On interpretations between propositional logics

Tommaso Moraschini
joint with Ramon Jansana
Institute of Computer Science
Czech Academy of Sciences
BLAST 2019
University of Colorado, Boulder

Aim of the talk

To introduce a notion of interpretability between propositional logics and investigate the resulting "poset of all logics".

Aim of the talk

To introduce a notion of interpretability between propositional logics and investigate the resulting "poset of all logics".

Remark. In most results, propositional logics can be replaced by infinitary universal Horn theories without equality.

Aim of the talk

To introduce a notion of interpretability between propositional logics and investigate the resulting "poset of all logics".

Remark. In most results, propositional logics can be replaced by infinitary universal Horn theories without equality. Some sources of inspiration:

- Matrix semantics for logics (Łukasiewicz, Tarski, Łos, Suszko, Wójcicki ...)
- Blok and Pigozzi's seminal work on algebraizable logics
- Leibniz hierarchy of propositional logics (Czelakowski, Font, Herrmann, Jansana, Raftery ...)
- Maltsev conditions (Day, Maltsev, Jónsson, Pixley, Kiss, Kearnes, McKenzie, Szendrei ...)
- Interpretations between varieties (Taylor, Neumann, Garcia, Opršal, Tschantz ...)

Interpretations between logics

Interpretations between logics

Basic questions:

Interpretations between logics

Basic questions:

- What do we mean by an interpretation between logics?

Interpretations between logics

Basic questions:

- What do we mean by an interpretation between logics?
- And what do we mean by logic?

Equality-free model theory

Let T be a first-order theory without equality.

Equality-free model theory

Let T be a first-order theory without equality.

- Every model M of T is associated with an indiscernibility relation \equiv that mimics equality: for every $a, c \in M$,

Equality-free model theory

Let T be a first-order theory without equality.

- Every model M of T is associated with an indiscernibility relation \equiv that mimics equality: for every $a, c \in M$,
$a \equiv c \Longleftrightarrow a$ and c satisfies the same equality-free types with constants
\Longleftrightarrow for every non-equality atomic formula $\phi\left(x, y_{1}, \ldots, y_{n}\right)$ and for every $b_{1}, \ldots, b_{n} \in M$, $\mathrm{M} \vDash \phi\left(a, b_{1}, \ldots, b_{n}\right)$ iff $\mathrm{M} \vDash \phi\left(c, b_{1}, \ldots, b_{n}\right)$.

Equality-free model theory

Let T be a first-order theory without equality.

- Every model M of T is associated with an indiscernibility relation \equiv that mimics equality: for every $a, c \in M$,
$a \equiv c \Longleftrightarrow a$ and c satisfies the same equality-free types with constants
\Longleftrightarrow for every non-equality atomic formula $\phi\left(x, y_{1}, \ldots, y_{n}\right)$ and for every $b_{1}, \ldots, b_{n} \in M$,

$$
\mathbf{M} \vDash \phi\left(a, b_{1}, \ldots, b_{n}\right) \text { iff } \mathbf{M} \vDash \phi\left(c, b_{1}, \ldots, b_{n}\right) .
$$

- The indiscernibility relation is a congruence on M, and the indiscernibility relation of the quotient M / \equiv is the identity.

Equality-free model theory

Let T be a first-order theory without equality.

- Every model M of T is associated with an indiscernibility relation \equiv that mimics equality: for every $a, c \in M$,
$a \equiv c \Longleftrightarrow a$ and c satisfies the same equality-free types with constants
\Longleftrightarrow for every non-equality atomic formula $\phi\left(x, y_{1}, \ldots, y_{n}\right)$ and for every $b_{1}, \ldots, b_{n} \in M$,

$$
\mathbf{M} \vDash \phi\left(a, b_{1}, \ldots, b_{n}\right) \text { iff } \mathbf{M} \vDash \phi\left(c, b_{1}, \ldots, b_{n}\right) .
$$

- The indiscernibility relation is a congruence on M, and the indiscernibility relation of the quotient M / \equiv is the identity.
- M / \equiv satisfies the same sentences without equality than M.

Equality-free model theory

Let T be a first-order theory without equality.

- Every model M of T is associated with an indiscernibility relation \equiv that mimics equality: for every $a, c \in M$,
$a \equiv c \Longleftrightarrow a$ and c satisfies the same equality-free types with constants
\Longleftrightarrow for every non-equality atomic formula $\phi\left(x, y_{1}, \ldots, y_{n}\right)$ and for every $b_{1}, \ldots, b_{n} \in M$,

$$
\mathbf{M} \vDash \phi\left(a, b_{1}, \ldots, b_{n}\right) \text { iff } \mathbf{M} \vDash \phi\left(c, b_{1}, \ldots, b_{n}\right) .
$$

- The indiscernibility relation is a congruence on M, and the indiscernibility relation of the quotient M / \equiv is the identity.
- M / \equiv satisfies the same sentences without equality than M.
- Thus, the natural models of T are the ones whose indiscernibility relation is the identity relation.

Equality-free model theory

Let T be a first-order theory without equality.

- Every model M of T is associated with an indiscernibility relation \equiv that mimics equality: for every $a, c \in M$,
$a \equiv c \Longleftrightarrow a$ and c satisfies the same equality-free types with constants
\Longleftrightarrow for every non-equality atomic formula $\phi\left(x, y_{1}, \ldots, y_{n}\right)$ and for every $b_{1}, \ldots, b_{n} \in M$,

$$
\mathbf{M} \vDash \phi\left(a, b_{1}, \ldots, b_{n}\right) \text { iff } \mathbf{M} \vDash \phi\left(c, b_{1}, \ldots, b_{n}\right) .
$$

- The indiscernibility relation is a congruence on M, and the indiscernibility relation of the quotient M / \equiv is the identity.
- M / \equiv satisfies the same sentences without equality than M.
- Thus, the natural models of T are the ones whose indiscernibility relation is the identity relation.
- This setting subsumes model theory with equality.
- A logic is a consequence relation \vdash on the set Fm of formulas of some algebraic language with infinitely many variables
- A logic is a consequence relation \vdash on the set Fm of formulas of some algebraic language with infinitely many variables that, moreover, is substitution invariant in the sense that
- A logic is a consequence relation \vdash on the set Fm of formulas of some algebraic language with infinitely many variables that, moreover, is substitution invariant in the sense that

$$
\text { if } \Gamma \vdash \varphi \text {, then } \sigma[\Gamma] \vdash \sigma(\varphi)
$$

for every $\Gamma \cup\{\varphi\} \subseteq$ Fm and every substitution σ.

- A logic is a consequence relation \vdash on the set Fm of formulas of some algebraic language with infinitely many variables that, moreover, is substitution invariant in the sense that

$$
\text { if } \Gamma \vdash \varphi \text {, then } \sigma[\Gamma] \vdash \sigma(\varphi)
$$

for every $\Gamma \cup\{\varphi\} \subseteq$ Fm and every substitution σ.
Remark. Logics are infinitary Horn theories without equality.

- A logic is a consequence relation \vdash on the set Fm of formulas of some algebraic language with infinitely many variables that, moreover, is substitution invariant in the sense that

$$
\text { if } \Gamma \vdash \varphi \text {, then } \sigma[\Gamma] \vdash \sigma(\varphi)
$$

for every $\Gamma \cup\{\varphi\} \subseteq$ Fm and every substitution σ.
Remark. Logics are infinitary Horn theories without equality.

- Let \vdash be a logic and let $P(x)$ be a unary predicate symbol.
- A logic is a consequence relation \vdash on the set Fm of formulas of some algebraic language with infinitely many variables that, moreover, is substitution invariant in the sense that

$$
\text { if } \Gamma \vdash \varphi \text {, then } \sigma[\Gamma] \vdash \sigma(\varphi)
$$

for every $\Gamma \cup\{\varphi\} \subseteq \mathbf{F m}$ and every substitution σ.
Remark. Logics are infinitary Horn theories without equality.

- Let \vdash be a logic and let $P(x)$ be a unary predicate symbol.
- Let T_{\vdash} be the theory in the equality-free language obtained extending the algebraic language of \vdash with $P(x)$,
- A logic is a consequence relation \vdash on the set Fm of formulas of some algebraic language with infinitely many variables that, moreover, is substitution invariant in the sense that

$$
\text { if } \Gamma \vdash \varphi \text {, then } \sigma[\Gamma] \vdash \sigma(\varphi)
$$

for every $\Gamma \cup\{\varphi\} \subseteq$ Fm and every substitution σ.
Remark. Logics are infinitary Horn theories without equality.

- Let \vdash be a logic and let $P(x)$ be a unary predicate symbol.
- Let T_{\vdash} be the theory in the equality-free language obtained extending the algebraic language of \vdash with $P(x)$, axiomatized by the infinitary universal Horn sentences

$$
\forall \vec{x} \bigwedge_{\gamma \in \Gamma} P(\gamma(\vec{x})) \rightarrow P(\varphi(\vec{x}))
$$

for all valid inferences $\Gamma \vdash \varphi$ of \vdash.

- A logic is a consequence relation \vdash on the set Fm of formulas of some algebraic language with infinitely many variables that, moreover, is substitution invariant in the sense that

$$
\text { if } \Gamma \vdash \varphi \text {, then } \sigma[\Gamma] \vdash \sigma(\varphi)
$$

for every $\Gamma \cup\{\varphi\} \subseteq$ Fm and every substitution σ.
Remark. Logics \vdash are infinitary Horn theories without equality T_{\vdash}.

- A matrix is a pair $\langle\boldsymbol{A}, F\rangle$ where \boldsymbol{A} is an algebra and $F \subseteq A$.
- A logic is a consequence relation \vdash on the set Fm of formulas of some algebraic language with infinitely many variables that, moreover, is substitution invariant in the sense that

$$
\text { if } \Gamma \vdash \varphi \text {, then } \sigma[\Gamma] \vdash \sigma(\varphi)
$$

for every $\Gamma \cup\{\varphi\} \subseteq$ Fm and every substitution σ.
Remark. Logics \vdash are infinitary Horn theories without equality T_{\vdash}.

- A matrix is a pair $\langle\boldsymbol{A}, F\rangle$ where \boldsymbol{A} is an algebra and $F \subseteq A$. A matrix $\langle\boldsymbol{A}, F\rangle$ is a
- A logic is a consequence relation \vdash on the set $\mathbf{F m}$ of formulas of some algebraic language with infinitely many variables that, moreover, is substitution invariant in the sense that

$$
\text { if } \Gamma \vdash \varphi \text {, then } \sigma[\Gamma] \vdash \sigma(\varphi)
$$

for every $\Gamma \cup\{\varphi\} \subseteq$ Fm and every substitution σ.
Remark. Logics \vdash are infinitary Horn theories without equality T_{\vdash}.

- A matrix is a pair $\langle\boldsymbol{A}, F\rangle$ where \boldsymbol{A} is an algebra and $F \subseteq A$. A matrix $\langle\boldsymbol{A}, F\rangle$ is a model of a logic \vdash (in the same language) if for every $\Gamma \cup\{\varphi\} \subseteq \mathbf{F m}$,
- A logic is a consequence relation \vdash on the set Fm of formulas of some algebraic language with infinitely many variables that, moreover, is substitution invariant in the sense that

$$
\text { if } \Gamma \vdash \varphi \text {, then } \sigma[\Gamma] \vdash \sigma(\varphi)
$$

for every $\Gamma \cup\{\varphi\} \subseteq \mathbf{F m}$ and every substitution σ.
Remark. Logics \vdash are infinitary Horn theories without equality T_{\vdash}.

