Infinite games for teams

David Milovich http://dkmj.org

Welkin Sciences Colorado Springs, CO

BLAST May 22, 2019 University of Colorado, Boulder

Defining team games

Suppose Γ is a game where I and II take turns playing sequences of fixed length τ .

• Call I a **team** of size τ .

- Call $(p_i^0, p_i^1, p_i^2, ...)$ the plays of **player** I_i .
- Call a strategy σ for team *II* independent if each qⁿ_i played according to σ depends only on p^m_i for m < n.</p>
- ▶ In other words, each player II_i following an independent strategy for II ignores I_j and II_j for $j \neq i$.
- (Use analogous terminology for I.)

In general, a team may have a winning strategy but not an independent winning strategy. For example:

- ▶ I plays two bits a, b and then II plays two bits c, d.
- $\blacktriangleright II \text{ wins iff } d = a.$
- Team II can always win, but player II₁, playing d, needs to know what I₀ played (a).

Semi-independent strategies

- Call a strategy σ for team *II* semi-independent if each qⁿ_i played according to σ depends only on p^m_j for m < n and j ≤ i.</p>
- In other words, each player II_i following a semi-independent strategy for II ignores I_j and II_j for j > i.
- (Use analogous terminology for 1.)

Minimal example revisited

Same minimal example as before:

- ▶ *I* plays two bits *a*, *b* and then *II* plays two bits *c*, *d*.
- ▶ *II* wins iff d = a.
- ► Team *II* has a semi-independent winning strategy:

$$c = 0$$
 and $d = a$.

Modifying the example:

- $\blacktriangleright II \text{ wins iff } c = b.$
- Now team *II* has a winning strategy but not a semi-independent winning strategy: *II*₀, playing *c*, needs to know what *I*₁ played (*b*).

A better modification:

- II wins iff $c = a \wedge b$ and $d = a \vee b$.
- Now *II* has a winning strategy, but each player of team *II* needs to know what both players on team *I* played.

The product Banach-Mazur game for teams

- The game $BM^{\Pi}_{\tau}(A, X)$:
 - Let $X = \prod_{i < \tau} X_i$ be a nonempty topological product space, $A \subset X$, and $1 \le \tau < \omega$.
 - For each $i < \tau$, I_i and II_i play open subsets of X_i

$$I \qquad U_i^0 \qquad U_i^1 \qquad \cdots$$
$$II \qquad V_i^0 \qquad V_i^1 \qquad \cdots$$

such that $U_i^0 \supset V_i^0 \supset U_i^1 \supset V_i^1 \supset \cdots$.

► *II* wins iff
$$\prod_{i < \tau} \bigcap_{n < \omega} V_i^n \subset A$$

• *II* has a winning strategy iff *II* has a semi-independent winning strategy iff *A* is comeager.

• II has an independent winning strategy iff A contains a product of τ comeager sets.

The group Banach-Mazur game for teams

• The game $BM_{\tau}^{group}(A, G)$:

• Let (G, \cdot) be topological group, $A \subset G$, and $1 \leq \tau < \omega$.

For each $i < \tau$, I_i and II_i play open subsets of G

$$I \qquad U_i^0 \qquad U_i^1 \qquad \cdots \\ II \qquad V_i^0 \qquad V_i^1 \qquad \cdots$$

such that $U_i^0 \supset V_i^0 \supset U_i^1 \supset V_i^1 \supset \cdots$.

• If wins iff $x_0 \cdot x_1 \cdots x_{\tau-1} \in A$ for all $x \in \prod_{i < \tau} \bigcap_{n < \omega} V_i^n$.

• If $\tau \ge 2$, then *II* has a winning strategy iff *II* has an independent winning strategy iff A = G.

Proof idea: If $g \in G$ and $Y, Z \subset G$ are comeager, then $g = y \cdot z$ for some $(y, z) \in Y \times Z$.

A product measure game for teams

The game $\mathcal{N}^{\Pi}_{\tau}(A, X, \varepsilon)$:

• Let
$$1 \leq \tau < \omega$$
 and $0 < \varepsilon \in \mathbb{R}$.

- For each i < τ, let μ_i be a regular Borel measure on a topological space X_i.
- Let $X = \prod_{i < \tau} X_i$ be the product space and let $\mu = \prod_{i < \tau} \mu_i$ be the product measure.

