Infinite games for teams

David Milovich
http://dkmj.org
Welkin Sciences
Colorado Springs, CO

BLAST
May 22, 2019
University of Colorado, Boulder

Defining team games

Suppose Γ is a game where I and $I /$ take turns playing sequences of fixed length τ.
। $p_{0}^{0}, \ldots, p_{\tau-1}^{0}$

$$
p_{0}^{1}, \ldots, p_{\tau-1}^{1}
$$

II

$$
q_{0}^{1}, \ldots, q_{\tau-1}^{1} \quad \cdots
$$

- Call / a team of size τ.
- Call $\left(p_{i}^{0}, p_{i}^{1}, p_{i}^{2}, \ldots\right)$ the plays of player l_{i}.
- Call a strategy σ for team I/ independent if each q_{i}^{n} played according to σ depends only on p_{i}^{m} for $m<n$.
- In other words, each player I_{i} following an independent strategy for $I I$ ignores I_{j} and $I I_{j}$ for $j \neq i$.
- (Use analogous terminology for 1.)

A minimal example

In general, a team may have a winning strategy but not an independent winning strategy. For example:

- I plays two bits a, b and then II plays two bits c, d.
- I/ wins iff $d=a$.
- Team II can always win, but player I_{1}, playing d, needs to know what I_{0} played (a).

Semi-independent strategies

- Call a strategy σ for team I/ semi-independent if each q_{i}^{n} played according to σ depends only on p_{j}^{m} for $m<n$ and $j \leq i$.
- In other words, each player I_{i} following a semi-independent strategy for $I I$ ignores I_{j} and $I I_{j}$ for $j>i$.
- (Use analogous terminology for I.)

Minimal example revisited

Same minimal example as before:

- I plays two bits a, b and then II plays two bits c, d.
- I/ wins iff $d=a$.
- Team /I has a semi-independent winning strategy:

$$
c=0 \text { and } d=a
$$

Modifying the example:

- II wins iff $c=b$.
- Now team /l has a winning strategy but not a semi-independent winning strategy: $/ I_{0}$, playing c, needs to know what I_{1} played (b).
A better modification:
- I/ wins iff $c=a \wedge b$ and $d=a \vee b$.
- Now II has a winning strategy, but each player of team II needs to know what both players on team I played.

The product Banach-Mazur game for teams

- The game $\mathrm{BM}_{\tau}^{\Pi}(A, X)$:
- Let $X=\prod_{i<\tau} X_{i}$ be a nonempty topological product space, $A \subset X$, and $1 \leq \tau<\omega$.
- For each $i<\tau, I_{i}$ and I_{i} play open subsets of X_{i}

such that $U_{i}^{0} \supset V_{i}^{0} \supset U_{i}^{1} \supset V_{i}^{1} \supset \cdots$.
- II wins iff $\prod_{i<\tau} \bigcap_{n<\omega} V_{i}^{n} \subset A$.
- I/ has a winning strategy iff I/ has a semi-independent winning strategy iff A is comeager.
- I/ has an independent winning strategy iff A contains a product of τ comeager sets.

The group Banach-Mazur game for teams

- The game $\mathrm{BM}_{\tau}^{\text {group }}(A, G)$:
- Let (G, \cdot) be topological group, $A \subset G$, and $1 \leq \tau<\omega$.
- For each $i<\tau, I_{i}$ and I_{i} play open subsets of G

such that $U_{i}^{0} \supset V_{i}^{0} \supset U_{i}^{1} \supset V_{i}^{1} \supset \cdots$.
- II wins iff $x_{0} \cdot x_{1} \cdots x_{\tau-1} \in A$ for all $x \in \prod_{i<\tau} \bigcap_{n<\omega} V_{i}^{n}$.
- If $\tau \geq 2$, then I/ has a winning strategy iff $/ /$ has an independent winning strategy iff $A=G$.

Proof idea: If $g \in G$ and $Y, Z \subset G$ are comeager, then $g=y \cdot z$ for some $(y, z) \in Y \times Z$.