- A matrix is a pair $\langle\boldsymbol{A}, F\rangle$ where \boldsymbol{A} is an algebra and $F \subseteq A$. A matrix $\langle\boldsymbol{A}, F\rangle$ is a model of a logic \vdash (in the same language) if for every $\Gamma \cup\{\varphi\} \subseteq \mathbf{F m}$,

$$
\text { if } \Gamma \vdash \varphi \text {, then for every hom } v: \text { Fm } \rightarrow \boldsymbol{A} \text {, }
$$ if $v[\Gamma] \subseteq F$, then $v(\varphi) \in F$.

- A logic is a consequence relation \vdash on the set Fm of formulas of some algebraic language with infinitely many variables that, moreover, is substitution invariant in the sense that

$$
\text { if } \Gamma \vdash \varphi \text {, then } \sigma[\Gamma] \vdash \sigma(\varphi)
$$

for every $\Gamma \cup\{\varphi\} \subseteq \mathbf{F m}$ and every substitution σ.
Remark. Logics \vdash are infinitary Horn theories without equality T_{\vdash}.

- A matrix is a pair $\langle\boldsymbol{A}, F\rangle$ where \boldsymbol{A} is an algebra and $F \subseteq A$. A matrix $\langle\boldsymbol{A}, F\rangle$ is a model of a logic \vdash (in the same language) if for every $\Gamma \cup\{\varphi\} \subseteq \mathbf{F m}$,

$$
\begin{aligned}
& \text { if } \Gamma \vdash \varphi \text {, then for every hom } v: \mathbf{F m} \rightarrow \boldsymbol{A}, \\
& \text { if } v[\Gamma] \subseteq F \text {, then } v(\varphi) \in F .
\end{aligned}
$$

Intuitively, \boldsymbol{A} is an algebra of truth-values and F are the values representing truth.

- A logic is a consequence relation \vdash on the set Fm of formulas of some algebraic language with infinitely many variables that, moreover, is substitution invariant in the sense that

$$
\text { if } \Gamma \vdash \varphi \text {, then } \sigma[\Gamma] \vdash \sigma(\varphi)
$$

for every $\Gamma \cup\{\varphi\} \subseteq$ Fm and every substitution σ.
Remark. Logics \vdash are infinitary Horn theories without equality T_{\vdash}.

- A matrix is a pair $\langle\boldsymbol{A}, F\rangle$ where \boldsymbol{A} is an algebra and $F \subseteq A$. A matrix $\langle\boldsymbol{A}, F\rangle$ is a model of a logic \vdash (in the same language) if for every $\Gamma \cup\{\varphi\} \subseteq \mathbf{F m}$,

$$
\begin{aligned}
& \text { if } \Gamma \vdash \varphi \text {, then for every hom } v: \mathbf{F m} \rightarrow \boldsymbol{A}, \\
& \text { if } v[\Gamma] \subseteq F \text {, then } v(\varphi) \in F .
\end{aligned}
$$

Intuitively, \boldsymbol{A} is an algebra of truth-values and F are the values representing truth.

- Observe that $\langle\boldsymbol{A}, F\rangle$ is a model of \vdash iff it is a model of T_{\vdash} in the standard sense.
- Every matrix $\langle\boldsymbol{A}, F\rangle$ is associated the an indiscernibility relation \equiv defined for every $a, c \in A$ as
- Every matrix $\langle\boldsymbol{A}, F\rangle$ is associated the an indiscernibility relation \equiv defined for every $a, c \in A$ as

$$
\begin{aligned}
a \equiv c \Longleftrightarrow & p(a) \in F \text { iff } p(c) \in F, \\
& \text { for all unary polynomial functions } p \text { of } \boldsymbol{A} .
\end{aligned}
$$

- Every matrix $\langle\boldsymbol{A}, F\rangle$ is associated the an indiscernibility relation \equiv defined for every $a, c \in A$ as

$$
\begin{aligned}
a \equiv c \Longleftrightarrow & p(a) \in F \text { iff } p(c) \in F, \\
& \text { for all unary polynomial functions } p \text { of } \boldsymbol{A} .
\end{aligned}
$$

Examples.

- Every matrix $\langle\boldsymbol{A}, F\rangle$ is associated the an indiscernibility relation \equiv defined for every $a, c \in A$ as

$$
\begin{aligned}
a \equiv c \Longleftrightarrow & p(a) \in F \text { iff } p(c) \in F, \\
& \text { for all unary polynomial functions } p \text { of } \boldsymbol{A} .
\end{aligned}
$$

Examples.

- If \boldsymbol{A} is a Heyting algebra and F a lattice filter, then
- Every matrix $\langle\boldsymbol{A}, F\rangle$ is associated the an indiscernibility relation \equiv defined for every $a, c \in A$ as

$$
\begin{aligned}
a \equiv c \Longleftrightarrow & p(a) \in F \text { iff } p(c) \in F, \\
& \text { for all unary polynomial functions } p \text { of } \boldsymbol{A} .
\end{aligned}
$$

Examples.

- If \boldsymbol{A} is a Heyting algebra and F a lattice filter, then

$$
a \equiv c \Longleftrightarrow\{a \rightarrow c, c \rightarrow a\} \subseteq F .
$$

- Every matrix $\langle\boldsymbol{A}, F\rangle$ is associated the an indiscernibility relation \equiv defined for every $a, c \in A$ as

$$
\begin{aligned}
a \equiv c \Longleftrightarrow & p(a) \in F \text { iff } p(c) \in F, \\
& \text { for all unary polynomial functions } p \text { of } \boldsymbol{A} .
\end{aligned}
$$

Examples.

- If \boldsymbol{A} is a Heyting algebra and F a lattice filter, then

$$
a \equiv c \Longleftrightarrow\{a \rightarrow c, c \rightarrow a\} \subseteq F
$$

- If \boldsymbol{A} is a modal algebra and F a lattice filter, then
- Every matrix $\langle\boldsymbol{A}, F\rangle$ is associated the an indiscernibility relation \equiv defined for every $a, c \in A$ as

$$
a \equiv c \Longleftrightarrow p(a) \in F \text { iff } p(c) \in F,
$$ for all unary polynomial functions p of \boldsymbol{A}.

Examples.

- If \boldsymbol{A} is a Heyting algebra and F a lattice filter, then

$$
a \equiv c \Longleftrightarrow\{a \rightarrow c, c \rightarrow a\} \subseteq F
$$

- If \boldsymbol{A} is a modal algebra and F a lattice filter, then

$$
a \equiv c \Longleftrightarrow\left\{\square^{n}(a \rightarrow c), \square^{n}(c \rightarrow a): n \in \omega\right\} \subseteq F .
$$

- Logics \vdash are associated with models without indiscernibles
- Logics \vdash are associated with models without indiscernibles

$$
\begin{aligned}
\operatorname{Mod}^{\equiv}(\vdash):=\mathbb{P}_{\text {sd }}\{\langle\boldsymbol{A}, F\rangle: & \langle\boldsymbol{A}, F\rangle \text { is a model of } \vdash \text { and } \\
& \equiv \text { is the identity relation }\} .
\end{aligned}
$$

- Logics \vdash are associated with models without indiscernibles

$$
\begin{aligned}
\operatorname{Mod}^{\equiv}(\vdash):=\mathbb{P}_{\text {sd }}\{\langle\boldsymbol{A}, F\rangle: & \langle\boldsymbol{A}, F\rangle \text { is a model of } \vdash \text { and } \\
& \equiv \text { is the identity relation }\} .
\end{aligned}
$$

Completeness.

- Logics \vdash are associated with models without indiscernibles

$$
\begin{aligned}
\operatorname{Mod}^{\equiv}(\vdash):=\mathbb{P}_{\text {sd }}\{\langle\boldsymbol{A}, F\rangle: & \langle\boldsymbol{A}, F\rangle \text { is a model of } \vdash \text { and } \\
& \equiv \text { is the identity relation }\} .
\end{aligned}
$$

Completeness. \vdash is the logic induced by the class $\operatorname{Mod}{ }^{\equiv}(\vdash)$, i.e.

- Logics \vdash are associated with models without indiscernibles

$$
\begin{aligned}
\operatorname{Mod} \equiv(\vdash):=\mathbb{P}_{\text {sd }}\{\langle\boldsymbol{A}, F\rangle: & \langle\boldsymbol{A}, F\rangle \text { is a model of } \vdash \text { and } \\
& \equiv \text { is the identity relation }\} .
\end{aligned}
$$

Completeness. \vdash is the logic induced by the class $\operatorname{Mod}{ }^{\equiv}(\vdash)$, i.e. $\Gamma \vdash \varphi \Longleftrightarrow$ for every $\langle\boldsymbol{A}, F\rangle \in \operatorname{Mod} \equiv(\vdash)$ and hom $v:$ Fm $\rightarrow \boldsymbol{A}$, if $v[\Gamma] \subseteq F$, then $v(\varphi) \in F$.

- Logics \vdash are associated with models without indiscernibles

$$
\begin{aligned}
\operatorname{Mod} \equiv(\vdash):=\mathbb{P}_{\text {sd }}\{\langle\boldsymbol{A}, F\rangle: & \langle\boldsymbol{A}, F\rangle \text { is a model of } \vdash \text { and } \\
& \equiv \text { is the identity relation }\} .
\end{aligned}
$$

Completeness. \vdash is the logic induced by the class $\operatorname{Mod}{ }^{\equiv}(\vdash)$, i.e.

$$
\Gamma \vdash \varphi \Longleftrightarrow \text { for every }\langle\boldsymbol{A}, F\rangle \in \operatorname{Mod} \equiv(\vdash) \text { and hom } v: \text { Fm } \rightarrow \boldsymbol{A},
$$

$$
\text { if } v[\Gamma] \subseteq F \text {, then } v(\varphi) \in F
$$

Examples.