• Let
$$A \subset X$$
.

For each round n < ω, for each i < τ, I_i and II_i play finite sequences of open subsets of X_i

$$I \qquad \cdots \qquad U_{i,0}^n, \dots, U_{i,a_n}^n \qquad \cdots \\ II \qquad \cdots \qquad \qquad V_{i,0}^n, \dots, V_{i,b_n}^n \qquad \cdots$$

such that the sequence lengths a_n , b_n are independent of i. $U = \bigcup_{n < \omega} \bigcup_{j < a_n} \prod_{i < \tau} U_{i,j}$ and $V = \bigcap_{n < \omega} \bigcup_{j < b_n} \prod_{i < \tau} V_{i,j}$. II wins iff $A \supset V \not\subset U$ or $\mu(U) > \varepsilon$.

Strategies for the measure game

• If A has outer measure less than ε and is Lindelöf, then I has an independent winning strategy.

- I covers A by open boxes with total measure $\leq \varepsilon$.
- I completely ignores II's plays.

• If A has inner measure greater than ε , then II has a semi-independent winning strategy.

Each sequence $V_{i,0}^n, \ldots, V_{i,b_n}^n$ played includes lots of repetition if $i < \tau - 1$ and includes lots of instances of \emptyset if i > 0.

The club game for teams

• $[S]^{\omega}$ is the set of countably infinite subsets of S.

• $\mathcal{C} \subset [S]^{\omega}$ is *club* iff \mathcal{C} is closed with respect to union of increasing ω -chains and every $X \in [S]^{\omega}$ is contained in some $Y \in \mathcal{C}$.

- The club game $\mathsf{Club}_{\tau}(S, \mathcal{E})$ for team size $\tau < \omega_1$:
 - Let S be an uncountable set S and $\mathcal{E} \subset [S]^{\omega}$.
 - ▶ I and II play τ -sequences of elements of S for ω rounds.

$$I \quad (p_i^0)_{i < \tau} \qquad (p_i^1)_{i < \tau} \qquad \cdots \\ II \quad (q_i^0)_{i < \tau} \qquad (q_i^1)_{i < \tau} \qquad \cdots \\ \blacktriangleright II \text{ wins iff } \bigcup_{i < \tau} \{p_i^0, q_i^0, p_i^1, q_i^1, p_i^2, q_i^2, \ldots\} \in \mathcal{E}.$$

- II(I) has a winning strategy iff II(I) has a semi-independent winning strategy iff \mathcal{E} contains (avoids) a club.
- II (1) has an independent winning strategy iff there is a club $\mathcal{C} \subset [S]^{\omega}$ such that $\bigcup_{i < \tau} X_i \in \mathcal{E} \ (\notin \mathcal{E})$ for all $X_0, \ldots, X_{\tau-1} \in \mathcal{C}$.

An elementary submodel proof

Claim: *II* has a independent winning strategy for $\text{Club}_{\tau}(S, \mathcal{E})$ if and only if there is a club $\mathcal{C} \subset [S]^{\omega}$ such that $\bigcup_{i < \tau} X_i \in \mathcal{E}$ for all $X_0, \ldots, X_{\tau-1} \in \mathcal{C}$.

Proof of "only if":

- Suppose σ is an independent winning strategy for *II*.
- Suppose for each i < τ that (M_i, ∈) is a countable elementary substructure of a sufficiently large fragment of the universe (V, ∈).
- Suppose $\sigma \in M_i$ for each $i < \tau$.
- The set C of all possible $M_0 \cap S$ is a club.
- Let each player I_i enumerate $M_i \cap S$.
- Since $\sigma \in M_i$ and is independent, player II_i , following σ , will play only in $M_i \cap S$.
- Since σ is winning, $\bigcup_{i < \tau} (M_i \cap S) \in \mathcal{E}$.

