symbol.
▶ Let T⊢ be the theory in the equality-free language obtained

extending the algebraic language of ⊢ with P(x),

▶ A logic is a consequence relation ⊢ on the set Fm of formulas
of some algebraic language with infinitely many variables
that, moreover, is substitution invariant in the sense that

if Γ ⊢ φ, then σ[Γ] ⊢ σ(φ)

for every Γ ∪ {φ} ⊆ Fm and every substitution σ.

Remark. Logics are infinitary Horn theories without equality.

▶ Let ⊢ be a logic and let P(x) be a unary predicate symbol.
▶ Let T⊢ be the theory in the equality-free language obtained

extending the algebraic language of ⊢ with P(x), axiomatized
by the infinitary universal Horn sentences

∀⃗x
∧

γ∈Γ

P(γ(⃗x)) → P(φ(⃗x))

for all valid inferences Γ ⊢ φ of ⊢.

▶ A logic is a consequence relation ⊢ on the set Fm of formulas
of some algebraic language with infinitely many variables
that, moreover, is substitution invariant in the sense that

if Γ ⊢ φ, then σ[Γ] ⊢ σ(φ)

for every Γ ∪ {φ} ⊆ Fm and every substitution σ.

Remark. Logics ⊢ are infinitary Horn theories without equality T⊢.

▶ A matrix is a pair ⟨A,F ⟩ where A is an algebra and F ⊆ A.

▶

▶ A logic is a consequence relation ⊢ on the set Fm of formulas
of some algebraic language with infinitely many variables
that, moreover, is substitution invariant in the sense that

if Γ ⊢ φ, then σ[Γ] ⊢ σ(φ)

for every Γ ∪ {φ} ⊆ Fm and every substitution σ.

Remark. Logics ⊢ are infinitary Horn theories without equality T⊢.

▶ A matrix is a pair ⟨A,F ⟩ where A is an algebra and F ⊆ A.
A matrix ⟨A,F ⟩ is a

▶

▶ A logic is a consequence relation ⊢ on the set Fm of formulas
of some algebraic language with infinitely many variables
that, moreover, is substitution invariant in the sense that

if Γ ⊢ φ, then σ[Γ] ⊢ σ(φ)

for every Γ ∪ {φ} ⊆ Fm and every substitution σ.

Remark. Logics ⊢ are infinitary Horn theories without equality T⊢.

▶ A matrix is a pair ⟨A,F ⟩ where A is an algebra and F ⊆ A.
A matrix ⟨A,F ⟩ is a model of a logic ⊢ (in the same
language) if for every Γ ∪ {φ} ⊆ Fm,

▶

▶ A logic is a consequence relation ⊢ on the set Fm of formulas
of some algebraic language with infinitely many variables
that, moreover, is substitution invariant in the sense that

if Γ ⊢ φ, then σ[Γ] ⊢ σ(φ)

for every Γ ∪ {φ} ⊆ Fm and every substitution σ.

Remark. Logics ⊢ are infinitary Horn theories without equality T⊢.

▶ A matrix is a pair ⟨A,F ⟩ where A is an algebra and F ⊆ A.
A matrix ⟨A,F ⟩ is a model of a logic ⊢ (in the same
language) if for every Γ ∪ {φ} ⊆ Fm,

if Γ ⊢ φ, then for every hom v : Fm → A,

if v [Γ] ⊆ F , then v(φ) ∈ F .

▶

▶ A logic is a consequence relation ⊢ on the set Fm of formulas
of some algebraic language with infinitely many variables
that, moreover, is substitution invariant in the sense that

if Γ ⊢ φ, then σ[Γ] ⊢ σ(φ)

for every Γ ∪ {φ} ⊆ Fm and every substitution σ.

Remark. Logics ⊢ are infinitary Horn theories without equality T⊢.

▶ A matrix is a pair ⟨A,F ⟩ where A is an algebra and F ⊆ A.
A matrix ⟨A,F ⟩ is a model of a logic ⊢ (in the same
language) if for every Γ ∪ {φ} ⊆ Fm,

if Γ ⊢ φ, then for every hom v : Fm → A,

if v [Γ] ⊆ F , then v(φ) ∈ F .

Intuitively, A is an algebra of truth-values and F are the
values representing truth.

▶

▶ A logic is a consequence relation ⊢ on the set Fm of formulas
of some algebraic language with infinitely many variables
that, moreover, is substitution invariant in the sense that

if Γ ⊢ φ, then σ[Γ] ⊢ σ(φ)

for every Γ ∪ {φ} ⊆ Fm and every substitution σ.

Remark. Logics ⊢ are infinitary Horn theories without equality T⊢.

▶ A matrix is a pair ⟨A,F ⟩ where A is an algebra and F ⊆ A.
A matrix ⟨A,F ⟩ is a model of a logic ⊢ (in the same
language) if for every Γ ∪ {φ} ⊆ Fm,

if Γ ⊢ φ, then for every hom v : Fm → A,

if v [Γ] ⊆ F , then v(φ) ∈ F .

Intuitively, A is an algebra of truth-values and F are the
values representing truth.

▶ Observe that ⟨A,F ⟩ is a model of ⊢ iff it is a model of T⊢ in
the standard sense.

▶ Every matrix ⟨A,F ⟩ is associated the an indiscernibility
relation ≡ defined for every a, c ∈ A as

a≡ c ⇐⇒ p(a) ∈ F iff p(c) ∈ F ,

for all unary polynomial functions p of A.

Examples.
▶ If A is a Heyting algebra and F a lattice filter, then

a≡ c ⇐⇒ {a → c , c → a} ⊆ F .

▶ If A is a modal algebra and F a lattice filter, then

a≡ c ⇐⇒ {2n(a → c),2n(c → a) : n ∈ ω} ⊆ F .

▶ Every matrix ⟨A,F ⟩ is associated the an indiscernibility
relation ≡ defined for every a, c ∈ A as

a≡ c ⇐⇒ p(a) ∈ F iff p(c) ∈ F ,

for all unary polynomial functions p of A.

Examples.
▶ If A is a Heyting algebra and F a lattice filter, then

a≡ c ⇐⇒ {a → c , c → a} ⊆ F .

▶ If A is a modal algebra and F a lattice filter, then

a≡ c ⇐⇒ {2n(a → c),2n(c → a) : n ∈ ω} ⊆ F .

▶ Every matrix ⟨A,F ⟩ is associated the an indiscernibility
relation ≡ defined for every a, c ∈ A as

a≡ c ⇐⇒ p(a) ∈ F iff p(c) ∈ F ,

for all unary polynomial functions p of A.

Examples.

▶ If A is a Heyting algebra and F a lattice filter, then

a≡ c ⇐⇒ {a → c , c → a} ⊆ F .

▶ If A is a modal algebra and F a lattice filter, then

a≡ c ⇐⇒ {2n(a → c),2n(c → a) : n ∈ ω} ⊆ F .

▶ Every matrix ⟨A,F ⟩ is associated the an indiscernibility
relation ≡ defined for every a, c ∈ A as

a≡ c ⇐⇒ p(a) ∈ F iff p(c) ∈ F ,

for all unary polynomial functions p of A.

Examples.
▶ If A is a Heyting algebra and F a lattice filter, then

a≡ c ⇐⇒ {a → c , c → a} ⊆ F .

▶ If A is a modal algebra and F a lattice filter, then

a≡ c ⇐⇒ {2n(a → c),2n(c → a) : n ∈ ω} ⊆ F .

▶ Every matrix ⟨A,F ⟩ is associated the an indiscernibility
relation ≡ defined for every a, c ∈ A as

a≡ c ⇐⇒ p(a) ∈ F iff p(c) ∈ F ,

for all unary polynomial functions p of A.

Examples.
▶ If A is a Heyting algebra and F a lattice filter, then

a≡ c ⇐⇒ {a → c , c → a} ⊆ F .

▶ If A is a modal algebra and F a lattice filter, then

a≡ c ⇐⇒ {2n(a → c),2n(c → a) : n ∈ ω} ⊆ F .

▶ Every matrix ⟨A,F ⟩ is associated the an indiscernibility
relation ≡ defined for every a, c ∈ A as

a≡ c ⇐⇒ p(a) ∈ F iff p(c) ∈ F ,

for all unary polynomial functions p of A.

Examples.
▶ If A is a Heyting algebra and F a lattice filter, then

a≡ c ⇐⇒ {a → c , c → a} ⊆ F .

▶ If A is a modal algebra and F a lattice filter, then

a≡ c ⇐⇒ {2n(a → c),2n(c → a) : n ∈ ω} ⊆ F .

▶ Every matrix ⟨A,F ⟩ is associated the an indiscernibility
relation ≡ defined for every a, c ∈ A as

a≡ c ⇐⇒ p(a) ∈ F iff p(c) ∈ F ,

for all unary polynomial functions p of A.

Examples.
▶ If A is a Heyting algebra and F a lattice filter, then

a≡ c ⇐⇒ {a → c , c → a} ⊆ F .

▶ If A is a modal algebra and F a lattice filter, then

a≡ c ⇐⇒ {2n(a → c),2n(c → a) : n ∈ ω} ⊆ F .

▶ Logics ⊢ are associated with models without indiscernibles

Mod≡(⊢) := Psd{⟨A,F ⟩ : ⟨A,F ⟩ is a model of ⊢ and
≡ is the identity relation}.

Completeness. ⊢ is the logic induced by the class Mod≡(⊢), i.e.

Γ ⊢ φ ⇐⇒ for every ⟨A,F ⟩ ∈ Mod≡(⊢) and hom v : Fm → A,

if v [Γ] ⊆ F , then v(φ) ∈ F .