- Logics \vdash are associated with models without indiscernibles

$$
\begin{aligned}
\operatorname{Mod}^{\equiv}(\vdash):=\mathbb{P}_{\text {sd }}\{\langle\boldsymbol{A}, F\rangle: & \langle\boldsymbol{A}, F\rangle \text { is a model of } \vdash \text { and } \\
& \equiv \text { is the identity relation }\} .
\end{aligned}
$$

Completeness. \vdash is the logic induced by the class $\operatorname{Mod}{ }^{\equiv}(\vdash)$, i.e.

$$
\Gamma \vdash \varphi \Longleftrightarrow \text { for every }\langle\boldsymbol{A}, F\rangle \in \operatorname{Mod} \equiv(\vdash) \text { and hom } v: \text { Fm } \rightarrow \boldsymbol{A},
$$

$$
\text { if } v[\Gamma] \subseteq F \text {, then } v(\varphi) \in F
$$

Examples.
$\operatorname{Mod} \equiv(\mathbf{C P C})=\{\langle\boldsymbol{A}, F\rangle: \boldsymbol{A}$ is a Boolean algebra and $F=\{1\}\}$

- Logics \vdash are associated with models without indiscernibles

$$
\begin{aligned}
\operatorname{Mod} \equiv(\vdash):=\mathbb{P}_{\text {sd }}\{\langle\boldsymbol{A}, F\rangle: & \langle\boldsymbol{A}, F\rangle \text { is a model of } \vdash \text { and } \\
& \equiv \text { is the identity relation }\} .
\end{aligned}
$$

Completeness. \vdash is the logic induced by the class $\operatorname{Mod}{ }^{\equiv}(\vdash)$, i.e.

$$
\Gamma \vdash \varphi \Longleftrightarrow \text { for every }\langle\boldsymbol{A}, F\rangle \in \operatorname{Mod} \equiv(\vdash) \text { and hom } v: \text { Fm } \rightarrow \boldsymbol{A},
$$

$$
\text { if } v[\Gamma] \subseteq F \text {, then } v(\varphi) \in F
$$

Examples.
$\operatorname{Mod}^{\equiv}(\mathbf{C P C})=\{\langle\boldsymbol{A}, F\rangle: \boldsymbol{A}$ is a Boolean algebra and $F=\{1\}\}$
$\operatorname{Mod} \equiv(I P C)=\{\langle\boldsymbol{A}, F\rangle: \boldsymbol{A}$ is a Heyting algebra and $F=\{1\}\}$.

- A translation of an algebraic language \mathscr{L} into another \mathscr{L}^{\prime} is a map τ that assigns an n-ary term $\tau(f)\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}^{\prime} to every n-ary symbol $f\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}.
- A translation of an algebraic language \mathscr{L} into another \mathscr{L}^{\prime} is a map τ that assigns an n-ary term $\tau(f)\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}^{\prime} to every n-ary symbol $f\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}.
- Given an \mathscr{L}^{\prime}-algebra \boldsymbol{A}, we define an \mathscr{L}-algebra
- A translation of an algebraic language \mathscr{L} into another \mathscr{L}^{\prime} is a map τ that assigns an n-ary term $\tau(f)\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}^{\prime} to every n-ary symbol $f\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}.
- Given an \mathscr{L}^{\prime}-algebra \boldsymbol{A}, we define an \mathscr{L}-algebra

$$
\boldsymbol{A}^{\tau}:=\left\langle\boldsymbol{A} ;\left\{\boldsymbol{\tau}(f)^{\boldsymbol{A}}: f \in \mathscr{L}\right\}\right\rangle
$$

- A translation of an algebraic language \mathscr{L} into another \mathscr{L}^{\prime} is a map τ that assigns an n-ary term $\tau(f)\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}^{\prime} to every n-ary symbol $f\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}.
- Given an \mathscr{L}^{\prime}-algebra \boldsymbol{A}, we define an \mathscr{L}-algebra

$$
\boldsymbol{A}^{\tau}:=\left\langle A ;\left\{\boldsymbol{\tau}(f)^{\boldsymbol{A}}: f \in \mathscr{L}\right\}\right\rangle .
$$

Example.

- A translation of an algebraic language \mathscr{L} into another \mathscr{L}^{\prime} is a map τ that assigns an n-ary term $\tau(f)\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}^{\prime} to every n-ary symbol $f\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}.
- Given an \mathscr{L}^{\prime}-algebra \boldsymbol{A}, we define an \mathscr{L}-algebra

$$
\boldsymbol{A}^{\tau}:=\left\langle A ;\left\{\boldsymbol{\tau}(f)^{\boldsymbol{A}}: f \in \mathscr{L}\right\}\right\rangle .
$$

Example. Let $\mathscr{L}_{\wedge \vee}$ be the language of lattices, and $\mathscr{L}_{\mathrm{BA}}$ that of Boolean algebras.

- A translation of an algebraic language \mathscr{L} into another \mathscr{L}^{\prime} is a map τ that assigns an n-ary term $\tau(f)\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}^{\prime} to every n-ary symbol $f\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}.
- Given an \mathscr{L}^{\prime}-algebra \boldsymbol{A}, we define an \mathscr{L}-algebra

$$
\boldsymbol{A}^{\tau}:=\left\langle A ;\left\{\boldsymbol{\tau}(f)^{\boldsymbol{A}}: f \in \mathscr{L}\right\}\right\rangle .
$$

Example. Let $\mathscr{L}_{\wedge \vee}$ be the language of lattices, and $\mathscr{L}_{\mathrm{BA}}$ that of Boolean algebras. If τ is the inclusion map from $\mathscr{L}_{\wedge V}$ to $\mathscr{L}_{B A}$, and \boldsymbol{A} a Boolean algebra, then \boldsymbol{A}^{τ} is its lattice reduct of \boldsymbol{A}.

- A translation of an algebraic language \mathscr{L} into another \mathscr{L}^{\prime} is a map τ that assigns an n-ary term $\tau(f)\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}^{\prime} to every n-ary symbol $f\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}.
- Given an \mathscr{L}^{\prime}-algebra \boldsymbol{A}, we define an \mathscr{L}-algebra

$$
\boldsymbol{A}^{\tau}:=\left\langle\boldsymbol{A} ;\left\{\boldsymbol{\tau}(f)^{\boldsymbol{A}}: f \in \mathscr{L}\right\}\right\rangle
$$

- An interpretation of a logic \vdash into another \vdash^{\prime} is a translation τ between their languages such that
- A translation of an algebraic language \mathscr{L} into another \mathscr{L}^{\prime} is a map τ that assigns an n-ary term $\tau(f)\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}^{\prime} to every n-ary symbol $f\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}.
- Given an \mathscr{L}^{\prime}-algebra \boldsymbol{A}, we define an \mathscr{L}-algebra

$$
\boldsymbol{A}^{\tau}:=\left\langle\boldsymbol{A} ;\left\{\boldsymbol{\tau}(f)^{\boldsymbol{A}}: f \in \mathscr{L}\right\}\right\rangle .
$$

- An interpretation of a logic \vdash into another \vdash^{\prime} is a translation τ between their languages such that

$$
\text { if }\langle\boldsymbol{A}, F\rangle \in \operatorname{Mod} \equiv\left(\vdash^{\prime}\right) \text {, then }\left\langle\boldsymbol{A}^{\tau}, F\right\rangle \in \operatorname{Mod} \equiv(\vdash) \text {. }
$$

- A translation of an algebraic language \mathscr{L} into another \mathscr{L}^{\prime} is a map τ that assigns an n-ary term $\tau(f)\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}^{\prime} to every n-ary symbol $f\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}.
- Given an \mathscr{L}^{\prime}-algebra \boldsymbol{A}, we define an \mathscr{L}-algebra

$$
\boldsymbol{A}^{\tau}:=\left\langle A ;\left\{\boldsymbol{\tau}(f)^{\boldsymbol{A}}: f \in \mathscr{L}\right\}\right\rangle
$$

- An interpretation of a logic \vdash into another \vdash^{\prime} is a translation τ between their languages such that

$$
\text { if }\langle\boldsymbol{A}, F\rangle \in \operatorname{Mod} \equiv\left(\vdash^{\prime}\right) \text {, then }\left\langle\boldsymbol{A}^{\tau}, F\right\rangle \in \operatorname{Mod} \equiv(\vdash) \text {. }
$$

Interpretations split in two halves.

- A translation of an algebraic language \mathscr{L} into another \mathscr{L}^{\prime} is a map τ that assigns an n-ary term $\tau(f)\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}^{\prime} to every n-ary symbol $f\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}.
- Given an \mathscr{L}^{\prime}-algebra \boldsymbol{A}, we define an \mathscr{L}-algebra

$$
\boldsymbol{A}^{\tau}:=\left\langle A ;\left\{\boldsymbol{\tau}(f)^{\boldsymbol{A}}: f \in \mathscr{L}\right\}\right\rangle
$$

- An interpretation of a logic \vdash into another \vdash^{\prime} is a translation τ between their languages such that

$$
\text { if }\langle\boldsymbol{A}, F\rangle \in \operatorname{Mod} \equiv\left(\vdash^{\prime}\right) \text {, then }\left\langle\boldsymbol{A}^{\tau}, F\right\rangle \in \operatorname{Mod} \equiv(\vdash) \text {. }
$$

Interpretations split in two halves. Consider logics \vdash and \vdash^{\prime}.

- A translation of an algebraic language \mathscr{L} into another \mathscr{L}^{\prime} is a map τ that assigns an n-ary term $\tau(f)\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}^{\prime} to every n-ary symbol $f\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}.
- Given an \mathscr{L}^{\prime}-algebra \boldsymbol{A}, we define an \mathscr{L}-algebra

$$
\boldsymbol{A}^{\tau}:=\left\langle A ;\left\{\boldsymbol{\tau}(f)^{\boldsymbol{A}}: f \in \mathscr{L}\right\}\right\rangle
$$

- An interpretation of a logic \vdash into another \vdash^{\prime} is a translation τ between their languages such that

$$
\text { if }\langle\boldsymbol{A}, F\rangle \in \operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right) \text {, then }\left\langle\boldsymbol{A}^{\tau}, F\right\rangle \in \operatorname{Mod} \equiv(\vdash) \text {. }
$$

Interpretations split in two halves. Consider logics \vdash and \vdash^{\prime}.

- \vdash and \vdash^{\prime} are term-equivalent if so are $\operatorname{Mod} \equiv(\vdash)$, $\operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right)$.
- A translation of an algebraic language \mathscr{L} into another \mathscr{L}^{\prime} is a map τ that assigns an n-ary term $\tau(f)\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}^{\prime} to every n-ary symbol $f\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}.
- Given an \mathscr{L}^{\prime}-algebra \boldsymbol{A}, we define an \mathscr{L}-algebra

$$
\boldsymbol{A}^{\tau}:=\left\langle A ;\left\{\boldsymbol{\tau}(f)^{\boldsymbol{A}}: f \in \mathscr{L}\right\}\right\rangle
$$

- An interpretation of a logic \vdash into another \vdash^{\prime} is a translation τ between their languages such that

$$
\text { if }\langle\boldsymbol{A}, F\rangle \in \operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right) \text {, then }\left\langle\boldsymbol{A}^{\tau}, F\right\rangle \in \operatorname{Mod} \equiv(\vdash) \text {. }
$$

Interpretations split in two halves. Consider logics \vdash and \vdash^{\prime}.

- \vdash and \vdash^{\prime} are term-equivalent if so are $\operatorname{Mod} \equiv^{\equiv}(\vdash)$, $\operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right)$.
- \vdash^{\prime} is a compatible expansion of \vdash if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}_{\vdash^{\prime}}$ and the $\mathscr{L} \vdash$-reducts of the matrices in $\operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right)$ belong to $\operatorname{Mod}{ }^{\equiv}(\vdash)$.
- A translation of an algebraic language \mathscr{L} into another \mathscr{L}^{\prime} is a map τ that assigns an n-ary term $\tau(f)\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}^{\prime} to every n-ary symbol $f\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{L}.
- Given an \mathscr{L}^{\prime}-algebra \boldsymbol{A}, we define an \mathscr{L}-algebra

$$
\boldsymbol{A}^{\tau}:=\left\langle A ;\left\{\boldsymbol{\tau}(f)^{\boldsymbol{A}}: f \in \mathscr{L}\right\}\right\rangle .
$$

- An interpretation of a logic \vdash into another \vdash^{\prime} is a translation τ between their languages such that

$$
\text { if }\langle\boldsymbol{A}, F\rangle \in \operatorname{Mod} \equiv\left(\vdash^{\prime}\right) \text {, then }\left\langle\boldsymbol{A}^{\tau}, F\right\rangle \in \operatorname{Mod} \equiv(\vdash) \text {. }
$$

Interpretations split in two halves. Consider logics \vdash and \vdash^{\prime}.