 \aleph_1 vs. \aleph_2

- If $|S| = \aleph_1$ and $\mathcal{E} \subset [S]^{\omega}$, then *II* has a winning strategy for $\operatorname{Club}_1(S, \mathcal{E})$ iff *II* has an independent winning stategy for $\operatorname{Club}_{\tau}(S, \mathcal{E})$.
- \bullet Proof: Every club subset of ω_1 contains a club that is also a chain.
- If $|S| \ge \aleph_2$ and $1 \le \tau < \omega$, then there is \mathcal{E} such that II has an independent winning strategy for $\mathsf{Club}_{\tau}(S, \mathcal{E})$ but not for $\mathsf{Club}_{\tau+1}(S, \mathcal{E})$.
- Proof outline:
 - Assume $\omega_2 \subset S$.
 - ▶ Let \mathcal{E} be the set of all $\bigcup_{i < \tau} (N_i \cap S)$ where each N_i is a countable elementary submodel.
 - ▶ Given a club C, there are $\tau + 1$ countable elementary submodels M_0, \ldots, M_τ such that $M_i \cap S \in C$ and:

The relative completeness game for teams

- Natural examples of clubs come from finitary closure properties.
- Example: the set of all countable subalgebras of a fixed algebra.
- But the union of two subalgebras need not be a subalgebra. Definition

The relative completeness game $RC_{\tau}(A)$:

▶ I and II play τ -sequences of elements of A for ω rounds.

- II wins iff U_{i<τ} {p_i⁰, q_i⁰, p_i¹, q_i¹, p_i², q_i², ...} generates a relatively complete subalgebra of A.
- A subalgebra B of a Boolean algebra A is relatively complete if every principal ideal of A restricts to one of B:

$$\forall a \in A \exists b \in B \ B \cap \downarrow a = \downarrow b.$$

A game characterization of projective Boolean algebras

Definition

A Boolean algebra A is *projective* if it a retract of some free Boolean algebra F. (Retract means $A \underset{r}{\leftarrow} F \underset{e}{\leftarrow} A$; $r \circ e = id$)

(The topological dual of this concept a retract of a power of 2, *a.k.a.*, a *Dugundji* space.)

Theorem

If A is a Boolean algebra, then the following are equivalent.

- A is projective.
- For each τ < ω, II has an independent winning strategy for RC_τ(A).
- ▶ II has an independent winning strategy for $RC_{\omega}(A)$.
- For each ordinal τ, II has an independent winning strategy for RC_τ(A).

\aleph_n vs. \aleph_{n+1}

Theorem

If $1 \le n < \omega$, A is a Boolean algebra, and $|A| \le \aleph_n$, then the following are equivalent.

- A is projective.
- ▶ II has an independent winning strategy for RC_n(A).
- For each ordinal τ ≥ n, II has an independent winning strategy for RC_τ(A).

Theorem

If $1 \le n < \omega$, then there is a Boolean algebra of size \aleph_{n+1} such that II has an independent winning strategy for $RC_n(A)$ but not for $RC_{n+1}(A)$.

These last three Boolean algebra theorems, translated into claims about clubs, are proved in arXiv:1607.07944.

Stationary strategies

• A strategy σ for *II* in a game is *stationary* if each *n*th play of *II* depends only on the *n*th play of *I*.

- The *fast* relative completeness game $RC_{\tau}^{fast}(A)$:
 - I plays τ-sequences of elements of A and II plays τ-sequences of finite subsets of A for ω rounds.

$$\begin{array}{cccc} I & (p_i^0)_{i < \tau} & (p_i^1)_{i < \tau} & \cdots \\ II & (B_i^0)_{i < \tau} & (B_i^1)_{i < \tau} & \cdots \end{array}$$

 $p_i^n \in B_i^n$ is required of *II*.

- ► *II* wins iff $\bigcup_{i < \tau} \bigcup_{n < \omega} B_i^n$ generates a relatively complete subalgebra of *A* or some $\bigcup_{n < \omega} B_i^n$ is not a subalgebra of *A*.
- The *closed* relative completeness game $RC_{\tau}^{closed}(A)$:
 - Like $RC_{\tau}^{fast}(A)$, but now each B_i^n must also be a **subalgebra**.

Stationary independent strategies

The following are equivalent.

- ▶ *II* has an independent winning strategy for $RC_{\tau}(A)$.
- II has an independent winning strategy for $RC_{\tau}^{fast}(A)$.
- II has an independent winning strategy for $RC_{\tau}^{closed}(A)$.
- II has a stationary independent winning strategy for $RC_{\tau}^{fast}(A)$.

Question: Are the above also equivalent with the following?

 II has a stationary independent winning strategy for RC^{closed}_{\(\tau\)}.

Any counterexample (τ, A) is not projective and has size at least $\aleph_{\tau+1}$.