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Aim of the talk
To introduce a notion of interpretability between propositional
logics and investigate the resulting “poset of all logics”.

Remark. In most results, propositional logics can be replaced by
infinitary universal Horn theories without equality.
Some sources of inspiration:

▶ Matrix semantics for logics (Łukasiewicz, Tarski, Łos,
Suszko, Wójcicki . . . )

▶ Blok and Pigozzi’s seminal work on algebraizable logics
▶ Leibniz hierarchy of propositional logics (Czelakowski, Font,

Herrmann, Jansana, Raftery . . . )
▶ Maltsev conditions (Day, Maltsev, Jónsson, Pixley, Kiss,

Kearnes, McKenzie, Szendrei . . . )
▶ Interpretations between varieties (Taylor, Neumann, Garcia,

Opršal, Tschantz . . . )



Aim of the talk
To introduce a notion of interpretability between propositional
logics and investigate the resulting “poset of all logics”.

Remark. In most results, propositional logics can be replaced by
infinitary universal Horn theories without equality.

Some sources of inspiration:

▶ Matrix semantics for logics (Łukasiewicz, Tarski, Łos,
Suszko, Wójcicki . . . )

▶ Blok and Pigozzi’s seminal work on algebraizable logics
▶ Leibniz hierarchy of propositional logics (Czelakowski, Font,

Herrmann, Jansana, Raftery . . . )
▶ Maltsev conditions (Day, Maltsev, Jónsson, Pixley, Kiss,

Kearnes, McKenzie, Szendrei . . . )
▶ Interpretations between varieties (Taylor, Neumann, Garcia,

Opršal, Tschantz . . . )



Aim of the talk
To introduce a notion of interpretability between propositional
logics and investigate the resulting “poset of all logics”.

Remark. In most results, propositional logics can be replaced by
infinitary universal Horn theories without equality.
Some sources of inspiration:

▶ Matrix semantics for logics (Łukasiewicz, Tarski, Łos,
Suszko, Wójcicki . . . )

▶ Blok and Pigozzi’s seminal work on algebraizable logics
▶ Leibniz hierarchy of propositional logics (Czelakowski, Font,

Herrmann, Jansana, Raftery . . . )
▶ Maltsev conditions (Day, Maltsev, Jónsson, Pixley, Kiss,

Kearnes, McKenzie, Szendrei . . . )
▶ Interpretations between varieties (Taylor, Neumann, Garcia,

Opršal, Tschantz . . . )



Interpretations between logics

Basic questions:
▶ What do we mean by an interpretation between logics?
▶ And what do we mean by logic?



Interpretations between logics

Basic questions:

▶ What do we mean by an interpretation between logics?
▶ And what do we mean by logic?



Interpretations between logics

Basic questions:
▶ What do we mean by an interpretation between logics?

▶ And what do we mean by logic?



Interpretations between logics

Basic questions:
▶ What do we mean by an interpretation between logics?
▶ And what do we mean by logic?



Equality-free model theory
Let T be a first-order theory without equality.

▶ Every model M of T is associated with an indiscernibility
relation ≡ that mimics equality: for every a, c ∈ M,

a≡ c ⇐⇒ a and c satisfies the same
equality-free types with constants

⇐⇒ for every non-equality atomic formula ϕ(x , y1, . . . , yn)
and for every b1, . . . , bn ∈ M,

M ⊨ ϕ(a, b1, . . . , bn) iff M ⊨ ϕ(c , b1, . . . , bn).

▶ The indiscernibility relation is a congruence on M, and the
indiscernibility relation of the quotient M/≡ is the identity.

▶ M/≡ satisfies the same sentences without equality than M.
▶ Thus, the natural models of T are the ones whose

indiscernibility relation is the identity relation.
▶ This setting subsumes model theory with equality.
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▶ Let ⊢ be a logic and let P(x) be a unary predicate symbol.
▶ Let T⊢ be the theory in the equality-free language obtained

extending the algebraic language of ⊢ with P(x), axiomatized
by the infinitary universal Horn sentences

∀⃗x
∧

γ∈Γ

P(γ(⃗x)) → P(φ(⃗x))

for all valid inferences Γ ⊢ φ of ⊢.
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▶ Every matrix ⟨A,F ⟩ is associated the an indiscernibility
relation ≡ defined for every a, c ∈ A as

a≡ c ⇐⇒ p(a) ∈ F iff p(c) ∈ F ,

for all unary polynomial functions p of A.

Examples.
▶ If A is a Heyting algebra and F a lattice filter, then

a≡ c ⇐⇒ {a → c , c → a} ⊆ F .

▶ If A is a modal algebra and F a lattice filter, then

a≡ c ⇐⇒ {2n(a → c),2n(c → a) : n ∈ ω} ⊆ F .
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▶ Logics ⊢ are associated with models without indiscernibles

Mod≡(⊢) := Psd{⟨A,F ⟩ : ⟨A,F ⟩ is a model of ⊢ and
≡ is the identity relation}.

Completeness. ⊢ is the logic induced by the class Mod≡(⊢), i.e.