- \vdash and \vdash^{\prime} are term-equivalent if so are $\operatorname{Mod}{ }^{\equiv}(\vdash)$, $\operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right)$.
- \vdash^{\prime} is a compatible expansion of \vdash if $\mathscr{L} \vdash \subseteq \mathscr{L}_{\vdash^{\prime}}$ and the \mathscr{L}_{\vdash}-reducts of the matrices in $\operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right)$ belong to $\operatorname{Mod}{ }^{\equiv}(\vdash)$.

Lemma

\vdash is interpretable into \vdash^{\prime} iff \vdash^{\prime} is term-equivalent to a compatible expansion of \vdash.

Interpretations split in two halves. Consider logics \vdash and \vdash^{\prime}.

- \vdash and \vdash^{\prime} are term-equivalent if so are $\operatorname{Mod} \equiv(\vdash)$, $\operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right)$.
- \vdash^{\prime} is a compatible expansion of \vdash if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}_{1}$, and the \mathscr{L}_{\vdash}-reducts of the matrices in $\operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right)$ belong to $\operatorname{Mod}{ }^{\equiv}(\vdash)$.

Lemma

\vdash is interpretable into \vdash^{\prime} iff \vdash^{\prime} is term-equivalent to a compatible expansion of \vdash.

Interpretations split in two halves. Consider logics \vdash and \vdash^{\prime}.

- \vdash and \vdash^{\prime} are term-equivalent if so are $\operatorname{Mod}{ }^{\equiv}(\vdash)$, $\operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right)$.
- \vdash^{\prime} is a compatible expansion of \vdash if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}_{1}$, and the \mathscr{L}_{\vdash}-reducts of the matrices in $\operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right)$ belong to $\operatorname{Mod}{ }^{\equiv}(\vdash)$.

Lemma

\vdash is interpretable into \vdash^{\prime} iff \vdash^{\prime} is term-equivalent to a compatible expansion of \vdash.

Example. Recall that

$$
\begin{aligned}
\operatorname{Mod}^{\equiv}(\mathrm{CPC}) & =\{\langle\boldsymbol{A}, F\rangle: \boldsymbol{A} \text { is a Boolean algebra and } F=\{1\}\} \\
\operatorname{Mod}^{\equiv}(\mathrm{IPC}) & =\{\langle\boldsymbol{A}, F\rangle: \boldsymbol{A} \text { is a Heyting algebra and } F=\{1\}\} .
\end{aligned}
$$

Interpretations split in two halves. Consider logics \vdash and \vdash^{\prime}.

- \vdash and \vdash^{\prime} are term-equivalent if so are $\operatorname{Mod}{ }^{\equiv}(\vdash)$, $\operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right)$.
- \vdash^{\prime} is a compatible expansion of \vdash if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}^{\prime}$, and the \mathscr{L}_{\vdash}-reducts of the matrices in $\operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right)$ belong to $\operatorname{Mod}{ }^{\equiv}(\vdash)$.

Lemma

\vdash is interpretable into \vdash^{\prime} iff \vdash^{\prime} is term-equivalent to a compatible expansion of \vdash.

Example. Recall that

$$
\begin{aligned}
\operatorname{Mod}^{\equiv}(\mathrm{CPC}) & =\{\langle\boldsymbol{A}, F\rangle: \boldsymbol{A} \text { is a Boolean algebra and } F=\{1\}\} \\
\operatorname{Mod}^{\equiv}(\mathrm{IPC}) & =\{\langle\boldsymbol{A}, F\rangle: \boldsymbol{A} \text { is a Heyting algebra and } F=\{1\}\} .
\end{aligned}
$$

- The identity map is an interpretation of IPC into CPC.

Interpretations split in two halves. Consider logics \vdash and \vdash^{\prime}.

- \vdash and \vdash^{\prime} are term-equivalent if so are $\operatorname{Mod}{ }^{\equiv}(\vdash)$, $\operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right)$.
- \vdash^{\prime} is a compatible expansion of \vdash if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}^{\prime}$, and the \mathscr{L}_{\vdash}-reducts of the matrices in $\operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right)$ belong to $\operatorname{Mod}{ }^{\equiv}(\vdash)$.

Lemma

\vdash is interpretable into \vdash^{\prime} iff \vdash^{\prime} is term-equivalent to a compatible expansion of \vdash.

Example. Recall that
$\operatorname{Mod} \equiv(\mathbf{C P C})=\{\langle\boldsymbol{A}, F\rangle: \boldsymbol{A}$ is a Boolean algebra and $F=\{1\}\}$
$\operatorname{Mod} \equiv(I P C)=\{\langle\boldsymbol{A}, F\rangle: \boldsymbol{A}$ is a Heyting algebra and $F=\{1\}\}$.

- The identity map is an interpretation of IPC into CPC.
- Is CPC interpretable into IPC?

Interpretations split in two halves. Consider logics \vdash and \vdash^{\prime}.

- \vdash and \vdash^{\prime} are term-equivalent if so are $\operatorname{Mod}{ }^{\equiv}(\vdash)$, $\operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right)$.
- \vdash^{\prime} is a compatible expansion of \vdash if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}_{1}$, and the \mathscr{L}_{\vdash}-reducts of the matrices in $\operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right)$ belong to $\operatorname{Mod}{ }^{\equiv}(\vdash)$.

Lemma

\vdash is interpretable into \vdash^{\prime} iff \vdash^{\prime} is term-equivalent to a compatible expansion of \vdash.

Example. Recall that
$\operatorname{Mod} \equiv(\mathbf{C P C})=\{\langle\boldsymbol{A}, F\rangle: \boldsymbol{A}$ is a Boolean algebra and $F=\{1\}\}$
$\operatorname{Mod} \equiv(I P C)=\{\langle\boldsymbol{A}, F\rangle: \boldsymbol{A}$ is a Heyting algebra and $F=\{1\}\}$.

- The identity map is an interpretation of IPC into CPC.
- Is CPC interpretable into IPC? No, on cardinality grounds!

Interpretations split in two halves. Consider logics \vdash and \vdash^{\prime}.

- \vdash and \vdash^{\prime} are term-equivalent if so are $\operatorname{Mod} \equiv(\vdash)$, $\operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right)$.
- \vdash^{\prime} is a compatible expansion of \vdash if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}_{\vdash^{\prime}}$ and the \mathscr{L}_{\vdash}-reducts of the matrices in $\operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right)$ belong to $\operatorname{Mod}{ }^{\equiv}(\vdash)$.

Lemma

\vdash is interpretable into \vdash^{\prime} iff \vdash^{\prime} is term-equivalent to a compatible expansion of \vdash.

Definition

Intepretability is a preorder on the proper class of all logics.

Interpretations split in two halves. Consider logics \vdash and \vdash^{\prime}.

- \vdash and \vdash^{\prime} are term-equivalent if so are $\operatorname{Mod}{ }^{\equiv}(\vdash)$, $\operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right)$.
- \vdash^{\prime} is a compatible expansion of \vdash if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}^{\prime}$, and the \mathscr{L}_{1}-reducts of the matrices in $\operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right)$ belong to $\operatorname{Mod}{ }^{\equiv}(\vdash)$.

Lemma

\vdash is interpretable into \vdash^{\prime} iff \vdash^{\prime} is term-equivalent to a compatible expansion of \vdash.

Definition

Intepretability is a preorder on the proper class of all logics. The associated partial order Log is the "poset of all logics".

Interpretations split in two halves. Consider logics \vdash and \vdash^{\prime}.

- \vdash and \vdash^{\prime} are term-equivalent if so are $\operatorname{Mod}{ }^{\equiv}(\vdash)$, $\operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right)$.
- \vdash^{\prime} is a compatible expansion of \vdash if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}^{\prime}$, and the \mathscr{L}_{\vdash}-reducts of the matrices in $\operatorname{Mod}{ }^{\equiv}\left(\vdash^{\prime}\right)$ belong to $\operatorname{Mod}{ }^{\equiv}(\vdash)$.

Lemma

\vdash is interpretable into \vdash^{\prime} iff \vdash^{\prime} is term-equivalent to a compatible expansion of \vdash.

Definition

Intepretability is a preorder on the proper class of all logics. The associated partial order Log is the "poset of all logics".

- Elements of Log are classes $\llbracket \vdash \rrbracket$ of equi-interpretable logics.

The structure of the poset of all logics

The structure of the poset of all logics

Basic question:

The structure of the poset of all logics

Basic question:

- Do infima and suprema exist?

Do infima exist?

- Given a set of algebraic languages $\left\{\mathscr{L}_{i}: i \in I\right\}$,

Do infima exist?

- Given a set of algebraic languages $\left\{\mathscr{L}_{i}: i \in I\right\}$, let $\otimes_{i \in I} \mathscr{L}_{i}$ be the language whose n-ary operations f are the sequences

$$
f=\left\langle\varphi_{i}\left(x_{1}, \ldots, x_{n}\right): i \in I\right\rangle
$$

where φ_{i} is an n-ary term of \mathscr{L}_{i}.

Do infima exist?

- Given a set of algebraic languages $\left\{\mathscr{L}_{i}: i \in I\right\}$, let $\otimes_{i \in I} \mathscr{L}_{i}$ be the language whose n-ary operations f are the sequences

$$
f=\left\langle\varphi_{i}\left(x_{1}, \ldots, x_{n}\right): i \in I\right\rangle
$$

where φ_{i} is an n-ary term of \mathscr{L}_{i}.

- Given a set of algebras $\left\{\boldsymbol{A}_{i}: i \in I\right\}$ s.t. \boldsymbol{A}_{i} is an \mathscr{L}_{i}-algebra,

Do infima exist?

- Given a set of algebraic languages $\left\{\mathscr{L}_{i}: i \in I\right\}$, let $\otimes_{i \in I} \mathscr{L}_{i}$ be the language whose n-ary operations f are the sequences

$$
f=\left\langle\varphi_{i}\left(x_{1}, \ldots, x_{n}\right): i \in I\right\rangle
$$

where φ_{i} is an n-ary term of \mathscr{L}_{i}.

- Given a set of algebras $\left\{\boldsymbol{A}_{i}: i \in I\right\}$ s.t. \boldsymbol{A}_{i} is an \mathscr{L}_{i}-algebra, let $\otimes_{i \in I} \boldsymbol{A}_{i}$ be the $\otimes_{i \in I} \mathscr{L}_{i}$-algebra with universe $\prod_{i \in I} A_{i}$ s.t.

$$
f \otimes_{i \in I} \boldsymbol{A}_{i}\left(\vec{a}_{1}, \ldots, \vec{a}_{n}\right):=\left\langle\varphi_{i} \boldsymbol{A}_{i}\left(\vec{a}_{1}(i), \ldots, \vec{a}_{n}(i)\right): i \in I\right\rangle .
$$

Do infima exist?