Examples.

▶ Logics ⊢ are associated with models without indiscernibles

Mod≡(⊢) := Psd{⟨A,F ⟩ : ⟨A,F ⟩ is a model of ⊢ and
≡ is the identity relation}.

Completeness. ⊢ is the logic induced by the class Mod≡(⊢), i.e.

Γ ⊢ φ ⇐⇒ for every ⟨A,F ⟩ ∈ Mod≡(⊢) and hom v : Fm → A,

if v [Γ] ⊆ F , then v(φ) ∈ F .

Examples.

▶ Logics ⊢ are associated with models without indiscernibles

Mod≡(⊢) := Psd{⟨A,F ⟩ : ⟨A,F ⟩ is a model of ⊢ and
≡ is the identity relation}.

Completeness.

⊢ is the logic induced by the class Mod≡(⊢), i.e.

Γ ⊢ φ ⇐⇒ for every ⟨A,F ⟩ ∈ Mod≡(⊢) and hom v : Fm → A,

if v [Γ] ⊆ F , then v(φ) ∈ F .

Examples.

▶ Logics ⊢ are associated with models without indiscernibles

Mod≡(⊢) := Psd{⟨A,F ⟩ : ⟨A,F ⟩ is a model of ⊢ and
≡ is the identity relation}.

Completeness. ⊢ is the logic induced by the class Mod≡(⊢), i.e.

Γ ⊢ φ ⇐⇒ for every ⟨A,F ⟩ ∈ Mod≡(⊢) and hom v : Fm → A,

if v [Γ] ⊆ F , then v(φ) ∈ F .

Examples.

▶ Logics ⊢ are associated with models without indiscernibles

Mod≡(⊢) := Psd{⟨A,F ⟩ : ⟨A,F ⟩ is a model of ⊢ and
≡ is the identity relation}.

Completeness. ⊢ is the logic induced by the class Mod≡(⊢), i.e.

Γ ⊢ φ ⇐⇒ for every ⟨A,F ⟩ ∈ Mod≡(⊢) and hom v : Fm → A,

if v [Γ] ⊆ F , then v(φ) ∈ F .

Examples.

▶ Logics ⊢ are associated with models without indiscernibles

Mod≡(⊢) := Psd{⟨A,F ⟩ : ⟨A,F ⟩ is a model of ⊢ and
≡ is the identity relation}.

Completeness. ⊢ is the logic induced by the class Mod≡(⊢), i.e.

Γ ⊢ φ ⇐⇒ for every ⟨A,F ⟩ ∈ Mod≡(⊢) and hom v : Fm → A,

if v [Γ] ⊆ F , then v(φ) ∈ F .

Examples.

▶ Logics ⊢ are associated with models without indiscernibles

Mod≡(⊢) := Psd{⟨A,F ⟩ : ⟨A,F ⟩ is a model of ⊢ and
≡ is the identity relation}.

Completeness. ⊢ is the logic induced by the class Mod≡(⊢), i.e.

Γ ⊢ φ ⇐⇒ for every ⟨A,F ⟩ ∈ Mod≡(⊢) and hom v : Fm → A,

if v [Γ] ⊆ F , then v(φ) ∈ F .

Examples.

Mod≡(CPC) = {⟨A,F ⟩ : A is a Boolean algebra and F = {1}}

▶ Logics ⊢ are associated with models without indiscernibles

Mod≡(⊢) := Psd{⟨A,F ⟩ : ⟨A,F ⟩ is a model of ⊢ and
≡ is the identity relation}.

Completeness. ⊢ is the logic induced by the class Mod≡(⊢), i.e.

Γ ⊢ φ ⇐⇒ for every ⟨A,F ⟩ ∈ Mod≡(⊢) and hom v : Fm → A,

if v [Γ] ⊆ F , then v(φ) ∈ F .

Examples.

Mod≡(CPC) = {⟨A,F ⟩ : A is a Boolean algebra and F = {1}}
Mod≡(IPC) = {⟨A,F ⟩ : A is a Heyting algebra and F = {1}}.

▶ A translation of an algebraic language L into another L ′ is
a map τ that assigns an n-ary term τ(f)(x1, . . . , xn) of L ′ to
every n-ary symbol f (x1, . . . , xn) of L .

▶ Given an L ′-algebra A, we define an L -algebra

Aτ := ⟨A; {τ(f)A : f ∈ L }⟩.

▶ An interpretation of a logic ⊢ into another ⊢′ is a translation
τ between their languages such that▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).

▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the
L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).

▶ A translation of an algebraic language L into another L ′ is
a map τ that assigns an n-ary term τ(f)(x1, . . . , xn) of L ′ to
every n-ary symbol f (x1, . . . , xn) of L .

▶ Given an L ′-algebra A, we define an L -algebra

Aτ := ⟨A; {τ(f)A : f ∈ L }⟩.

▶ An interpretation of a logic ⊢ into another ⊢′ is a translation
τ between their languages such that▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).

▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the
L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).

▶ A translation of an algebraic language L into another L ′ is
a map τ that assigns an n-ary term τ(f)(x1, . . . , xn) of L ′ to
every n-ary symbol f (x1, . . . , xn) of L .

▶ Given an L ′-algebra A, we define an L -algebra

Aτ := ⟨A; {τ(f)A : f ∈ L }⟩.

▶ An interpretation of a logic ⊢ into another ⊢′ is a translation
τ between their languages such that▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).

▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the
L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).

▶ A translation of an algebraic language L into another L ′ is
a map τ that assigns an n-ary term τ(f)(x1, . . . , xn) of L ′ to
every n-ary symbol f (x1, . . . , xn) of L .

▶ Given an L ′-algebra A, we define an L -algebra

Aτ := ⟨A; {τ(f)A : f ∈ L }⟩.

Example.

▶ An interpretation of a logic ⊢ into another ⊢′ is a translation
τ between their languages such that▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).

▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the
L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).

▶ A translation of an algebraic language L into another L ′ is
a map τ that assigns an n-ary term τ(f)(x1, . . . , xn) of L ′ to
every n-ary symbol f (x1, . . . , xn) of L .

▶ Given an L ′-algebra A, we define an L -algebra

Aτ := ⟨A; {τ(f)A : f ∈ L }⟩.

Example. Let L∧∨ be the language of lattices, and LBA that of
Boolean algebras.

▶ An interpretation of a logic ⊢ into another ⊢′ is a translation
τ between their languages such that▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).

▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the
L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).

▶ A translation of an algebraic language L into another L ′ is
a map τ that assigns an n-ary term τ(f)(x1, . . . , xn) of L ′ to
every n-ary symbol f (x1, . . . , xn) of L .

▶ Given an L ′-algebra A, we define an L -algebra

Aτ := ⟨A; {τ(f)A : f ∈ L }⟩.

Example. Let L∧∨ be the language of lattices, and LBA that of
Boolean algebras. If τ is the inclusion map from L∧∨ to LBA, and
A a Boolean algebra, then Aτ is its lattice reduct of A.

▶ An interpretation of a logic ⊢ into another ⊢′ is a translation
τ between their languages such that▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).

▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the
L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).

▶ A translation of an algebraic language L into another L ′ is
a map τ that assigns an n-ary term τ(f)(x1, . . . , xn) of L ′ to
every n-ary symbol f (x1, . . . , xn) of L .

▶ Given an L ′-algebra A, we define an L -algebra

Aτ := ⟨A; {τ(f)A : f ∈ L }⟩.
▶ An interpretation of a logic ⊢ into another ⊢′ is a translation

τ between their languages such that

▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).
▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the

L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).

▶ A translation of an algebraic language L into another L ′ is
a map τ that assigns an n-ary term τ(f)(x1, . . . , xn) of L ′ to
every n-ary symbol f (x1, . . . , xn) of L .

▶ Given an L ′-algebra A, we define an L -algebra

Aτ := ⟨A; {τ(f)A : f ∈ L }⟩.
▶ An interpretation of a logic ⊢ into another ⊢′ is a translation

τ between their languages such that

if ⟨A,F ⟩ ∈ Mod≡(⊢′), then ⟨Aτ ,F ⟩ ∈ Mod≡(⊢).

▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).
▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the

L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).

▶ A translation of an algebraic language L into another L ′ is
a map τ that assigns an n-ary term τ(f)(x1, . . . , xn) of L ′ to
every n-ary symbol f (x1, . . . , xn) of L .

▶ Given an L ′-algebra A, we define an L -algebra

Aτ := ⟨A; {τ(f)A : f ∈ L }⟩.
▶ An interpretation of a logic ⊢ into another ⊢′ is a translation

τ between their languages such that

if ⟨A,F ⟩ ∈ Mod≡(⊢′), then ⟨Aτ ,F ⟩ ∈ Mod≡(⊢).

Interpretations split in two halves.

▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).
▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the

L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).

▶ A translation of an algebraic language L into another L ′ is
a map τ that assigns an n-ary term τ(f)(x1, . . . , xn) of L ′ to
every n-ary symbol f (x1, . . . , xn) of L .

▶ Given an L ′-algebra A, we define an L -algebra

Aτ := ⟨A; {τ(f)A : f ∈ L }⟩.
▶ An interpretation of a logic ⊢ into another ⊢′ is a translation

τ between their languages such that

if ⟨A,F ⟩ ∈ Mod≡(⊢′), then ⟨Aτ ,F ⟩ ∈ Mod≡(⊢).

Interpretations split in two halves. Consider logics ⊢ and ⊢′.

▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).
▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the

L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).

▶ A translation of an algebraic language L into another L ′ is
a map τ that assigns an n-ary term τ(f)(x1, . . . , xn) of L ′ to
every n-ary symbol f (x1, . . . , xn) of L .