A product measure game for teams

The game $\mathcal{N}_{\tau}^{\Pi}(A, X, \varepsilon)$:

- Let $1 \leq \tau<\omega$ and $0<\varepsilon \in \mathbb{R}$.
- For each $i<\tau$, let μ_{i} be a regular Borel measure on a topological space X_{i}.
- Let $X=\prod_{i<\tau} X_{i}$ be the product space and let $\mu=\prod_{i<\tau} \mu_{i}$ be the product measure.
- Let $A \subset X$.
- For each round $n<\omega$, for each $i<\tau, I_{i}$ and I_{i} play finite sequences of open subsets of X_{i}

$$
I \quad \ldots \quad U_{i, 0}^{n}, \ldots, U_{i, a_{n}}^{n}
$$

II ...

$$
V_{i, 0}^{n}, \ldots, V_{i, b_{n}}^{n}
$$

such that the sequence lengths a_{n}, b_{n} are independent of i.

- $U=\bigcup_{n<\omega} \bigcup_{j<a_{n}} \prod_{i<\tau} U_{i, j}$ and $V=\bigcap_{n<\omega} \bigcup_{j<b_{n}} \prod_{i<\tau} V_{i, j}$.
- II wins iff $A \supset V \not \subset U$ or $\mu(U)>\varepsilon$.

Strategies for the measure game

- If A has outer measure less than ε and is Lindelöf, then I has an independent winning strategy.
- I covers A by open boxes with total measure $\leq \varepsilon$.
- I completely ignores II's plays.
- If A has inner measure greater than ε, then $/ /$ has a semi-independent winning strategy.
- Each sequence $V_{i, 0}^{n}, \ldots, V_{i, b_{n}}^{n}$ played includes lots of repetition if $i<\tau-1$ and includes lots of instances of \varnothing if $i>0$.

The club game for teams

- $[S]^{\omega}$ is the set of countably infinite subsets of S.
- $\mathcal{C} \subset[S]^{\omega}$ is club iff \mathcal{C} is closed with respect to union of increasing ω-chains and every $X \in[S]^{\omega}$ is contained in some $Y \in \mathcal{C}$.
- The club game $\operatorname{Club}_{\tau}(S, \mathcal{E})$ for team size $\tau<\omega_{1}$:
- Let S be an uncountable set S and $\mathcal{E} \subset[S]^{\omega}$.
- I and II play τ-sequences of elements of S for ω rounds.

$$
I \quad\left(p_{i}^{0}\right)_{i<\tau} \quad\left(p_{i}^{1}\right)_{i<\tau}
$$

$$
\begin{array}{cc}
\left(q_{i}^{0}\right)_{i<\tau} \\
\text { vins iff } \bigcup_{i<\tau}\left\{p_{i}^{0}, q_{i}^{0}, p_{i}^{1}, q_{i}^{1}, p_{i}^{2}, q_{i}^{2}, \ldots\right\} \in \mathcal{E} .
\end{array}
$$

- II (I) has a winning strategy iff II (I) has a semi-independent winning strategy iff \mathcal{E} contains (avoids) a club.
- II (I) has an independent winning strategy iff there is a club $\mathcal{C} \subset[S]^{\omega}$ such that $\bigcup_{i<\tau} X_{i} \in \mathcal{E}(\notin \mathcal{E})$ for all $X_{0}, \ldots, X_{\tau-1} \in \mathcal{C}$.

An elementary submodel proof

Claim: II has a independent winning strategy for $\operatorname{Club}_{\tau}(S, \mathcal{E})$ if and only if there is a club $\mathcal{C} \subset[S]^{\omega}$ such that $\bigcup_{i<\tau} X_{i} \in \mathcal{E}$ for all $X_{0}, \ldots, X_{\tau-1} \in \mathcal{C}$.

Proof of "only if":