- Given a set of algebraic languages $\left\{\mathscr{L}_{i}: i \in I\right\}$, let $\otimes_{i \in I} \mathscr{L}_{i}$ be the language whose n-ary operations f are the sequences

$$
f=\left\langle\varphi_{i}\left(x_{1}, \ldots, x_{n}\right): i \in I\right\rangle
$$

where φ_{i} is an n-ary term of \mathscr{L}_{i}.

- Given a set of algebras $\left\{\boldsymbol{A}_{i}: i \in I\right\}$ s.t. \boldsymbol{A}_{i} is an \mathscr{L}_{i}-algebra, let $\otimes_{i \in I} \boldsymbol{A}_{i}$ be the $\otimes_{i \in I} \mathscr{L}_{i}$-algebra with universe $\prod_{i \in I} A_{i}$ s.t.

$$
f \otimes_{i \in I} \boldsymbol{A}_{i}\left(\vec{a}_{1}, \ldots, \vec{a}_{n}\right):=\left\langle\varphi_{i} \boldsymbol{A}_{i}\left(\vec{a}_{1}(i), \ldots, \vec{a}_{n}(i)\right): i \in I\right\rangle .
$$

- Given a set of logics $\left\{\vdash_{i}: i \in I\right\}$,

Do infima exist?

- Given a set of algebraic languages $\left\{\mathscr{L}_{i}: i \in I\right\}$, let $\otimes_{i \in I} \mathscr{L}_{i}$ be the language whose n-ary operations f are the sequences

$$
f=\left\langle\varphi_{i}\left(x_{1}, \ldots, x_{n}\right): i \in I\right\rangle
$$

where φ_{i} is an n-ary term of \mathscr{L}_{i}.

- Given a set of algebras $\left\{\boldsymbol{A}_{i}: i \in I\right\}$ s.t. \boldsymbol{A}_{i} is an \mathscr{L}_{i}-algebra, let $\otimes_{i \in I} \boldsymbol{A}_{i}$ be the $\otimes_{i \in I} \mathscr{L}_{i}$-algebra with universe $\prod_{i \in I} A_{i}$ s.t.

$$
f \otimes_{i \in I} \boldsymbol{A}_{i}\left(\vec{a}_{1}, \ldots, \vec{a}_{n}\right):=\left\langle\varphi_{i} \boldsymbol{A}_{i}\left(\vec{a}_{1}(i), \ldots, \vec{a}_{n}(i)\right): i \in I\right\rangle .
$$

- Given a set of logics $\left\{\vdash_{i}: i \in I\right\}$, let $\bigotimes_{i \in I} \vdash_{i}$ be the logic induced by the class of matrices

$$
\left\{\left\langle\bigotimes_{i \in I} \boldsymbol{A}_{i}, \prod_{i \in I} F_{i}\right\rangle:\left\langle\boldsymbol{A}_{i}, F_{i}\right\rangle \in \operatorname{Mod}^{\equiv}\left(\vdash_{i}\right)\right\}
$$

Do infima exist?

- Given a set of algebraic languages $\left\{\mathscr{L}_{i}: i \in I\right\}$, let $\otimes_{i \in I} \mathscr{L}_{i}$ be the language whose n-ary operations f are the sequences

$$
f=\left\langle\varphi_{i}\left(x_{1}, \ldots, x_{n}\right): i \in I\right\rangle
$$

where φ_{i} is an n-ary term of \mathscr{L}_{i}.

- Given a set of algebras $\left\{\boldsymbol{A}_{i}: i \in I\right\}$ s.t. \boldsymbol{A}_{i} is an \mathscr{L}_{i}-algebra, let $\otimes_{i \in I} \boldsymbol{A}_{i}$ be the $\otimes_{i \in I} \mathscr{L}_{i}$-algebra with universe $\prod_{i \in I} A_{i}$ s.t.

$$
f \otimes_{i \in I} \boldsymbol{A}_{i}\left(\vec{a}_{1}, \ldots, \vec{a}_{n}\right):=\left\langle\varphi_{i} \boldsymbol{A}_{i}\left(\vec{a}_{1}(i), \ldots, \vec{a}_{n}(i)\right): i \in I\right\rangle .
$$

- Given a set of logics $\left\{\vdash_{i}: i \in I\right\}$, let $\otimes_{i \in I} \vdash_{i}$ be the logic induced by the class of matrices

$$
\left\{\left\langle\bigotimes_{i \in I} \boldsymbol{A}_{i}, \prod_{i \in I} F_{i}\right\rangle:\left\langle\boldsymbol{A}_{i}, F_{i}\right\rangle \in \operatorname{Mod} \equiv\left(\vdash_{i}\right)\right\}
$$

formulated with $\prod_{i \in I}\left|\mathbf{F m}\left(\vdash_{i}\right)\right|$ variables.

Do infima exist?

- Given a set of algebraic languages $\left\{\mathscr{L}_{i}: i \in I\right\}$, let $\otimes_{i \in I} \mathscr{L}_{i}$ be the language whose n-ary operations f are the sequences

$$
f=\left\langle\varphi_{i}\left(x_{1}, \ldots, x_{n}\right): i \in I\right\rangle
$$

where φ_{i} is an n-ary term of \mathscr{L}_{i}.

- Given a set of algebras $\left\{\boldsymbol{A}_{i}: i \in I\right\}$ s.t. \boldsymbol{A}_{i} is an \mathscr{L}_{i}-algebra, let $\otimes_{i \in I} \boldsymbol{A}_{i}$ be the $\otimes_{i \in I} \mathscr{L}_{i}$-algebra with universe $\prod_{i \in I} A_{i}$ s.t.

$$
f \otimes_{i \in I} \boldsymbol{A}_{i}\left(\vec{a}_{1}, \ldots, \vec{a}_{n}\right):=\left\langle\varphi_{i} \boldsymbol{A}_{i}\left(\vec{a}_{1}(i), \ldots, \vec{a}_{n}(i)\right): i \in I\right\rangle .
$$

- Given a set of logics $\left\{\vdash_{i}: i \in I\right\}$, let $\otimes_{i \in I} \vdash_{i}$ be the logic induced by the class of matrices

$$
\left\{\left\langle\bigotimes_{i \in I} \boldsymbol{A}_{i}, \prod_{i \in I} F_{i}\right\rangle:\left\langle\boldsymbol{A}_{i}, F_{i}\right\rangle \in \operatorname{Mod}{ }^{\equiv}\left(\vdash_{i}\right)\right\} .
$$

$\otimes_{i \in I} \vdash_{i}$ is called the non-indexed product of the various \vdash_{i}.

Do infima exist?

- Given a set of algebraic languages $\left\{\mathscr{L}_{i}: i \in I\right\}$, let $\otimes_{i \in I} \mathscr{L}_{i}$ be the language whose n-ary operations f are the sequences

$$
f=\left\langle\varphi_{i}\left(x_{1}, \ldots, x_{n}\right): i \in I\right\rangle
$$

where φ_{i} is an n-ary term of \mathscr{L}_{i}.

- Given a set of algebras $\left\{\boldsymbol{A}_{i}: i \in I\right\}$ s.t. \boldsymbol{A}_{i} is an \mathscr{L}_{i}-algebra, let $\otimes_{i \in I} \boldsymbol{A}_{i}$ be the $\otimes_{i \in I} \mathscr{L}_{i}$-algebra with universe $\prod_{i \in I} A_{i}$ s.t.

$$
f \otimes_{i \in I} \boldsymbol{A}_{i}\left(\vec{a}_{1}, \ldots, \vec{a}_{n}\right):=\left\langle\varphi_{i} \boldsymbol{A}_{i}\left(\vec{a}_{1}(i), \ldots, \vec{a}_{n}(i)\right): i \in I\right\rangle .
$$

- Given a set of logics $\left\{\vdash_{i}: i \in I\right\}$, let $\otimes_{i \in I} \vdash_{i}$ be the logic induced by the class of matrices

$$
\left\{\left\langle\bigotimes_{i \in I} \boldsymbol{A}_{i}, \prod_{i \in I} F_{i}\right\rangle:\left\langle\boldsymbol{A}_{i}, F_{i}\right\rangle \in \operatorname{Mod} \equiv\left(\vdash_{i}\right)\right\} .
$$

Theorem

- $\operatorname{Mod}{ }^{\equiv}\left(\otimes_{i \in I} \vdash_{i}\right)$ is the closure under $\mathbb{P}_{\text {sd }}$ of the above display.

Do infima exist?

- Given a set of algebraic languages $\left\{\mathscr{L}_{i}: i \in I\right\}$, let $\otimes_{i \in I} \mathscr{L}_{i}$ be the language whose n-ary operations f are the sequences

$$
f=\left\langle\varphi_{i}\left(x_{1}, \ldots, x_{n}\right): i \in I\right\rangle
$$

where φ_{i} is an n-ary term of \mathscr{L}_{i}.

- Given a set of algebras $\left\{\boldsymbol{A}_{i}: i \in I\right\}$ s.t. \boldsymbol{A}_{i} is an \mathscr{L}_{i}-algebra, let $\otimes_{i \in I} \boldsymbol{A}_{i}$ be the $\otimes_{i \in I} \mathscr{L}_{i}$-algebra with universe $\prod_{i \in I} A_{i}$ s.t.

$$
f \otimes_{i \in I} \boldsymbol{A}_{i}\left(\vec{a}_{1}, \ldots, \vec{a}_{n}\right):=\left\langle\varphi_{i} \boldsymbol{A}_{i}\left(\vec{a}_{1}(i), \ldots, \vec{a}_{n}(i)\right): i \in I\right\rangle .
$$

- Given a set of logics $\left\{\vdash_{i}: i \in I\right\}$, let $\otimes_{i \in I} \vdash_{i}$ be the logic induced by the class of matrices

$$
\left\{\left\langle\bigotimes_{i \in I} \boldsymbol{A}_{i}, \prod_{i \in I} F_{i}\right\rangle:\left\langle\boldsymbol{A}_{i}, F_{i}\right\rangle \in \operatorname{Mod} \equiv\left(\vdash_{i}\right)\right\} .
$$

Theorem

- $\operatorname{Mod}{ }^{\equiv}\left(\otimes_{i \in I} \vdash_{i}\right)$ is the closure under $\mathbb{P}_{\text {sd }}$ of the above display.
- $\llbracket \bigotimes_{i \in I} \vdash_{i} \rrbracket$ is the infimum of $\left\{\llbracket \vdash_{i} \rrbracket: i \in I\right\}$ in Log.

Do infima exist?

- Given a set of algebraic languages $\left\{\mathscr{L}_{i}: i \in I\right\}$, let $\otimes_{i \in I} \mathscr{L}_{i}$ be the language whose n-ary operations f are the sequences

$$
f=\left\langle\varphi_{i}\left(x_{1}, \ldots, x_{n}\right): i \in I\right\rangle
$$

where φ_{i} is an n-ary term of \mathscr{L}_{i}.