▶ Given an L ′-algebra A, we define an L -algebra

Aτ := ⟨A; {τ(f)A : f ∈ L }⟩.
▶ An interpretation of a logic ⊢ into another ⊢′ is a translation

τ between their languages such that

if ⟨A,F ⟩ ∈ Mod≡(⊢′), then ⟨Aτ ,F ⟩ ∈ Mod≡(⊢).

Interpretations split in two halves. Consider logics ⊢ and ⊢′.
▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).

▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the
L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).

▶ A translation of an algebraic language L into another L ′ is
a map τ that assigns an n-ary term τ(f)(x1, . . . , xn) of L ′ to
every n-ary symbol f (x1, . . . , xn) of L .

▶ Given an L ′-algebra A, we define an L -algebra

Aτ := ⟨A; {τ(f)A : f ∈ L }⟩.
▶ An interpretation of a logic ⊢ into another ⊢′ is a translation

τ between their languages such that

if ⟨A,F ⟩ ∈ Mod≡(⊢′), then ⟨Aτ ,F ⟩ ∈ Mod≡(⊢).

Interpretations split in two halves. Consider logics ⊢ and ⊢′.
▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).
▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the

L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).

▶ A translation of an algebraic language L into another L ′ is
a map τ that assigns an n-ary term τ(f)(x1, . . . , xn) of L ′ to
every n-ary symbol f (x1, . . . , xn) of L .

▶ Given an L ′-algebra A, we define an L -algebra

Aτ := ⟨A; {τ(f)A : f ∈ L }⟩.
▶ An interpretation of a logic ⊢ into another ⊢′ is a translation

τ between their languages such that

if ⟨A,F ⟩ ∈ Mod≡(⊢′), then ⟨Aτ ,F ⟩ ∈ Mod≡(⊢).

Interpretations split in two halves. Consider logics ⊢ and ⊢′.
▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).
▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the

L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).

Lemma
⊢ is interpretable into ⊢′ iff ⊢′ is term-equivalent to a compatible
expansion of ⊢.

Interpretations split in two halves. Consider logics ⊢ and ⊢′.
▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).
▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the

L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).

Lemma
⊢ is interpretable into ⊢′ iff ⊢′ is term-equivalent to a compatible
expansion of ⊢.

▶

▶

Interpretations split in two halves. Consider logics ⊢ and ⊢′.
▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).
▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the

L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).

Lemma
⊢ is interpretable into ⊢′ iff ⊢′ is term-equivalent to a compatible
expansion of ⊢.

Example. Recall that

Mod≡(CPC) = {⟨A,F ⟩ : A is a Boolean algebra and F = {1}}
Mod≡(IPC) = {⟨A,F ⟩ : A is a Heyting algebra and F = {1}}.

▶

▶

Interpretations split in two halves. Consider logics ⊢ and ⊢′.
▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).
▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the

L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).

Lemma
⊢ is interpretable into ⊢′ iff ⊢′ is term-equivalent to a compatible
expansion of ⊢.

Example. Recall that

Mod≡(CPC) = {⟨A,F ⟩ : A is a Boolean algebra and F = {1}}
Mod≡(IPC) = {⟨A,F ⟩ : A is a Heyting algebra and F = {1}}.

▶ The identity map is an interpretation of IPC into CPC.

▶

Interpretations split in two halves. Consider logics ⊢ and ⊢′.
▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).
▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the

L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).

Lemma
⊢ is interpretable into ⊢′ iff ⊢′ is term-equivalent to a compatible
expansion of ⊢.

Example. Recall that

Mod≡(CPC) = {⟨A,F ⟩ : A is a Boolean algebra and F = {1}}
Mod≡(IPC) = {⟨A,F ⟩ : A is a Heyting algebra and F = {1}}.

▶ The identity map is an interpretation of IPC into CPC.
▶ Is CPC interpretable into IPC?

Interpretations split in two halves. Consider logics ⊢ and ⊢′.
▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).
▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the

L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).

Lemma
⊢ is interpretable into ⊢′ iff ⊢′ is term-equivalent to a compatible
expansion of ⊢.

Example. Recall that

Mod≡(CPC) = {⟨A,F ⟩ : A is a Boolean algebra and F = {1}}
Mod≡(IPC) = {⟨A,F ⟩ : A is a Heyting algebra and F = {1}}.

▶ The identity map is an interpretation of IPC into CPC.
▶ Is CPC interpretable into IPC? No, on cardinality grounds!

Interpretations split in two halves. Consider logics ⊢ and ⊢′.
▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).
▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the

L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).

Lemma
⊢ is interpretable into ⊢′ iff ⊢′ is term-equivalent to a compatible
expansion of ⊢.

Definition
Intepretability is a preorder on the proper class of all logics.

▶

▶

Interpretations split in two halves. Consider logics ⊢ and ⊢′.
▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).
▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the

L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).

Lemma
⊢ is interpretable into ⊢′ iff ⊢′ is term-equivalent to a compatible
expansion of ⊢.

Definition
Intepretability is a preorder on the proper class of all logics.
The associated partial order Log is the “poset of all logics”.

▶

▶

Interpretations split in two halves. Consider logics ⊢ and ⊢′.
▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).
▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the

L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).

Lemma
⊢ is interpretable into ⊢′ iff ⊢′ is term-equivalent to a compatible
expansion of ⊢.

Definition
Intepretability is a preorder on the proper class of all logics.
The associated partial order Log is the “poset of all logics”.

▶ Elements of Log are classes J⊢K of equi-interpretable logics.

▶

The structure of the poset of all logics

Basic question:
▶ Do infima and suprema exist?

The structure of the poset of all logics

Basic question:

▶ Do infima and suprema exist?

The structure of the poset of all logics

Basic question:
▶ Do infima and suprema exist?

Do infima exist?
▶ Given a set of algebraic languages {Li : i ∈ I},

let
⊗

i∈I Li be
the language whose n-ary operations f are the sequences

f = ⟨φi (x1, . . . , xn) : i ∈ I ⟩

where φi is an n-ary term of Li .
▶ Given a set of algebras {Ai : i ∈ I} s.t. Ai is an Li -algebra,

let
⊗

i∈I Ai be the
⊗

i∈I Li -algebra with universe ∏i∈I Ai s.t.

f
⊗

i∈I Ai (⃗a1, . . . , a⃗n) := ⟨φi
Ai (⃗a1(i), . . . , a⃗n(i)) : i ∈ I ⟩.

▶ Given a set of logics {⊢i : i ∈ I}, let
⊗

i∈I ⊢i be the logic
induced by the class of matrices

Do infima exist?
▶ Given a set of algebraic languages {Li : i ∈ I}, let

⊗
i∈I Li be

the language whose n-ary operations f are the sequences

f = ⟨φi (x1, . . . , xn) : i ∈ I ⟩

where φi is an n-ary term of Li .

▶ Given a set of algebras {Ai : i ∈ I} s.t. Ai is an Li -algebra,
let

⊗
i∈I Ai be the

⊗
i∈I Li -algebra with universe ∏i∈I Ai s.t.

f
⊗

i∈I Ai (⃗a1, . . . , a⃗n) := ⟨φi
Ai (⃗a1(i), . . . , a⃗n(i)) : i ∈ I ⟩.

▶ Given a set of logics {⊢i : i ∈ I}, let
⊗

i∈I ⊢i be the logic
induced by the class of matrices

Do infima exist?
▶ Given a set of algebraic languages {Li : i ∈ I}, let

⊗
i∈I Li be

the language whose n-ary operations f are the sequences

f = ⟨φi (x1, . . . , xn) : i ∈ I ⟩

where φi is an n-ary term of Li .
▶ Given a set of algebras {Ai : i ∈ I} s.t. Ai is an Li -algebra,

let
⊗

i∈I Ai be the
⊗

i∈I Li -algebra with universe ∏i∈I Ai s.t.

f
⊗

i∈I Ai (⃗a1, . . . , a⃗n) := ⟨φi
Ai (⃗a1(i), . . . , a⃗n(i)) : i ∈ I ⟩.

▶ Given a set of logics {⊢i : i ∈ I}, let
⊗

i∈I ⊢i be the logic
induced by the class of matrices

Do infima exist?
▶ Given a set of algebraic languages {Li : i ∈ I}, let

⊗
i∈I Li be

the language whose n-ary operations f are the sequences

f = ⟨φi (x1, . . . , xn) : i ∈ I ⟩

where φi is an n-ary term of Li .
▶ Given a set of algebras {Ai : i ∈ I} s.t. Ai is an Li -algebra,

let
⊗

i∈I Ai be the
⊗

i∈I Li -algebra with universe ∏i∈I Ai s.t.

f
⊗

i∈I Ai (⃗a1, . . . , a⃗n) := ⟨φi
Ai (⃗a1(i), . . . , a⃗n(i)) : i ∈ I ⟩.

▶ Given a set of logics {⊢i : i ∈ I}, let
⊗

i∈I ⊢i be the logic
induced by the class of matrices

Do infima exist?
▶ Given a set of algebraic languages {Li : i ∈ I}, let

⊗
i∈I Li be

the language whose n-ary operations f are the sequences

f = ⟨φi (x1, . . . , xn) : i ∈ I ⟩

where φi is an n-ary term of Li .
▶ Given a set of algebras {Ai : i ∈ I} s.t. Ai is an Li -algebra,

let
⊗

i∈I Ai be the
⊗

i∈I Li -algebra with universe ∏i∈I Ai s.t.

f
⊗

i∈I Ai (⃗a1, . . . , a⃗n) := ⟨φi
Ai (⃗a1(i), . . . , a⃗n(i)) : i ∈ I ⟩.