Γ ⊢ φ ⇐⇒ for every ⟨A,F ⟩ ∈ Mod≡(⊢) and hom v : Fm → A,

if v [Γ] ⊆ F , then v(φ) ∈ F .
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▶ A translation of an algebraic language L into another L ′ is
a map τ that assigns an n-ary term τ(f )(x1, . . . , xn) of L ′ to
every n-ary symbol f (x1, . . . , xn) of L .

▶ Given an L ′-algebra A, we define an L -algebra

Aτ := ⟨A; {τ(f )A : f ∈ L }⟩.

▶ An interpretation of a logic ⊢ into another ⊢′ is a translation
τ between their languages such that▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).

▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the
L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).
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logics, indexed by all ordinals, s.t.

if α ⩽ β, then ⊢β is interpretable into ⊢α .

▶ A logic ⊢ satisfies Φ if some ⊢α is intepretable in ⊢.
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some Leibniz condition Φ.
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by arbitrarily large sets.
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▶ When ordered under inclusion, Leibniz classes form a “lattice”.

Definition
A Leibniz class K is said to be

▶ meet-irreducible if for every pair K1 and K2 of Leibniz classes
(of logics with some tautology),

if K = K1 ∩ K2, then either K = K1 or K = K2.

▶ meet-prime if for every pair of Leibniz classes K1 and K2 (of
logics with some tautology),

if K1 ∩ K2 ⊆ K, then either K1 ⊆ K or K2 ⊆ K.

▶ Intuitively, a Leibniz class is meet-prime (resp. irreducible)
when it captures a fundamental concept.

▶ We shall apply this test to two conditions, i.e. the definability
of truth-sets and of indiscernibility.
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Definability of truth-sets.
▶ A logic ⊢ is truth-equational if there is a set of equations

E (x) s.t. for every ⟨A,F ⟩ ∈ Mod≡(⊢)

a ∈ F ⇐⇒ A ⊨ E (a), for all a ∈ A.

▶ Let ⊢1, ⊢2 be non truth-equational logics (with tautologies).
▶ Goal: find a non truth-equational logics in which ⊢1 and ⊢2

are interpretable.
▶ As ⊢1 and ⊢2 are not truth-equational, there are matrices

⟨A1,F1⟩, ⟨A1,G1⟩ ∈ Mod≡(⊢1) s.t. ∅ ⊊ F1 ⊊ G1

⟨A2,F2⟩, ⟨A2,G2⟩ ∈ Mod≡(⊢2) s.t. ∅ ⊊ F2 ⊊ G2.
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▶ We want to merge the two algebras into a single one.
▶ The problem is that A1 and A2 have not the same universe.
▶ This is solved by “adding points” ’ to A1 and A2, taking

sufficiently large direct powers.
▶ We assume w.l.o.g. that A1 is Aκ

1 and A2 is Aκ
2.
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▶ We merge A1 and A2 into an algebra A with universe
A = A1 = A2 endowed with all finitary operations.

▶ Let ⊢ be the logic induced by the matrices ⟨A,F ⟩ and ⟨A,G ⟩.
▶

▶ The Leibniz class of truth-equational logics is a prime.
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▶ We merge A1 and A2 into an algebra A with universe
A = A1 = A2 endowed with all finitary operations.

▶ Let ⊢ be the logic induced by the matrices ⟨A,F ⟩ and ⟨A,G ⟩.
▶ Goal: to show that ⊢ is not truth-equational and that ⊢1 and

⊢2 are interpretable in ⊢.

▶ The Leibniz class of truth-equational logics is a prime.
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A = A1 = A2 endowed with all finitary operations.

▶ Let ⊢ be the logic induced by the matrices ⟨A,F ⟩ and ⟨A,G ⟩.
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▶ The Leibniz class of truth-equational logics is a prime.
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Definability of the indiscernibility relation.

▶ A logic ⊢ is equivalential if there is a non-empty set of
formulas ∆(x , y) s.t. for all models ⟨A,F ⟩ of ⊢ and a, c ∈ A,

a≡ c ⇐⇒ ∆A(a, c) ⊆ F .

▶ Problem.
The class of equivalential logics is not meet-irreducible.

▶ The class of equivalential logics is given by the Leibniz
condition

Φ = {⊢eq
α : α ∈ OR}

where ⊢eq
α is the logic axiomatized by the rules

∅ � ∆α(x , x) x ,∆α(x , y)� y

∆α(x1, y1) ∪ ∆α(x2, y2)� ∆α(x1 ⊸ϵ x2, y1 ⊸ϵ y2)
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Definability of the indiscernibility relation.
▶ A logic ⊢ is equivalential if there is a non-empty set of

formulas ∆(x , y) s.t. for all models ⟨A,F ⟩ of ⊢ and a, c ∈ A,

a≡ c ⇐⇒ ∆A(a, c) ⊆ F .

▶ Problem.
The class of equivalential logics is not meet-irreducible.

▶ The class of equivalential logics is given by the Leibniz
condition

Φ = {⊢eq
α : α ∈ OR}

where ⊢eq
α is the logic axiomatized by the rules
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∆α(x1, y1) ∪ ∆α(x2, y2)� ∆α(x1 ⊸ϵ x2, y1 ⊸ϵ y2).

Theorem
The logic ⊢eq

α is meet-prime in Log. Thus equivalential logics are
determined by a Leibniz condition consisting only of meet-prime
logics.



Thank you for your attention!