- Given a set of algebras $\left\{\boldsymbol{A}_{i}: i \in I\right\}$ s.t. \boldsymbol{A}_{i} is an \mathscr{L}_{i}-algebra, let $\otimes_{i \in I} \boldsymbol{A}_{i}$ be the $\otimes_{i \in I} \mathscr{L}_{i}$-algebra with universe $\prod_{i \in I} A_{i}$ s.t.

$$
f \otimes_{i \in I} \boldsymbol{A}_{i}\left(\vec{a}_{1}, \ldots, \vec{a}_{n}\right):=\left\langle\varphi_{i} \boldsymbol{A}_{i}\left(\vec{a}_{1}(i), \ldots, \vec{a}_{n}(i)\right): i \in I\right\rangle .
$$

- Given a set of logics $\left\{\vdash_{i}: i \in I\right\}$, let $\otimes_{i \in I} \vdash_{i}$ be the logic induced by the class of matrices

$$
\left\{\left\langle\bigotimes_{i \in I} \boldsymbol{A}_{i}, \prod_{i \in I} F_{i}\right\rangle:\left\langle\boldsymbol{A}_{i}, F_{i}\right\rangle \in \operatorname{Mod} \equiv\left(\vdash_{i}\right)\right\} .
$$

Theorem

Log is a set-complete meet-semilattice.

Do suprema exist?

Do suprema exist?

- No: even binary suprema may fail to exist.

Do suprema exist?

- No: even binary suprema may fail to exist.
- Let $\mathrm{CPC}_{\checkmark}$ be the negation fragment of classical logic,

Do suprema exist?

- No: even binary suprema may fail to exist.
- Let CPC_{\neg} be the negation fragment of classical logic,

$$
x \triangleright \neg \neg x \quad \neg \neg x \triangleright x \quad x, \neg x \triangleright y
$$

Do suprema exist?

- No: even binary suprema may fail to exist.
- Let $\mathrm{CPC}_{\checkmark}$ be the negation fragment of classical logic,

$$
x \triangleright \neg \neg x \quad \neg \neg x \triangleright x \quad x, \neg x \triangleright y .
$$

- Consider the algebra $\boldsymbol{A}=\langle A ; \vee, a, b, 0\rangle$ depicted below.

Do suprema exist?

- No: even binary suprema may fail to exist.
- Let $\mathrm{CPC}_{\checkmark}$ be the negation fragment of classical logic,

$$
x \triangleright \neg \neg x \quad \neg \neg x \triangleright x \quad x, \neg x \triangleright y .
$$

- Consider the algebra $\boldsymbol{A}=\langle A ; \vee, a, b, 0\rangle$ depicted below.

Do suprema exist?

- No: even binary suprema may fail to exist.
- Let $\mathrm{CPC}_{\checkmark}$ be the negation fragment of classical logic,

$$
x \triangleright \neg \neg x \quad \neg \neg x \triangleright x \quad x, \neg x \triangleright y .
$$

- Consider the algebra $\boldsymbol{A}=\langle A ; \vee, \mathrm{a}, \mathrm{b}, 0\rangle$ depicted below.

Then let \mathbf{L} be the logic induced by the pair of matrices

$$
\{\langle\boldsymbol{A},\{1\}\rangle,\langle\boldsymbol{A},\{1, c\}\rangle\} .
$$

Do suprema exist?

- No: even binary suprema may fail to exist.
- Let $\mathrm{CPC}_{\checkmark}$ be the negation fragment of classical logic,

$$
x \triangleright \neg \neg x \quad \neg \neg x \triangleright x \quad x, \neg x \triangleright y .
$$

- Consider the algebra $\boldsymbol{A}=\langle A ; \vee, \mathrm{a}, \mathrm{b}, 0\rangle$ depicted below.

Then let \mathbf{L} be the logic induced by the pair of matrices

$$
\{\langle\boldsymbol{A},\{1\}\rangle,\langle\boldsymbol{A},\{1, c\}\rangle\} .
$$

- The supremum of $\llbracket \mathrm{CPC}_{\urcorner} \rrbracket$ and $\llbracket \mathrm{L} \rrbracket$ does not exist in Log.

Leibniz classes and hierarchy

Leibniz classes and hierarchy

Basic question:

Leibniz classes and hierarchy

Basic question:

- What are Leibniz classes of logics?

What is the Leibniz hierarchy?

What is the Leibniz hierarchy?

- A classification of logics in terms syntactic principles that govern the behaviour of the indiscernibility relation.

What is the Leibniz hierarchy?

- A classification of logics in terms syntactic principles that govern the behaviour of the indiscernibility relation.
Example.

What is the Leibniz hierarchy?

- A classification of logics in terms syntactic principles that govern the behaviour of the indiscernibility relation.
Example.
- A logic \vdash is equivalential if there is a non-empty set of formulas $\Delta(x, y)$ that defines indiscernibility

What is the Leibniz hierarchy?

- A classification of logics in terms syntactic principles that govern the behaviour of the indiscernibility relation.
Example.
- A logic \vdash is equivalential if there is a non-empty set of formulas $\Delta(x, y)$ s.t. for all models $\langle\boldsymbol{A}, F\rangle$ of \vdash and $a, c \in A$,

$$
a \equiv c \Longleftrightarrow \Delta^{\boldsymbol{A}}(a, c) \subseteq F
$$

What is the Leibniz hierarchy?

- A classification of logics in terms syntactic principles that govern the behaviour of the indiscernibility relation.
Example.
- A logic \vdash is equivalential if there is a non-empty set of formulas $\Delta(x, y)$ s.t. for all models $\langle\boldsymbol{A}, F\rangle$ of \vdash and $a, c \in A$,

$$
a \equiv c \Longleftrightarrow \Delta^{\boldsymbol{A}}(a, c) \subseteq F
$$

- Syntactic characterization. A logic \vdash is equivalential iff there is a non-empty set $\Delta(x, y)$ of formulas s.t.

What is the Leibniz hierarchy?

- A classification of logics in terms syntactic principles that govern the behaviour of the indiscernibility relation.
Example.
- A logic \vdash is equivalential if there is a non-empty set of formulas $\Delta(x, y)$ s.t. for all models $\langle\boldsymbol{A}, F\rangle$ of \vdash and $a, c \in A$,

$$
a \equiv c \Longleftrightarrow \Delta^{\boldsymbol{A}}(a, c) \subseteq F
$$

- Syntactic characterization. A logic \vdash is equivalential iff there is a non-empty set $\Delta(x, y)$ of formulas s.t.

$$
\begin{gathered}
\varnothing \vdash \Delta(x, x) \quad x, \Delta(x, y) \vdash y \\
\bigcup_{1 \leqslant i \leqslant n} \Delta\left(x_{i}, y_{i}\right) \vdash \Delta\left(f\left(x_{1}, \ldots, x_{n}\right), f\left(y_{1}, \ldots, y_{n}\right)\right)
\end{gathered}
$$

for every n-ary connective f.

What is the Leibniz hierarchy?

- A classification of logics in terms syntactic principles that govern the behaviour of the indiscernibility relation.
Example.
- A logic \vdash is equivalential if there is a non-empty set of formulas $\Delta(x, y)$ s.t. for all models $\langle\boldsymbol{A}, F\rangle$ of \vdash and $a, c \in A$,

$$
a \equiv c \Longleftrightarrow \Delta^{\boldsymbol{A}}(a, c) \subseteq F
$$

- Syntactic characterization. A logic \vdash is equivalential iff there is a non-empty set $\Delta(x, y)$ of formulas s.t.

$$
\begin{gathered}
\varnothing \vdash \Delta(x, x) \quad x, \Delta(x, y) \vdash y \\
\bigcup_{1 \leqslant i \leqslant n} \Delta\left(x_{i}, y_{i}\right) \vdash \Delta\left(f\left(x_{1}, \ldots, x_{n}\right), f\left(y_{1}, \ldots, y_{n}\right)\right)
\end{gathered}
$$

for every n-ary connective f.

- Equivalential logics form a Leibniz class.
- A Leibniz condition is a sequence $\Phi=\left\{\vdash_{\alpha}: \alpha \in \mathrm{OR}\right\}$ of logics, indexed by all ordinals, s.t.

$$
\text { if } \alpha \leqslant \beta \text {, then } \vdash_{\beta} \text { is interpretable into } \vdash_{\alpha} .
$$

- A Leibniz condition is a sequence $\Phi=\left\{\vdash_{\alpha}: \alpha \in \mathrm{OR}\right\}$ of logics, indexed by all ordinals, s.t.

$$
\text { if } \alpha \leqslant \beta \text {, then } \vdash_{\beta} \text { is interpretable into } \vdash_{\alpha} \text {. }
$$

- A logic \vdash satisfies Φ if some \vdash_{α} is intepretable in \vdash.
- A Leibniz condition is a sequence $\Phi=\left\{\vdash_{\alpha}: \alpha \in \mathrm{OR}\right\}$ of logics, indexed by all ordinals, s.t.

$$
\text { if } \alpha \leqslant \beta \text {, then } \vdash_{\beta} \text { is interpretable into } \vdash_{\alpha} .
$$

- A logic \vdash satisfies Φ if some \vdash_{α} is intepretable in \vdash. Let

$$
\log (\Phi):=\{\vdash: \vdash \text { is a logic and satisfies } \Phi\}
$$

- A Leibniz condition is a sequence $\Phi=\left\{\vdash_{\alpha}: \alpha \in \mathrm{OR}\right\}$ of logics, indexed by all ordinals, s.t.

$$
\text { if } \alpha \leqslant \beta \text {, then } \vdash_{\beta} \text { is interpretable into } \vdash_{\alpha} \text {. }
$$

- A logic \vdash satisfies Φ if some \vdash_{α} is intepretable in \vdash. Let

$$
\log (\Phi):=\{\vdash: \vdash \text { is a logic and satisfies } \Phi\}
$$

- A Leibniz class is a class of logics of the form $\log (\Phi)$, for some Leibniz condition Φ.

Theorem

Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is "essentially" a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

Theorem
Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is "essentially" a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

Proof sketch of $3 \Rightarrow 1$.

- Consider the cumulative hierarchy of sets $\left\{V_{\alpha}: \alpha \in \mathrm{OR}\right\}$.

Theorem

Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is "essentially" a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

Proof sketch of $3 \Rightarrow 1$.

- Consider the cumulative hierarchy of sets $\left\{V_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- For every ordinal α, define the set $\mathrm{K}_{\alpha}:=\mathrm{K} \cap V_{\alpha}$.

Theorem

Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is "essentially" a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

Proof sketch of $3 \Rightarrow 1$.

- Consider the cumulative hierarchy of sets $\left\{V_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- For every ordinal α, define the set $\mathrm{K}_{\alpha}:=\mathrm{K} \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\otimes K_{\alpha}$.

Theorem

Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is "essentially" a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

Proof sketch of $3 \Rightarrow 1$.

- Consider the cumulative hierarchy of sets $\left\{V_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- For every ordinal α, define the set $\mathrm{K}_{\alpha}:=\mathrm{K} \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\otimes K_{\alpha}$.
- Then consider the sequence $\Phi=\left\{\vdash_{\alpha}: \alpha \in \mathrm{OR}\right\}$.