▶ Given a set of logics {⊢i : i ∈ I},

let
⊗

i∈I ⊢i be the logic
induced by the class of matrices

Do infima exist?
▶ Given a set of algebraic languages {Li : i ∈ I}, let

⊗
i∈I Li be

the language whose n-ary operations f are the sequences

f = ⟨φi (x1, . . . , xn) : i ∈ I ⟩

where φi is an n-ary term of Li .
▶ Given a set of algebras {Ai : i ∈ I} s.t. Ai is an Li -algebra,

let
⊗

i∈I Ai be the
⊗

i∈I Li -algebra with universe ∏i∈I Ai s.t.

f
⊗

i∈I Ai (⃗a1, . . . , a⃗n) := ⟨φi
Ai (⃗a1(i), . . . , a⃗n(i)) : i ∈ I ⟩.

▶ Given a set of logics {⊢i : i ∈ I}, let
⊗

i∈I ⊢i be the logic
induced by the class of matrices

{⟨
⊗
i∈I

Ai ,∏
i∈I

Fi ⟩ : ⟨Ai ,Fi ⟩ ∈ Mod≡(⊢i)}

Do infima exist?
▶ Given a set of algebraic languages {Li : i ∈ I}, let

⊗
i∈I Li be

the language whose n-ary operations f are the sequences

f = ⟨φi (x1, . . . , xn) : i ∈ I ⟩

where φi is an n-ary term of Li .
▶ Given a set of algebras {Ai : i ∈ I} s.t. Ai is an Li -algebra,

let
⊗

i∈I Ai be the
⊗

i∈I Li -algebra with universe ∏i∈I Ai s.t.

f
⊗

i∈I Ai (⃗a1, . . . , a⃗n) := ⟨φi
Ai (⃗a1(i), . . . , a⃗n(i)) : i ∈ I ⟩.

▶ Given a set of logics {⊢i : i ∈ I}, let
⊗

i∈I ⊢i be the logic
induced by the class of matrices

{⟨
⊗
i∈I

Ai ,∏
i∈I

Fi ⟩ : ⟨Ai ,Fi ⟩ ∈ Mod≡(⊢i)}

formulated with ∏i∈I |Fm(⊢i)| variables.

Do infima exist?
▶ Given a set of algebraic languages {Li : i ∈ I}, let

⊗
i∈I Li be

the language whose n-ary operations f are the sequences

f = ⟨φi (x1, . . . , xn) : i ∈ I ⟩

where φi is an n-ary term of Li .
▶ Given a set of algebras {Ai : i ∈ I} s.t. Ai is an Li -algebra,

let
⊗

i∈I Ai be the
⊗

i∈I Li -algebra with universe ∏i∈I Ai s.t.

f
⊗

i∈I Ai (⃗a1, . . . , a⃗n) := ⟨φi
Ai (⃗a1(i), . . . , a⃗n(i)) : i ∈ I ⟩.

▶ Given a set of logics {⊢i : i ∈ I}, let
⊗

i∈I ⊢i be the logic
induced by the class of matrices

{⟨
⊗
i∈I

Ai ,∏
i∈I

Fi ⟩ : ⟨Ai ,Fi ⟩ ∈ Mod≡(⊢i)}.

⊗
i∈I ⊢i is called the non-indexed product of the various ⊢i .

Do infima exist?
▶ Given a set of algebraic languages {Li : i ∈ I}, let

⊗
i∈I Li be

the language whose n-ary operations f are the sequences

f = ⟨φi (x1, . . . , xn) : i ∈ I ⟩

where φi is an n-ary term of Li .
▶ Given a set of algebras {Ai : i ∈ I} s.t. Ai is an Li -algebra,

let
⊗

i∈I Ai be the
⊗

i∈I Li -algebra with universe ∏i∈I Ai s.t.

f
⊗

i∈I Ai (⃗a1, . . . , a⃗n) := ⟨φi
Ai (⃗a1(i), . . . , a⃗n(i)) : i ∈ I ⟩.

▶ Given a set of logics {⊢i : i ∈ I}, let
⊗

i∈I ⊢i be the logic
induced by the class of matrices

{⟨
⊗
i∈I

Ai ,∏
i∈I

Fi ⟩ : ⟨Ai ,Fi ⟩ ∈ Mod≡(⊢i)}.

Theorem
▶ Mod≡(

⊗
i∈I ⊢i) is the closure under Psd of the above display.

▶ J⊗i∈I ⊢iK is the infimum of {J⊢iK : i ∈ I} in Log.

Do infima exist?
▶ Given a set of algebraic languages {Li : i ∈ I}, let

⊗
i∈I Li be

the language whose n-ary operations f are the sequences

f = ⟨φi (x1, . . . , xn) : i ∈ I ⟩

where φi is an n-ary term of Li .
▶ Given a set of algebras {Ai : i ∈ I} s.t. Ai is an Li -algebra,

let
⊗

i∈I Ai be the
⊗

i∈I Li -algebra with universe ∏i∈I Ai s.t.

f
⊗

i∈I Ai (⃗a1, . . . , a⃗n) := ⟨φi
Ai (⃗a1(i), . . . , a⃗n(i)) : i ∈ I ⟩.

▶ Given a set of logics {⊢i : i ∈ I}, let
⊗

i∈I ⊢i be the logic
induced by the class of matrices

{⟨
⊗
i∈I

Ai ,∏
i∈I

Fi ⟩ : ⟨Ai ,Fi ⟩ ∈ Mod≡(⊢i)}.

Theorem
▶ Mod≡(

⊗
i∈I ⊢i) is the closure under Psd of the above display.

▶ J⊗i∈I ⊢iK is the infimum of {J⊢iK : i ∈ I} in Log.

Do infima exist?
▶ Given a set of algebraic languages {Li : i ∈ I}, let

⊗
i∈I Li be

the language whose n-ary operations f are the sequences

f = ⟨φi (x1, . . . , xn) : i ∈ I ⟩

where φi is an n-ary term of Li .
▶ Given a set of algebras {Ai : i ∈ I} s.t. Ai is an Li -algebra,

let
⊗

i∈I Ai be the
⊗

i∈I Li -algebra with universe ∏i∈I Ai s.t.

f
⊗

i∈I Ai (⃗a1, . . . , a⃗n) := ⟨φi
Ai (⃗a1(i), . . . , a⃗n(i)) : i ∈ I ⟩.

▶ Given a set of logics {⊢i : i ∈ I}, let
⊗

i∈I ⊢i be the logic
induced by the class of matrices

{⟨
⊗
i∈I

Ai ,∏
i∈I

Fi ⟩ : ⟨Ai ,Fi ⟩ ∈ Mod≡(⊢i)}.

Theorem
Log is a set-complete meet-semilattice.

Do suprema exist?

▶ No: even binary suprema may fail to exist.
▶ Let CPC¬ be the negation fragment of classical logic,

x �¬¬x ¬¬x � x x ,¬x � y .

▶ Consider the algebra A = ⟨A;∨, a,b, 0⟩ depicted below.

• 1
??

??
??

?

��
��
��
�

c •
??

??
??

?

��
��
��
� • b

��
��
��

a •
??

??
??

? e • • d

��
��
��
�

0 •

Then let L be the logic induced by the pair of matrices

{⟨A, {1}⟩, ⟨A, {1, c}⟩}.

▶ The supremum of JCPC¬K and JLK does not exist in Log.

Do suprema exist?
▶ No: even binary suprema may fail to exist.

▶ Let CPC¬ be the negation fragment of classical logic,

x �¬¬x ¬¬x � x x ,¬x � y .

▶ Consider the algebra A = ⟨A;∨, a,b, 0⟩ depicted below.

• 1
??

??
??

?

��
��
��
�

c •
??

??
??

?

��
��
��
� • b

��
��
��

a •
??

??
??

? e • • d

��
��
��
�

0 •

Then let L be the logic induced by the pair of matrices

{⟨A, {1}⟩, ⟨A, {1, c}⟩}.

▶ The supremum of JCPC¬K and JLK does not exist in Log.

Do suprema exist?
▶ No: even binary suprema may fail to exist.
▶ Let CPC¬ be the negation fragment of classical logic,

x �¬¬x ¬¬x � x x ,¬x � y .

▶ Consider the algebra A = ⟨A;∨, a,b, 0⟩ depicted below.

• 1
??

??
??

?

��
��
��
�

c •
??

??
??

?

��
��
��
� • b

��
��
��

a •
??

??
??

? e • • d

��
��
��
�

0 •

Then let L be the logic induced by the pair of matrices

{⟨A, {1}⟩, ⟨A, {1, c}⟩}.

▶ The supremum of JCPC¬K and JLK does not exist in Log.

Do suprema exist?
▶ No: even binary suprema may fail to exist.
▶ Let CPC¬ be the negation fragment of classical logic,

x �¬¬x ¬¬x � x x ,¬x � y .

▶ Consider the algebra A = ⟨A;∨, a,b, 0⟩ depicted below.

• 1
??

??
??

?

��
��
��
�

c •
??

??
??

?

��
��
��
� • b

��
��
��

a •
??

??
??

? e • • d

��
��
��
�

0 •

Then let L be the logic induced by the pair of matrices

{⟨A, {1}⟩, ⟨A, {1, c}⟩}.

▶ The supremum of JCPC¬K and JLK does not exist in Log.

Do suprema exist?
▶ No: even binary suprema may fail to exist.
▶ Let CPC¬ be the negation fragment of classical logic,

x �¬¬x ¬¬x � x x ,¬x � y .

▶ Consider the algebra A = ⟨A;∨, a,b, 0⟩ depicted below.

• 1
??