Theorem

Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is "essentially" a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

Proof sketch of $3 \Rightarrow 1$.

- Consider the cumulative hierarchy of sets $\left\{V_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- For every ordinal α, define the set $\mathrm{K}_{\alpha}:=\mathrm{K} \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\otimes K_{\alpha}$.
- Then consider the sequence $\Phi=\left\{\vdash_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- Φ is a Leibniz condition, as if $\alpha \leqslant \beta$, then $\mathrm{K}_{\alpha} \subseteq \mathrm{K}_{\beta}$.

Theorem

Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is "essentially" a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

Proof sketch of $3 \Rightarrow 1$.

- Consider the cumulative hierarchy of sets $\left\{V_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- For every ordinal α, define the set $\mathrm{K}_{\alpha}:=\mathrm{K} \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\otimes K_{\alpha}$.
- Then consider the sequence $\Phi=\left\{\vdash_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- Φ is a Leibniz condition, as if $\alpha \leqslant \beta$, then $\mathrm{K}_{\alpha} \subseteq \mathrm{K}_{\beta}$.
- If \vdash satisfies Φ,

Theorem

Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is "essentially" a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

Proof sketch of $3 \Rightarrow 1$.

- Consider the cumulative hierarchy of sets $\left\{V_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- For every ordinal α, define the set $\mathrm{K}_{\alpha}:=\mathrm{K} \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\otimes K_{\alpha}$.
- Then consider the sequence $\Phi=\left\{\vdash_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- Φ is a Leibniz condition, as if $\alpha \leqslant \beta$, then $\mathrm{K}_{\alpha} \subseteq \mathrm{K}_{\beta}$.
- If \vdash satisfies Φ, then some \vdash_{α} is interpretable into \vdash.

Theorem

Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is "essentially" a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

Proof sketch of $3 \Rightarrow 1$.

- Consider the cumulative hierarchy of sets $\left\{V_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- For every ordinal α, define the set $\mathrm{K}_{\alpha}:=\mathrm{K} \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\otimes K_{\alpha}$.
- Then consider the sequence $\Phi=\left\{\vdash_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- Φ is a Leibniz condition, as if $\alpha \leqslant \beta$, then $\mathrm{K}_{\alpha} \subseteq \mathrm{K}_{\beta}$.
- If \vdash satisfies Φ, then \vdash is a term-equivalent to a compatible expansion of some \vdash_{α}.

Theorem

Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is "essentially" a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

Proof sketch of $3 \Rightarrow 1$.

- Consider the cumulative hierarchy of sets $\left\{V_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- For every ordinal α, define the set $\mathrm{K}_{\alpha}:=\mathrm{K} \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\otimes K_{\alpha}$.
- Then consider the sequence $\Phi=\left\{\vdash_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- Φ is a Leibniz condition, as if $\alpha \leqslant \beta$, then $\mathrm{K}_{\alpha} \subseteq \mathrm{K}_{\beta}$.
- If \vdash satisfies Φ, then \vdash is a term-equivalent to a compatible expansion of a non-indexed product of a set of logics in K.

Theorem

Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is "essentially" a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

Proof sketch of $3 \Rightarrow 1$.

- Consider the cumulative hierarchy of sets $\left\{V_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- For every ordinal α, define the set $\mathrm{K}_{\alpha}:=\mathrm{K} \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\otimes K_{\alpha}$.
- Then consider the sequence $\Phi=\left\{\vdash_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- Φ is a Leibniz condition, as if $\alpha \leqslant \beta$, then $\mathrm{K}_{\alpha} \subseteq \mathrm{K}_{\beta}$.
- If \vdash satisfies Φ, then $\vdash \in \mathrm{K}$.

Theorem

Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is "essentially" a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

Proof sketch of $3 \Rightarrow 1$.

- Consider the cumulative hierarchy of sets $\left\{V_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- For every ordinal α, define the set $\mathrm{K}_{\alpha}:=\mathrm{K} \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\otimes K_{\alpha}$.
- Then consider the sequence $\Phi=\left\{\vdash_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- Φ is a Leibniz condition, as if $\alpha \leqslant \beta$, then $\mathrm{K}_{\alpha} \subseteq \mathrm{K}_{\beta}$.
- If \vdash satisfies Φ, then $\vdash \in \mathrm{K}$.
- If $\vdash \in \mathrm{K}$,

Theorem

Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is "essentially" a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

Proof sketch of $3 \Rightarrow 1$.

- Consider the cumulative hierarchy of sets $\left\{V_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- For every ordinal α, define the set $\mathrm{K}_{\alpha}:=\mathrm{K} \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\otimes K_{\alpha}$.
- Then consider the sequence $\Phi=\left\{\vdash_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- Φ is a Leibniz condition, as if $\alpha \leqslant \beta$, then $\mathrm{K}_{\alpha} \subseteq \mathrm{K}_{\beta}$.
- If \vdash satisfies Φ, then $\vdash \in \mathrm{K}$.
- If $\vdash \in \mathrm{K}$, then $\vdash \in V_{\alpha} \cap \mathrm{K}=\mathrm{K}_{\alpha}$ for some α.

Theorem

Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is "essentially" a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

Proof sketch of $3 \Rightarrow 1$.

- Consider the cumulative hierarchy of sets $\left\{V_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- For every ordinal α, define the set $\mathrm{K}_{\alpha}:=\mathrm{K} \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\otimes K_{\alpha}$.
- Then consider the sequence $\Phi=\left\{\vdash_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- Φ is a Leibniz condition, as if $\alpha \leqslant \beta$, then $\mathrm{K}_{\alpha} \subseteq \mathrm{K}_{\beta}$.
- If \vdash satisfies Φ, then $\vdash \in \mathrm{K}$.
- If $\vdash \in \mathrm{K}$, then \vdash_{α} is intepretable in \vdash for some α.

Theorem

Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is "essentially" a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

Proof sketch of $3 \Rightarrow 1$.

- Consider the cumulative hierarchy of sets $\left\{V_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- For every ordinal α, define the set $\mathrm{K}_{\alpha}:=\mathrm{K} \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\otimes K_{\alpha}$.
- Then consider the sequence $\Phi=\left\{\vdash_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- Φ is a Leibniz condition, as if $\alpha \leqslant \beta$, then $\mathrm{K}_{\alpha} \subseteq \mathrm{K}_{\beta}$.
- If \vdash satisfies Φ, then $\vdash \in \mathrm{K}$.
- If $\vdash \in K$, then \vdash satisfies Φ.

Theorem

Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is "essentially" a set-complete filter of Log.
3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

Proof sketch of $3 \Rightarrow 1$.

- Consider the cumulative hierarchy of sets $\left\{V_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- For every ordinal α, define the set $\mathrm{K}_{\alpha}:=\mathrm{K} \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\otimes K_{\alpha}$.
- Then consider the sequence $\Phi=\left\{\vdash_{\alpha}: \alpha \in \mathrm{OR}\right\}$.
- Φ is a Leibniz condition, as if $\alpha \leqslant \beta$, then $\mathrm{K}_{\alpha} \subseteq \mathrm{K}_{\beta}$.
- If \vdash satisfies Φ, then $\vdash \in \mathrm{K}$.
- If $\vdash \in K$, then \vdash satisfies Φ.
- K is the class of logics satisfying Φ.

Indecomposable Leibniz classes

Indecomposable Leibniz classes

Basic question:

Indecomposable Leibniz classes

Basic question:

- Which of Leibniz classes are primitive or fundamental?
- When ordered under inclusion, Leibniz classes form a "lattice".

Definition

A Leibniz class K is said to be

- When ordered under inclusion, Leibniz classes form a "lattice".

Definition

A Leibniz class K is said to be

- meet-irreducible if for every pair K_{1} and K_{2} of Leibniz classes (of logics with some tautology),

$$
\text { if } \mathrm{K}=\mathrm{K}_{1} \cap \mathrm{~K}_{2} \text {, then either } \mathrm{K}=\mathrm{K}_{1} \text { or } \mathrm{K}=\mathrm{K}_{2} .
$$

- When ordered under inclusion, Leibniz classes form a "lattice".

Definition

A Leibniz class K is said to be

- meet-irreducible if for every pair K_{1} and K_{2} of Leibniz classes (of logics with some tautology),

$$
\text { if } K=K_{1} \cap K_{2} \text {, then either } K=K_{1} \text { or } K=K_{2} .
$$

- meet-prime if for every pair of Leibniz classes K_{1} and K_{2} (of logics with some tautology),
if $\mathrm{K}_{1} \cap \mathrm{~K}_{2} \subseteq \mathrm{~K}$, then either $\mathrm{K}_{1} \subseteq \mathrm{~K}$ or $\mathrm{K}_{2} \subseteq \mathrm{~K}$.
- When ordered under inclusion, Leibniz classes form a "lattice".

Definition

A Leibniz class K is said to be

- meet-irreducible if for every pair K_{1} and K_{2} of Leibniz classes (of logics with some tautology),

$$
\text { if } \mathrm{K}=\mathrm{K}_{1} \cap \mathrm{~K}_{2} \text {, then either } \mathrm{K}=\mathrm{K}_{1} \text { or } \mathrm{K}=\mathrm{K}_{2} \text {. }
$$

- meet-prime if for every pair of Leibniz classes K_{1} and K_{2} (of logics with some tautology),

```
if K
```

- Intuitively, a Leibniz class is meet-prime (resp. irreducible) when it captures a fundamental concept.
- When ordered under inclusion, Leibniz classes form a "lattice".

Definition

A Leibniz class K is said to be

- meet-irreducible if for every pair K_{1} and K_{2} of Leibniz classes (of logics with some tautology),

$$
\text { if } K=K_{1} \cap K_{2} \text {, then either } K=K_{1} \text { or } K=K_{2} .
$$

- meet-prime if for every pair of Leibniz classes K_{1} and K_{2} (of logics with some tautology),

$$
\text { if } \mathrm{K}_{1} \cap \mathrm{~K}_{2} \subseteq \mathrm{~K} \text {, then either } \mathrm{K}_{1} \subseteq \mathrm{~K} \text { or } \mathrm{K}_{2} \subseteq \mathrm{~K} .
$$

- Intuitively, a Leibniz class is meet-prime (resp. irreducible) when it captures a fundamental concept.
- We shall apply this test to two conditions, i.e. the definability of truth-sets and of indiscernibility.

Definability of truth-sets.

- A logic \vdash is truth-equational if there is a set of equations $E(x)$ s.t. for every $\langle\boldsymbol{A}, F\rangle \in \operatorname{Mod}{ }^{\equiv}(\vdash)$

$$
a \in F \Longleftrightarrow \boldsymbol{A} \vDash E(a), \text { for all } a \in A \text {. }
$$

Definability of truth-sets.

- A logic \vdash with tautologies is truth-equational if there are no $\langle\boldsymbol{A}, F\rangle,\langle\boldsymbol{A}, G\rangle \in \operatorname{Mod}{ }^{\equiv}(\vdash)$ such that $\varnothing \subsetneq F \subsetneq G$.

Definability of truth-sets.