??
??

?

��
��
��
�

c •
??

??
??

?

��
��
��
� • b

��
��
��

a •
??

??
??

? e • • d

��
��
��
�

0 •

Then let L be the logic induced by the pair of matrices

{⟨A, {1}⟩, ⟨A, {1, c}⟩}.

▶ The supremum of JCPC¬K and JLK does not exist in Log.

Do suprema exist?
▶ No: even binary suprema may fail to exist.
▶ Let CPC¬ be the negation fragment of classical logic,

x �¬¬x ¬¬x � x x ,¬x � y .

▶ Consider the algebra A = ⟨A;∨, a,b, 0⟩ depicted below.

• 1
??

??
??

?

��
��
��
�

c •
??

??
??

?

��
��
��
� • b

��
��
��

a •
??

??
??

? e • • d

��
��
��
�

0 •

Then let L be the logic induced by the pair of matrices

{⟨A, {1}⟩, ⟨A, {1, c}⟩}.

▶ The supremum of JCPC¬K and JLK does not exist in Log.

Do suprema exist?
▶ No: even binary suprema may fail to exist.
▶ Let CPC¬ be the negation fragment of classical logic,

x �¬¬x ¬¬x � x x ,¬x � y .

▶ Consider the algebra A = ⟨A;∨, a,b, 0⟩ depicted below.

• 1
??

??
??

?

��
��
��
�

c •
??

??
??

?

��
��
��
� • b

��
��
��

a •
??

??
??

? e • • d

��
��
��
�

0 •

Then let L be the logic induced by the pair of matrices

{⟨A, {1}⟩, ⟨A, {1, c}⟩}.

▶ The supremum of JCPC¬K and JLK does not exist in Log.

Do suprema exist?
▶ No: even binary suprema may fail to exist.
▶ Let CPC¬ be the negation fragment of classical logic,

x �¬¬x ¬¬x � x x ,¬x � y .

▶ Consider the algebra A = ⟨A;∨, a,b, 0⟩ depicted below.

• 1
??

??
??

?

��
��
��
�

c •
??

??
??

?

��
��
��
� • b

��
��
��

a •
??

??
??

? e • • d

��
��
��
�

0 •

Then let L be the logic induced by the pair of matrices

{⟨A, {1}⟩, ⟨A, {1, c}⟩}.

▶ The supremum of JCPC¬K and JLK does not exist in Log.

Leibniz classes and hierarchy

Basic question:
▶ What are Leibniz classes of logics?

Leibniz classes and hierarchy

Basic question:

▶ What are Leibniz classes of logics?

Leibniz classes and hierarchy

Basic question:
▶ What are Leibniz classes of logics?

What is the Leibniz hierarchy?

▶ A classification of logics in terms syntactic principles that
govern the behaviour of the indiscernibility relation.

Example.
▶ A logic ⊢ is equivalential if there is a non-empty set of

formulas ∆(x , y)

▶ Syntactic characterization. A logic ⊢ is equivalential iff
there is a non-empty set ∆(x , y) of formulas s.t.

▶ Equivalential logics form a Leibniz class.

What is the Leibniz hierarchy?
▶ A classification of logics in terms syntactic principles that

govern the behaviour of the indiscernibility relation.

Example.
▶ A logic ⊢ is equivalential if there is a non-empty set of

formulas ∆(x , y)

▶ Syntactic characterization. A logic ⊢ is equivalential iff
there is a non-empty set ∆(x , y) of formulas s.t.

▶ Equivalential logics form a Leibniz class.

What is the Leibniz hierarchy?
▶ A classification of logics in terms syntactic principles that

govern the behaviour of the indiscernibility relation.
Example.

▶ A logic ⊢ is equivalential if there is a non-empty set of
formulas ∆(x , y)

▶ Syntactic characterization. A logic ⊢ is equivalential iff
there is a non-empty set ∆(x , y) of formulas s.t.

▶ Equivalential logics form a Leibniz class.

What is the Leibniz hierarchy?
▶ A classification of logics in terms syntactic principles that

govern the behaviour of the indiscernibility relation.
Example.

▶ A logic ⊢ is equivalential if there is a non-empty set of
formulas ∆(x , y) that defines indiscernibility

▶ Syntactic characterization. A logic ⊢ is equivalential iff
there is a non-empty set ∆(x , y) of formulas s.t.

▶ Equivalential logics form a Leibniz class.

What is the Leibniz hierarchy?
▶ A classification of logics in terms syntactic principles that

govern the behaviour of the indiscernibility relation.
Example.

▶ A logic ⊢ is equivalential if there is a non-empty set of
formulas ∆(x , y) s.t. for all models ⟨A,F ⟩ of ⊢ and a, c ∈ A,

a≡ c ⇐⇒ ∆A(a, c) ⊆ F .

▶ Syntactic characterization. A logic ⊢ is equivalential iff
there is a non-empty set ∆(x , y) of formulas s.t.

▶ Equivalential logics form a Leibniz class.

What is the Leibniz hierarchy?
▶ A classification of logics in terms syntactic principles that

govern the behaviour of the indiscernibility relation.
Example.

▶ A logic ⊢ is equivalential if there is a non-empty set of
formulas ∆(x , y) s.t. for all models ⟨A,F ⟩ of ⊢ and a, c ∈ A,

a≡ c ⇐⇒ ∆A(a, c) ⊆ F .

▶ Syntactic characterization. A logic ⊢ is equivalential iff
there is a non-empty set ∆(x , y) of formulas s.t.

▶ Equivalential logics form a Leibniz class.

What is the Leibniz hierarchy?
▶ A classification of logics in terms syntactic principles that

govern the behaviour of the indiscernibility relation.
Example.

▶ A logic ⊢ is equivalential if there is a non-empty set of
formulas ∆(x , y) s.t. for all models ⟨A,F ⟩ of ⊢ and a, c ∈ A,

a≡ c ⇐⇒ ∆A(a, c) ⊆ F .

▶ Syntactic characterization. A logic ⊢ is equivalential iff
there is a non-empty set ∆(x , y) of formulas s.t.

∅ ⊢∆(x , x) x ,∆(x , y) ⊢ y∪
1⩽i⩽n

∆(xi , yi) ⊢ ∆(f (x1, . . . , xn), f (y1, . . . , yn))

for every n-ary connective f .

▶ Equivalential logics form a Leibniz class.

What is the Leibniz hierarchy?
▶ A classification of logics in terms syntactic principles that

govern the behaviour of the indiscernibility relation.
Example.

▶ A logic ⊢ is equivalential if there is a non-empty set of
formulas ∆(x , y) s.t. for all models ⟨A,F ⟩ of ⊢ and a, c ∈ A,

a≡ c ⇐⇒ ∆A(a, c) ⊆ F .

▶ Syntactic characterization. A logic ⊢ is equivalential iff
there is a non-empty set ∆(x , y) of formulas s.t.

∅ ⊢∆(x , x) x ,∆(x , y) ⊢ y∪
1⩽i⩽n

∆(xi , yi) ⊢ ∆(f (x1, . . . , xn), f (y1, . . . , yn))

for every n-ary connective f .
▶ Equivalential logics form a Leibniz class.

▶ A Leibniz condition is a sequence Φ = {⊢α : α ∈ OR} of
logics, indexed by all ordinals, s.t.

if α ⩽ β, then ⊢β is interpretable into ⊢α .

▶ A logic ⊢ satisfies Φ if some ⊢α is intepretable in ⊢.
▶ A Leibniz class is a class of logics of the form Log(Φ), for

some Leibniz condition Φ.

▶ A Leibniz condition is a sequence Φ = {⊢α : α ∈ OR} of
logics, indexed by all ordinals, s.t.

if α ⩽ β, then ⊢β is interpretable into ⊢α .

▶ A logic ⊢ satisfies Φ if some ⊢α is intepretable in ⊢.

▶ A Leibniz class is a class of logics of the form Log(Φ), for
some Leibniz condition Φ.

▶ A Leibniz condition is a sequence Φ = {⊢α : α ∈ OR} of
logics, indexed by all ordinals, s.t.

if α ⩽ β, then ⊢β is interpretable into ⊢α .

▶ A logic ⊢ satisfies Φ if some ⊢α is intepretable in ⊢. Let

Log(Φ) := {⊢ : ⊢ is a logic and satisfies Φ}.

▶ A Leibniz class is a class of logics of the form Log(Φ), for
some Leibniz condition Φ.

▶ A Leibniz condition is a sequence Φ = {⊢α : α ∈ OR} of
logics, indexed by all ordinals, s.t.

if α ⩽ β, then ⊢β is interpretable into ⊢α .

▶ A logic ⊢ satisfies Φ if some ⊢α is intepretable in ⊢. Let

Log(Φ) := {⊢ : ⊢ is a logic and satisfies Φ}.

▶ A Leibniz class is a class of logics of the form Log(Φ), for
some Leibniz condition Φ.

Theorem
Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is “essentially” a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics,

compatible expansions, and non-indexed products indexed
by arbitrarily large sets.

Theorem
Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is “essentially” a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics,

compatible expansions, and non-indexed products indexed
by arbitrarily large sets.

Proof sketch of 3 ⇒ 1.
▶ Consider the cumulative hierarchy of sets {Vα : α ∈ OR}.

▶ For every ordinal α, define the set Kα := K∩ Vα.
▶ Let ⊢α be the non-indexed product

⊗
Kα.

▶ Then consider the sequence Φ = {⊢α : α ∈ OR}.
▶ Φ is a Leibniz condition, as if α ⩽ β, then Kα ⊆ Kβ.
▶ If ⊢ satisfies Φ,
▶ If ⊢ ∈ K,
▶ K is the class of logics satisfying Φ.

Theorem
Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is “essentially” a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics,

compatible expansions, and non-indexed products indexed
by arbitrarily large sets.

Proof sketch of 3 ⇒ 1.
▶ Consider the cumulative hierarchy of sets {Vα : α ∈ OR}.
▶ For every ordinal α, define the set Kα := K∩ Vα.

▶ Let ⊢α be the non-indexed product
⊗

Kα.
▶ Then consider the sequence Φ = {⊢α : α ∈ OR}.
▶ Φ is a Leibniz condition, as if α ⩽ β, then Kα ⊆ Kβ.
▶ If ⊢ satisfies Φ,
▶ If ⊢ ∈ K,
▶ K is the class of logics satisfying Φ.

Theorem
Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is “essentially” a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics,

compatible expansions, and non-indexed products indexed
by arbitrarily large sets.

Proof sketch of 3 ⇒ 1.
▶ Consider the cumulative hierarchy of sets {Vα : α ∈ OR}.
▶ For every ordinal α, define the set Kα := K∩ Vα.
▶ Let ⊢α be the non-indexed product

⊗
Kα.

▶ Then consider the sequence Φ = {⊢α : α ∈ OR}.
▶ Φ is a Leibniz condition, as if α ⩽ β, then Kα ⊆ Kβ.
▶ If ⊢ satisfies Φ,
▶ If ⊢ ∈ K,
▶ K is the class of logics satisfying Φ.

Theorem
Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is “essentially” a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics,

compatible expansions, and non-indexed products indexed
by arbitrarily large sets.

Proof sketch of 3 ⇒ 1.
▶ Consider the cumulative hierarchy of sets {Vα : α ∈ OR}.
▶ For every ordinal α, define the set Kα := K∩ Vα.
▶ Let ⊢α be the non-indexed product

⊗
Kα.

▶ Then consider the sequence Φ = {⊢α : α ∈ OR}.

▶ Φ is a Leibniz condition, as if α ⩽ β, then Kα ⊆ Kβ.
▶ If ⊢ satisfies Φ,
▶ If ⊢ ∈ K,
▶ K is the class of logics satisfying Φ.

Theorem
Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is “essentially” a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics,

compatible expansions, and non-indexed products indexed
by arbitrarily large sets.

Proof sketch of 3 ⇒ 1.
▶ Consider the cumulative hierarchy of sets {Vα : α ∈ OR}.
▶ For every ordinal α, define the set Kα := K∩ Vα.
▶ Let ⊢α be the non-indexed product

⊗
Kα.

▶ Then consider the sequence Φ = {⊢α : α ∈ OR}.
▶ Φ is a Leibniz condition, as if α ⩽ β, then Kα ⊆ Kβ.

▶ If ⊢ satisfies Φ,
▶ If ⊢ ∈ K,
▶ K is the class of logics satisfying Φ.

Theorem
Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is “essentially” a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics,

compatible expansions, and non-indexed products indexed
by arbitrarily large sets.

Proof sketch of 3 ⇒ 1.
▶ Consider the cumulative hierarchy of sets {Vα : α ∈ OR}.
▶ For every ordinal α, define the set Kα := K∩ Vα.
▶ Let ⊢α be the non-indexed product

⊗
Kα.

▶ Then consider the sequence Φ = {⊢α : α ∈ OR}.
▶ Φ is a Leibniz condition, as if α ⩽ β, then Kα ⊆ Kβ.
▶ If ⊢ satisfies Φ,

▶ If ⊢ ∈ K,
▶ K is the class of logics satisfying Φ.

Theorem
Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is “essentially” a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics,

compatible expansions, and non-indexed products indexed
by arbitrarily large sets.

Proof sketch of 3 ⇒ 1.
▶ Consider the cumulative hierarchy of sets {Vα : α ∈ OR}.
▶ For every ordinal α, define the set Kα := K∩ Vα.
▶ Let ⊢α be the non-indexed product

⊗
Kα.

▶ Then consider the sequence Φ = {⊢α : α ∈ OR}.
▶ Φ is a Leibniz condition, as if α ⩽ β, then Kα ⊆ Kβ.
▶ If ⊢ satisfies Φ, then some ⊢α is interpretable into ⊢.

▶ If ⊢ ∈ K,
▶ K is the class of logics satisfying Φ.

Theorem
Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is “essentially” a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics,

compatible expansions, and non-indexed products indexed
by arbitrarily large sets.

Proof sketch of 3 ⇒ 1.
▶ Consider the cumulative hierarchy of sets {Vα : α ∈ OR}.
▶ For every ordinal α, define the set Kα := K∩ Vα.
▶ Let ⊢α be the non-indexed product

⊗
Kα.

▶ Then consider the sequence Φ = {⊢α : α ∈ OR}.
▶ Φ is a Leibniz condition, as if α ⩽ β, then Kα ⊆ Kβ.
▶ If ⊢ satisfies Φ, then ⊢ is a term-equivalent to a compatible

expansion of some ⊢α.

▶ If ⊢ ∈ K,
▶ K is the class of logics satisfying Φ.

Theorem
Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is “essentially” a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics,

compatible expansions, and non-indexed products indexed
by arbitrarily large sets.

Proof sketch of 3 ⇒ 1.
▶ Consider the cumulative hierarchy of sets {Vα : α ∈ OR}.
▶ For every ordinal α, define the set Kα := K∩ Vα.
▶ Let ⊢α be the non-indexed product

⊗
Kα.

▶ Then consider the sequence Φ = {⊢α : α ∈ OR}.
▶ Φ is a Leibniz condition, as if α ⩽ β, then Kα ⊆ Kβ.
▶ If ⊢ satisfies Φ, then ⊢ is a term-equivalent to a compatible

expansion of a non-indexed product of a set of logics in K.

▶ If ⊢ ∈ K,
▶ K is the class of logics satisfying Φ.

Theorem
Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is “essentially” a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics,

compatible expansions, and non-indexed products indexed
by arbitrarily large sets.

Proof sketch of 3 ⇒ 1.
▶ Consider the cumulative hierarchy of sets {Vα : α ∈ OR}.
▶ For every ordinal α, define the set Kα := K∩ Vα.
▶ Let ⊢α be the non-indexed product

⊗
Kα.

▶ Then consider the sequence Φ = {⊢α : α ∈ OR}.
▶ Φ is a Leibniz condition, as if α ⩽ β, then Kα ⊆ Kβ.
▶ If ⊢ satisfies Φ, then ⊢ ∈ K.

▶ If ⊢ ∈ K,
▶ K is the class of logics satisfying Φ.

Theorem
Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is “essentially” a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics,

compatible expansions, and non-indexed products indexed
by arbitrarily large sets.

Proof sketch of 3 ⇒ 1.
▶ Consider the cumulative hierarchy of sets {Vα : α ∈ OR}.
▶ For every ordinal α, define the set Kα := K∩ Vα.
▶ Let ⊢α be the non-indexed product

⊗
Kα.

▶ Then consider the sequence Φ = {⊢α : α ∈ OR}.
▶ Φ is a Leibniz condition, as if α ⩽ β, then Kα ⊆ Kβ.
▶ If ⊢ satisfies Φ, then ⊢ ∈ K.
▶ If ⊢ ∈ K,

▶ K is the class of logics satisfying Φ.

Theorem
Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is “essentially” a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics,

compatible expansions, and non-indexed products indexed
by arbitrarily large sets.

Proof sketch of 3 ⇒ 1.
▶ Consider the cumulative hierarchy of sets {Vα : α ∈ OR}.
▶ For every ordinal α, define the set Kα := K∩ Vα.
▶ Let ⊢α be the non-indexed product

⊗
Kα.

▶ Then consider the sequence Φ = {⊢α : α ∈ OR}.
▶ Φ is a Leibniz condition, as if α ⩽ β, then Kα ⊆ Kβ.
▶ If ⊢ satisfies Φ, then ⊢ ∈ K.
▶ If ⊢ ∈ K, then ⊢ ∈ Vα ∩ K = Kα for some α.

▶ K is the class of logics satisfying Φ.

Theorem
Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is “essentially” a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics,

compatible expansions, and non-indexed products indexed
by arbitrarily large sets.

Proof sketch of 3 ⇒ 1.
▶ Consider the cumulative hierarchy of sets {Vα : α ∈ OR}.
▶ For every ordinal α, define the set Kα := K∩ Vα.
▶ Let ⊢α be the non-indexed product

⊗
Kα.

▶ Then consider the sequence Φ = {⊢α : α ∈ OR}.
▶ Φ is a Leibniz condition, as if α ⩽ β, then Kα ⊆ Kβ.
▶ If ⊢ satisfies Φ, then ⊢ ∈ K.
▶ If ⊢ ∈ K, then ⊢α is intepretable in ⊢ for some α.

▶ K is the class of logics satisfying Φ.

Theorem
Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is “essentially” a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics,

compatible expansions, and non-indexed products indexed
by arbitrarily large sets.

Proof sketch of 3 ⇒ 1.
▶ Consider the cumulative hierarchy of sets {Vα : α ∈ OR}.
▶ For every ordinal α, define the set Kα := K∩ Vα.
▶ Let ⊢α be the non-indexed product

⊗
Kα.

▶ Then consider the sequence Φ = {⊢α : α ∈ OR}.
▶ Φ is a Leibniz condition, as if α ⩽ β, then Kα ⊆ Kβ.
▶ If ⊢ satisfies Φ, then ⊢ ∈ K.
▶ If ⊢ ∈ K, then ⊢ satisfies Φ.

▶ K is the class of logics satisfying Φ.