- A logic \vdash with tautologies is truth-equational if there are no $\langle\boldsymbol{A}, F\rangle,\langle\boldsymbol{A}, G\rangle \in \operatorname{Mod}^{\equiv}(\vdash)$ such that $\varnothing \subsetneq F \subsetneq G$.

Theorem

Truth-equational logics form a meet-prime Leibniz class.
Proof sketch.

Definability of truth-sets.

- A logic \vdash with tautologies is truth-equational if there are no $\langle\boldsymbol{A}, F\rangle,\langle\boldsymbol{A}, G\rangle \in \operatorname{Mod}{ }^{\equiv}(\vdash)$ such that $\varnothing \subsetneq F \subsetneq G$.

Theorem

Truth-equational logics form a meet-prime Leibniz class.
Proof sketch.

- Let \vdash_{1}, \vdash_{2} be non truth-equational logics (with tautologies).

Definability of truth-sets.

- A logic \vdash with tautologies is truth-equational if there are no $\langle\boldsymbol{A}, F\rangle,\langle\boldsymbol{A}, G\rangle \in \operatorname{Mod}{ }^{\equiv}(\vdash)$ such that $\varnothing \subsetneq F \subsetneq G$.

Theorem

Truth-equational logics form a meet-prime Leibniz class.
Proof sketch.

- Let \vdash_{1}, \vdash_{2} be non truth-equational logics (with tautologies).
- Goal: find a non truth-equational logics in which \vdash_{1} and \vdash_{2} are interpretable.

Definability of truth-sets.

- A logic \vdash with tautologies is truth-equational if there are no $\langle\boldsymbol{A}, F\rangle,\langle\boldsymbol{A}, G\rangle \in \operatorname{Mod}{ }^{\equiv}(\vdash)$ such that $\varnothing \subsetneq F \subsetneq G$.

Theorem

Truth-equational logics form a meet-prime Leibniz class.
Proof sketch.

- Let \vdash_{1}, \vdash_{2} be non truth-equational logics (with tautologies).
- Goal: find a non truth-equational logics in which \vdash_{1} and \vdash_{2} are interpretable.
- As \vdash_{1} and \vdash_{2} are not truth-equational, there are matrices

$$
\begin{aligned}
& \left\langle\boldsymbol{A}_{1}, F_{1}\right\rangle,\left\langle\boldsymbol{A}_{1}, G_{1}\right\rangle \in \operatorname{Mod}^{\equiv}\left(\vdash_{1}\right) \text { s.t. } \varnothing \subsetneq F_{1} \subsetneq G_{1} \\
& \left\langle\boldsymbol{A}_{2}, F_{2}\right\rangle,\left\langle\boldsymbol{A}_{2}, G_{2}\right\rangle \in \operatorname{Mod}^{\equiv}\left(\vdash_{2}\right) \text { s.t. } \varnothing \subsetneq F_{2} \subsetneq G_{2} .
\end{aligned}
$$

Algebra A_{2}

- We want to merge the two algebras into a single one.

Algebra A_{2}

- We want to merge the two algebras into a single one.
- The problem is that \boldsymbol{A}_{1} and \boldsymbol{A}_{2} have not the same universe.

Algebra A_{2}

- We want to merge the two algebras into a single one.
- The problem is that \boldsymbol{A}_{1} and \boldsymbol{A}_{2} have not the same universe.
- This is solved by "adding points"' to \boldsymbol{A}_{1} and \boldsymbol{A}_{2}, taking sufficiently large direct powers.

Algebra $\mathrm{A}_{1}{ }^{\mathrm{k}}$

Algebra $\mathrm{A}_{2}{ }^{\mathrm{k}}$

- We want to merge the two algebras into a single one.
- The problem is that \boldsymbol{A}_{1} and \boldsymbol{A}_{2} have not the same universe.
- This is solved by "adding points"' to \boldsymbol{A}_{1} and \boldsymbol{A}_{2}, taking sufficiently large direct powers.

Algebra $\mathrm{A}_{1}{ }^{\text {k }}$

Algebra $\mathrm{A}_{2}{ }^{\mathrm{k}}$

- We want to merge the two algebras into a single one.
- The problem is that \boldsymbol{A}_{1} and \boldsymbol{A}_{2} have not the same universe.
- This is solved by "adding points"' to \boldsymbol{A}_{1} and \boldsymbol{A}_{2}, taking sufficiently large direct powers.
- We assume w.l.o.g. that \boldsymbol{A}_{1} is $\boldsymbol{A}_{1}^{\kappa}$ and \boldsymbol{A}_{2} is $\boldsymbol{A}_{2}^{\kappa}$.

- We merge \boldsymbol{A}_{1} and \boldsymbol{A}_{2} into an algebra \boldsymbol{A} with universe $A=A_{1}=A_{2}$ endowed with all finitary operations.

- We merge \boldsymbol{A}_{1} and \boldsymbol{A}_{2} into an algebra \boldsymbol{A} with universe $A=A_{1}=A_{2}$ endowed with all finitary operations.
- Let \vdash be the logic induced by the matrices $\langle\boldsymbol{A}, F\rangle$ and $\langle\boldsymbol{A}, G\rangle$.

- We merge \boldsymbol{A}_{1} and \boldsymbol{A}_{2} into an algebra \boldsymbol{A} with universe $A=A_{1}=A_{2}$ endowed with all finitary operations.
- Let \vdash be the logic induced by the matrices $\langle\boldsymbol{A}, F\rangle$ and $\langle\boldsymbol{A}, G\rangle$.
- Goal: to show that \vdash is not truth-equational and that \vdash_{1} and \vdash_{2} are interpretable in \vdash.

- We merge \boldsymbol{A}_{1} and \boldsymbol{A}_{2} into an algebra \boldsymbol{A} with universe $A=A_{1}=A_{2}$ endowed with all finitary operations.
- Let \vdash be the logic induced by the matrices $\langle\boldsymbol{A}, F\rangle$ and $\langle\boldsymbol{A}, G\rangle$.
- \vdash is not truth-equational, since $\langle\boldsymbol{A}, F\rangle,\langle\boldsymbol{A}, G\rangle \in \operatorname{Mod}{ }^{\equiv}(\vdash)$ and $\varnothing \subsetneq F \subsetneq G$.

- We merge \boldsymbol{A}_{1} and \boldsymbol{A}_{2} into an algebra \boldsymbol{A} with universe $A=A_{1}=A_{2}$ endowed with all finitary operations.
- Let \vdash be the logic induced by the matrices $\langle\boldsymbol{A}, F\rangle$ and $\langle\boldsymbol{A}, G\rangle$.
- \vdash_{i} is interpretable into \vdash, since \vdash is induced by matrices $\langle\boldsymbol{A}, F\rangle,\langle\boldsymbol{A}, G\rangle$ with a reduct in $\operatorname{Mod}{ }^{\equiv}\left(\vdash_{i}\right)$.

- We merge \boldsymbol{A}_{1} and \boldsymbol{A}_{2} into an algebra \boldsymbol{A} with universe $A=A_{1}=A_{2}$ endowed with all finitary operations.
- Let \vdash be the logic induced by the matrices $\langle\boldsymbol{A}, F\rangle$ and $\langle\boldsymbol{A}, G\rangle$.
- \vdash_{i} is interpretable into \vdash, since \vdash is induced by matrices
$\langle\boldsymbol{A}, F\rangle,\langle\boldsymbol{A}, G\rangle$ with a reduct in $\operatorname{Mod}{ }^{\equiv}\left(\vdash_{i}\right)$.
- The Leibniz class of truth-equational logics is a prime.

Definability of the indiscernibility relation.

Definability of the indiscernibility relation.

- A logic \vdash is equivalential if there is a non-empty set of formulas $\Delta(x, y)$ s.t. for all models $\langle\boldsymbol{A}, F\rangle$ of \vdash and $a, c \in A$,

$$
a \equiv c \Longleftrightarrow \Delta^{\boldsymbol{A}}(a, c) \subseteq F
$$

Definability of the indiscernibility relation.

- A logic \vdash is equivalential if there is a non-empty set of formulas $\Delta(x, y)$ s.t. for all models $\langle\boldsymbol{A}, F\rangle$ of \vdash and $a, c \in A$,

$$
a \equiv c \Longleftrightarrow \Delta^{\boldsymbol{A}}(a, c) \subseteq F
$$

- Problem.

The class of equivalential logics is not meet-irreducible.

Definability of the indiscernibility relation.

- A logic \vdash is equivalential if there is a non-empty set of formulas $\Delta(x, y)$ s.t. for all models $\langle\boldsymbol{A}, F\rangle$ of \vdash and $a, c \in A$,

$$
a \equiv c \Longleftrightarrow \Delta^{\mathbf{A}}(a, c) \subseteq F
$$

- Problem.

The class of equivalential logics is not meet-irreducible.

- The class of equivalential logics is given by the Leibniz condition

$$
\Phi=\left\{\vdash_{\alpha}^{\mathrm{eq}}: \alpha \in \mathrm{OR}\right\}
$$

where $\vdash_{\alpha}^{\text {eq }}$ is the logic in the language with binary symbols $\left\{\longrightarrow_{\epsilon}: \epsilon<\max \{\omega,|\alpha|\}\right\}$ axiomatized by the rules

$$
\begin{gathered}
\varnothing \triangleright \Delta_{\alpha}(x, x) \quad x, \Delta_{\alpha}(x, y) \triangleright y \\
\Delta_{\alpha}\left(x_{1}, y_{1}\right) \cup \Delta_{\alpha}\left(x_{2}, y_{2}\right) \triangleright \Delta_{\alpha}\left(x_{1} \multimap_{\epsilon} x_{2}, y_{1} \multimap_{\epsilon} y_{2}\right)
\end{gathered}
$$

where $\Delta_{\alpha}:=\left\{x \multimap_{\epsilon} y: \epsilon<\max \{\omega,|\alpha|\}\right\}$.

Definability of the indiscernibility relation.

- A logic \vdash is equivalential if there is a non-empty set of formulas $\Delta(x, y)$ s.t. for all models $\langle\boldsymbol{A}, F\rangle$ of \vdash and $a, c \in A$,

$$
a \equiv c \Longleftrightarrow \Delta^{\boldsymbol{A}}(a, c) \subseteq F
$$

- Problem.

The class of equivalential logics is not meet-irreducible.

- The class of equivalential logics is given by the Leibniz condition

$$
\Phi=\left\{\vdash_{\alpha}^{\mathrm{eq}}: \alpha \in \mathrm{OR}\right\}
$$

where $\vdash_{\alpha}^{e q}$ is the logic axiomatized by the rules

$$
\begin{gathered}
\varnothing \triangleright \Delta_{\alpha}(x, x) \quad x, \Delta_{\alpha}(x, y) \triangleright y \\
\Delta_{\alpha}\left(x_{1}, y_{1}\right) \cup \Delta_{\alpha}\left(x_{2}, y_{2}\right) \triangleright \Delta_{\alpha}\left(x_{1} \multimap_{\epsilon} x_{2}, y_{1} \multimap_{\epsilon} y_{2}\right) .
\end{gathered}
$$

Theorem

The logic $\vdash_{\alpha}^{\text {eq }}$ is meet-prime in Log. Thus equivalential logics are determined by a Leibniz condition consisting only of meet-prime logics.

Thank you for your attention!