Theorem
Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is “essentially” a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics,

compatible expansions, and non-indexed products indexed
by arbitrarily large sets.

Proof sketch of 3 ⇒ 1.
▶ Consider the cumulative hierarchy of sets {Vα : α ∈ OR}.
▶ For every ordinal α, define the set Kα := K∩ Vα.
▶ Let ⊢α be the non-indexed product

⊗
Kα.

▶ Then consider the sequence Φ = {⊢α : α ∈ OR}.
▶ Φ is a Leibniz condition, as if α ⩽ β, then Kα ⊆ Kβ.
▶ If ⊢ satisfies Φ, then ⊢ ∈ K.
▶ If ⊢ ∈ K, then ⊢ satisfies Φ.
▶ K is the class of logics satisfying Φ.

Indecomposable Leibniz classes

Basic question:
▶ Which of Leibniz classes are primitive or fundamental?

Indecomposable Leibniz classes

Basic question:

▶ Which of Leibniz classes are primitive or fundamental?

Indecomposable Leibniz classes

Basic question:
▶ Which of Leibniz classes are primitive or fundamental?

▶ When ordered under inclusion, Leibniz classes form a “lattice”.

Definition
A Leibniz class K is said to be

▶ meet-irreducible if for every pair K1 and K2 of Leibniz classes
(of logics with some tautology),

if K = K1 ∩ K2, then either K = K1 or K = K2.

▶ meet-prime if for every pair of Leibniz classes K1 and K2 (of
logics with some tautology),

if K1 ∩ K2 ⊆ K, then either K1 ⊆ K or K2 ⊆ K.

▶ Intuitively, a Leibniz class is meet-prime (resp. irreducible)
when it captures a fundamental concept.

▶ We shall apply this test to two conditions, i.e. the definability
of truth-sets and of indiscernibility.

▶ When ordered under inclusion, Leibniz classes form a “lattice”.

Definition
A Leibniz class K is said to be

▶ meet-irreducible if for every pair K1 and K2 of Leibniz classes
(of logics with some tautology),

if K = K1 ∩ K2, then either K = K1 or K = K2.

▶ meet-prime if for every pair of Leibniz classes K1 and K2 (of
logics with some tautology),

if K1 ∩ K2 ⊆ K, then either K1 ⊆ K or K2 ⊆ K.

▶ Intuitively, a Leibniz class is meet-prime (resp. irreducible)
when it captures a fundamental concept.

▶ We shall apply this test to two conditions, i.e. the definability
of truth-sets and of indiscernibility.

▶ When ordered under inclusion, Leibniz classes form a “lattice”.

Definition
A Leibniz class K is said to be

▶ meet-irreducible if for every pair K1 and K2 of Leibniz classes
(of logics with some tautology),

if K = K1 ∩ K2, then either K = K1 or K = K2.

▶ meet-prime if for every pair of Leibniz classes K1 and K2 (of
logics with some tautology),

if K1 ∩ K2 ⊆ K, then either K1 ⊆ K or K2 ⊆ K.

▶ Intuitively, a Leibniz class is meet-prime (resp. irreducible)
when it captures a fundamental concept.

▶ We shall apply this test to two conditions, i.e. the definability
of truth-sets and of indiscernibility.

▶ When ordered under inclusion, Leibniz classes form a “lattice”.

Definition
A Leibniz class K is said to be

▶ meet-irreducible if for every pair K1 and K2 of Leibniz classes
(of logics with some tautology),

if K = K1 ∩ K2, then either K = K1 or K = K2.

▶ meet-prime if for every pair of Leibniz classes K1 and K2 (of
logics with some tautology),

if K1 ∩ K2 ⊆ K, then either K1 ⊆ K or K2 ⊆ K.

▶ Intuitively, a Leibniz class is meet-prime (resp. irreducible)
when it captures a fundamental concept.

▶ We shall apply this test to two conditions, i.e. the definability
of truth-sets and of indiscernibility.

▶ When ordered under inclusion, Leibniz classes form a “lattice”.

Definition
A Leibniz class K is said to be

▶ meet-irreducible if for every pair K1 and K2 of Leibniz classes
(of logics with some tautology),

if K = K1 ∩ K2, then either K = K1 or K = K2.

▶ meet-prime if for every pair of Leibniz classes K1 and K2 (of
logics with some tautology),

if K1 ∩ K2 ⊆ K, then either K1 ⊆ K or K2 ⊆ K.

▶ Intuitively, a Leibniz class is meet-prime (resp. irreducible)
when it captures a fundamental concept.

▶ We shall apply this test to two conditions, i.e. the definability
of truth-sets and of indiscernibility.

Definability of truth-sets.
▶ A logic ⊢ is truth-equational if there is a set of equations

E (x) s.t. for every ⟨A,F ⟩ ∈ Mod≡(⊢)

a ∈ F ⇐⇒ A ⊨ E (a), for all a ∈ A.

▶ Let ⊢1, ⊢2 be non truth-equational logics (with tautologies).
▶ Goal: find a non truth-equational logics in which ⊢1 and ⊢2

are interpretable.
▶ As ⊢1 and ⊢2 are not truth-equational, there are matrices

⟨A1,F1⟩, ⟨A1,G1⟩ ∈ Mod≡(⊢1) s.t. ∅ ⊊ F1 ⊊ G1

⟨A2,F2⟩, ⟨A2,G2⟩ ∈ Mod≡(⊢2) s.t. ∅ ⊊ F2 ⊊ G2.

Definability of truth-sets.
▶ A logic ⊢ with tautologies is truth-equational if there are no

⟨A,F ⟩, ⟨A,G ⟩ ∈ Mod≡(⊢) such that ∅ ⊊ F ⊊ G .

▶ Let ⊢1, ⊢2 be non truth-equational logics (with tautologies).
▶ Goal: find a non truth-equational logics in which ⊢1 and ⊢2

are interpretable.
▶ As ⊢1 and ⊢2 are not truth-equational, there are matrices

⟨A1,F1⟩, ⟨A1,G1⟩ ∈ Mod≡(⊢1) s.t. ∅ ⊊ F1 ⊊ G1

⟨A2,F2⟩, ⟨A2,G2⟩ ∈ Mod≡(⊢2) s.t. ∅ ⊊ F2 ⊊ G2.

Definability of truth-sets.
▶ A logic ⊢ with tautologies is truth-equational if there are no

⟨A,F ⟩, ⟨A,G ⟩ ∈ Mod≡(⊢) such that ∅ ⊊ F ⊊ G .

Theorem
Truth-equational logics form a meet-prime Leibniz class.

Proof sketch.

▶ Let ⊢1, ⊢2 be non truth-equational logics (with tautologies).
▶ Goal: find a non truth-equational logics in which ⊢1 and ⊢2

are interpretable.
▶ As ⊢1 and ⊢2 are not truth-equational, there are matrices

⟨A1,F1⟩, ⟨A1,G1⟩ ∈ Mod≡(⊢1) s.t. ∅ ⊊ F1 ⊊ G1

⟨A2,F2⟩, ⟨A2,G2⟩ ∈ Mod≡(⊢2) s.t. ∅ ⊊ F2 ⊊ G2.

Definability of truth-sets.
▶ A logic ⊢ with tautologies is truth-equational if there are no

⟨A,F ⟩, ⟨A,G ⟩ ∈ Mod≡(⊢) such that ∅ ⊊ F ⊊ G .

Theorem
Truth-equational logics form a meet-prime Leibniz class.

Proof sketch.
▶ Let ⊢1, ⊢2 be non truth-equational logics (with tautologies).

▶ Goal: find a non truth-equational logics in which ⊢1 and ⊢2
are interpretable.

▶ As ⊢1 and ⊢2 are not truth-equational, there are matrices

⟨A1,F1⟩, ⟨A1,G1⟩ ∈ Mod≡(⊢1) s.t. ∅ ⊊ F1 ⊊ G1

⟨A2,F2⟩, ⟨A2,G2⟩ ∈ Mod≡(⊢2) s.t. ∅ ⊊ F2 ⊊ G2.

Definability of truth-sets.
▶ A logic ⊢ with tautologies is truth-equational if there are no

⟨A,F ⟩, ⟨A,G ⟩ ∈ Mod≡(⊢) such that ∅ ⊊ F ⊊ G .

Theorem
Truth-equational logics form a meet-prime Leibniz class.

Proof sketch.
▶ Let ⊢1, ⊢2 be non truth-equational logics (with tautologies).
▶ Goal: find a non truth-equational logics in which ⊢1 and ⊢2

are interpretable.

▶ As ⊢1 and ⊢2 are not truth-equational, there are matrices

⟨A1,F1⟩, ⟨A1,G1⟩ ∈ Mod≡(⊢1) s.t. ∅ ⊊ F1 ⊊ G1

⟨A2,F2⟩, ⟨A2,G2⟩ ∈ Mod≡(⊢2) s.t. ∅ ⊊ F2 ⊊ G2.

Definability of truth-sets.
▶ A logic ⊢ with tautologies is truth-equational if there are no

⟨A,F ⟩, ⟨A,G ⟩ ∈ Mod≡(⊢) such that ∅ ⊊ F ⊊ G .

Theorem
Truth-equational logics form a meet-prime Leibniz class.

Proof sketch.
▶ Let ⊢1, ⊢2 be non truth-equational logics (with tautologies).
▶ Goal: find a non truth-equational logics in which ⊢1 and ⊢2

are interpretable.
▶ As ⊢1 and ⊢2 are not truth-equational, there are matrices

⟨A1,F1⟩, ⟨A1,G1⟩ ∈ Mod≡(⊢1) s.t. ∅ ⊊ F1 ⊊ G1

⟨A2,F2⟩, ⟨A2,G2⟩ ∈ Mod≡(⊢2) s.t. ∅ ⊊ F2 ⊊ G2.

v

F
2

G
2
 \ F

2

A
2
 \ G

2

v

F
1

G
1
\ F

1

A
1
\ G

1

Algebra A
1

Algebra A
2

▶ We want to merge the two algebras into a single one.
▶ The problem is that A1 and A2 have not the same universe.
▶ This is solved by “adding points” ’ to A1 and A2, taking

sufficiently large direct powers.
▶ We assume w.l.o.g. that A1 is Aκ

1 and A2 is Aκ
2.

v

F
2

G
2
 \ F

2

A
2
 \ G

2

v

F
1

G
1
\ F

1

A
1
\ G

1

Algebra A
1

Algebra A
2

▶ We want to merge the two algebras into a single one.

▶ The problem is that A1 and A2 have not the same universe.
▶ This is solved by “adding points” ’ to A1 and A2, taking

sufficiently large direct powers.
▶ We assume w.l.o.g. that A1 is Aκ

1 and A2 is Aκ
2.

v

F
2

G
2
 \ F

2

A
2
 \ G

2

v

F
1

G
1
\ F

1

A
1
\ G

1

Algebra A
1

Algebra A
2

▶ We want to merge the two algebras into a single one.
▶ The problem is that A1 and A2 have not the same universe.

▶ This is solved by “adding points” ’ to A1 and A2, taking
sufficiently large direct powers.

▶ We assume w.l.o.g. that A1 is Aκ
1 and A2 is Aκ

2.

v

F
2

G
2
 \ F

2

A
2
 \ G

2

v

F
1

G
1
\ F

1

A
1
\ G

1

Algebra A
1

Algebra A
2

▶ We want to merge the two algebras into a single one.
▶ The problem is that A1 and A2 have not the same universe.
▶ This is solved by “adding points” ’ to A1 and A2, taking

sufficiently large direct powers.

▶ We assume w.l.o.g. that A1 is Aκ
1 and A2 is Aκ

2.

A \ G

F

G \ F

Algebra A
1
k Algebra A

2
k

F

G \ F

A \ G

▶ We want to merge the two algebras into a single one.
▶ The problem is that A1 and A2 have not the same universe.
▶ This is solved by “adding points” ’ to A1 and A2, taking

sufficiently large direct powers.

▶ We assume w.l.o.g. that A1 is Aκ
1 and A2 is Aκ

2.

A \ G

F

G \ F

Algebra A
1
k Algebra A

2
k

F

G \ F

A \ G

▶ We want to merge the two algebras into a single one.
▶ The problem is that A1 and A2 have not the same universe.
▶ This is solved by “adding points” ’ to A1 and A2, taking

sufficiently large direct powers.
▶ We assume w.l.o.g. that A1 is Aκ

1 and A2 is Aκ
2.

Algebra A
1

Algebra A
2

Algebra A

▶ We merge A1 and A2 into an algebra A with universe
A = A1 = A2 endowed with all finitary operations.

▶ Let ⊢ be the logic induced by the matrices ⟨A,F ⟩ and ⟨A,G ⟩.
▶

▶ The Leibniz class of truth-equational logics is a prime.

Algebra A
1

Algebra A
2

Algebra A

▶ We merge A1 and A2 into an algebra A with universe
A = A1 = A2 endowed with all finitary operations.

▶ Let ⊢ be the logic induced by the matrices ⟨A,F ⟩ and ⟨A,G ⟩.

▶

▶ The Leibniz class of truth-equational logics is a prime.

Algebra A
1

Algebra A
2

Algebra A

▶ We merge A1 and A2 into an algebra A with universe
A = A1 = A2 endowed with all finitary operations.

▶ Let ⊢ be the logic induced by the matrices ⟨A,F ⟩ and ⟨A,G ⟩.
▶ Goal: to show that ⊢ is not truth-equational and that ⊢1 and

⊢2 are interpretable in ⊢.

▶ The Leibniz class of truth-equational logics is a prime.

Algebra A
1

Algebra A
2

Algebra A

▶ We merge A1 and A2 into an algebra A with universe
A = A1 = A2 endowed with all finitary operations.

▶ Let ⊢ be the logic induced by the matrices ⟨A,F ⟩ and ⟨A,G ⟩.
▶ ⊢ is not truth-equational, since ⟨A,F ⟩, ⟨A,G ⟩ ∈ Mod≡(⊢)

and ∅ ⊊ F ⊊ G .

▶ The Leibniz class of truth-equational logics is a prime.

Algebra A
1

Algebra A
2

Algebra A

▶ We merge A1 and A2 into an algebra A with universe
A = A1 = A2 endowed with all finitary operations.

▶ Let ⊢ be the logic induced by the matrices ⟨A,F ⟩ and ⟨A,G ⟩.
▶ ⊢i is interpretable into ⊢, since ⊢ is induced by matrices

⟨A,F ⟩, ⟨A,G ⟩ with a reduct in Mod≡(⊢i).

▶ The Leibniz class of truth-equational logics is a prime.

Algebra A
1

Algebra A
2

Algebra A

▶ We merge A1 and A2 into an algebra A with universe
A = A1 = A2 endowed with all finitary operations.

▶ Let ⊢ be the logic induced by the matrices ⟨A,F ⟩ and ⟨A,G ⟩.
▶ ⊢i is interpretable into ⊢, since ⊢ is induced by matrices

⟨A,F ⟩, ⟨A,G ⟩ with a reduct in Mod≡(⊢i).
▶ The Leibniz class of truth-equational logics is a prime.

Definability of the indiscernibility relation.

▶ A logic ⊢ is equivalential if there is a non-empty set of
formulas ∆(x , y) s.t. for all models ⟨A,F ⟩ of ⊢ and a, c ∈ A,

a≡ c ⇐⇒ ∆A(a, c) ⊆ F .

▶ Problem.
The class of equivalential logics is not meet-irreducible.

▶ The class of equivalential logics is given by the Leibniz
condition

Φ = {⊢eq
α : α ∈ OR}

where ⊢eq
α is the logic axiomatized by the rules

∅ � ∆α(x , x) x ,∆α(x , y)� y

∆α(x1, y1) ∪ ∆α(x2, y2)� ∆α(x1 ⊸ϵ x2, y1 ⊸ϵ y2)

Definability of the indiscernibility relation.

▶ A logic ⊢ is equivalential if there is a non-empty set of
formulas ∆(x , y) s.t. for all models ⟨A,F ⟩ of ⊢ and a, c ∈ A,

a≡ c ⇐⇒ ∆A(a, c) ⊆ F .

▶ Problem.
The class of equivalential logics is not meet-irreducible.

▶ The class of equivalential logics is given by the Leibniz
condition

Φ = {⊢eq
α : α ∈ OR}

where ⊢eq
α is the logic axiomatized by the rules

∅ � ∆α(x , x) x ,∆α(x , y)� y

∆α(x1, y1) ∪ ∆α(x2, y2)� ∆α(x1 ⊸ϵ x2, y1 ⊸ϵ y2)

Definability of the indiscernibility relation.

▶ A logic ⊢ is equivalential if there is a non-empty set of
formulas ∆(x , y) s.t. for all models ⟨A,F ⟩ of ⊢ and a, c ∈ A,

a≡ c ⇐⇒ ∆A(a, c) ⊆ F .

▶ Problem.
The class of equivalential logics is not meet-irreducible.

▶ The class of equivalential logics is given by the Leibniz
condition

Φ = {⊢eq
α : α ∈ OR}

where ⊢eq
α is the logic axiomatized by the rules

∅ � ∆α(x , x) x ,∆α(x , y)� y

∆α(x1, y1) ∪ ∆α(x2, y2)� ∆α(x1 ⊸ϵ x2, y1 ⊸ϵ y2)

Definability of the indiscernibility relation.

▶ A logic ⊢ is equivalential if there is a non-empty set of
formulas ∆(x , y) s.t. for all models ⟨A,F ⟩ of ⊢ and a, c ∈ A,

a≡ c ⇐⇒ ∆A(a, c) ⊆ F .

▶ Problem.
The class of equivalential logics is not meet-irreducible.

▶ The class of equivalential logics is given by the Leibniz
condition

Φ = {⊢eq
α : α ∈ OR}

where ⊢eq
α is the logic in the language with binary symbols

{⊸ϵ : ϵ < max{ω, |α|}} axiomatized by the rules

∅ � ∆α(x , x) x ,∆α(x , y)� y

∆α(x1, y1) ∪ ∆α(x2, y2)� ∆α(x1 ⊸ϵ x2, y1 ⊸ϵ y2)

where ∆α := {x ⊸ϵ y : ϵ < max{ω, |α|}}.

Definability of the indiscernibility relation.
▶ A logic ⊢ is equivalential if there is a non-empty set of

formulas ∆(x , y) s.t. for all models ⟨A,F ⟩ of ⊢ and a, c ∈ A,

a≡ c ⇐⇒ ∆A(a, c) ⊆ F .

▶ Problem.
The class of equivalential logics is not meet-irreducible.

▶ The class of equivalential logics is given by the Leibniz
condition

Φ = {⊢eq
α : α ∈ OR}

where ⊢eq
α is the logic axiomatized by the rules

∅ � ∆α(x , x) x ,∆α(x , y)� y

∆α(x1, y1) ∪ ∆α(x2, y2)� ∆α(x1 ⊸ϵ x2, y1 ⊸ϵ y2).

Theorem
The logic ⊢eq

α is meet-prime in Log. Thus equivalential logics are
determined by a Leibniz condition consisting only of meet-prime
logics.

Thank you for your attention!