- Suppose σ is an independent winning strategy for II.
- Suppose for each $i<\tau$ that (M_{i}, \in) is a countable elementary substructure of a sufficiently large fragment of the universe (V, \in).
- Suppose $\sigma \in M_{i}$ for each $i<\tau$.
- The set \mathcal{C} of all possible $M_{0} \cap S$ is a club.
- Let each player I_{i} enumerate $M_{i} \cap S$.
- Since $\sigma \in M_{i}$ and is independent, player I_{i}, following σ, will play only in $M_{i} \cap S$.
- Since σ is winning, $\bigcup_{i<\tau}\left(M_{i} \cap S\right) \in \mathcal{E}$.
\aleph_{1} vs. \aleph_{2}
- If $|S|=\aleph_{1}$ and $\mathcal{E} \subset[S]^{\omega}$, then I/ has a winning strategy for Club $_{1}(S, \mathcal{E})$ iff I/ has an independent winning stategy for $\operatorname{Club}_{\tau}(S, \mathcal{E})$.
- Proof: Every club subset of ω_{1} contains a club that is also a chain.
- If $|S| \geq \aleph_{2}$ and $1 \leq \tau<\omega$, then there is \mathcal{E} such that I/ has an independent winning strategy for $\operatorname{Club}_{\tau}(S, \mathcal{E})$ but not for Club $_{\tau+1}(S, \mathcal{E})$.
- Proof outline:
- Assume $\omega_{2} \subset S$.
- Let \mathcal{E} be the set of all $\bigcup_{i<\tau}\left(N_{i} \cap S\right)$ where each N_{i} is a countable elementary submodel.
- Given a club \mathcal{C}, there are $\tau+1$ countable elementary submodels M_{0}, \ldots, M_{τ} such that $M_{i} \cap S \in \mathcal{C}$ and:

$$
\begin{array}{lllll}
\sup \left(M_{0} \cap \omega_{1}\right) & > & \cdots & > & \sup \left(M_{\tau} \cap \omega_{1}\right) \\
\sup \left(M_{0} \cap \omega_{2}\right) & < & \cdots & < & \sup \left(M_{\tau} \cap \omega_{2}\right)
\end{array}
$$

The relative completeness game for teams

- Natural examples of clubs come from finitary closure properties.
- Example: the set of all countable subalgebras of a fixed algebra.
- But the union of two subalgebras need not be a subalgebra.

Definition
The relative completeness game $\mathrm{RC}_{\tau}(A)$:

- I and II play τ-sequences of elements of A for ω rounds.
I $\left(p_{i}^{0}\right)_{i<\tau} \quad\left(p_{i}^{1}\right)_{i<\tau}$

II
$\left(q_{i}^{0}\right)_{i<\tau}$

$$
\left(q_{i}^{1}\right)_{i<\tau} \quad \cdots
$$

- II wins iff $\bigcup_{i<\tau}\left\{p_{i}^{0}, q_{i}^{0}, p_{i}^{1}, q_{i}^{1}, p_{i}^{2}, q_{i}^{2}, \ldots\right\}$ generates a relatively complete subalgebra of A.
- A subalgebra B of a Boolean algebra A is relatively complete if every principal ideal of A restricts to one of B :

$$
\forall a \in A \exists b \in B \quad B \cap \downarrow a=\downarrow b .
$$

A game characterization of projective Boolean algebras

Definition

A Boolean algebra A is projective if it a retract of some free
Boolean algebra F. (Retract means $A \leftarrow F \underset{e}{\leftarrow} A ; r \circ e=\mathrm{id}$)
(The topological dual of this concept a retract of a power of 2 , a.k.a., a Dugundji space.)

Theorem
If A is a Boolean algebra, then the following are equivalent.

- A is projective.
- For each $\tau<\omega$, II has an independent winning strategy for $R C_{\tau}(A)$.
- II has an independent winning strategy for $R C_{\omega}(A)$.
- For each ordinal τ, II has an independent winning strategy for $R C_{\tau}(A)$.
\aleph_{n} Vs. \aleph_{n+1}
Theorem
If $1 \leq n<\omega, A$ is a Boolean algebra, and $|A| \leq \aleph_{n}$, then the following are equivalent.
- A is projective.
- II has an independent winning strategy for $R C_{n}(A)$.
- For each ordinal $\tau \geq n$, Il has an independent winning strategy for $R C_{\tau}(A)$.

Theorem
If $1 \leq n<\omega$, then there is a Boolean algebra of size \aleph_{n+1} such that II has an independent winning strategy for $R C_{n}(A)$ but not for $R C_{n+1}(A)$.

These last three Boolean algebra theorems, translated into claims about clubs, are proved in arXiv:1607.07944.

Stationary strategies

- A strategy σ for II in a game is stationary if each nth play of II depends only on the nth play of I.
- The fast relative completeness game $\mathrm{RC}_{\tau}^{\text {fast }}(A)$:
- I plays τ-sequences of elements of A and I/ plays τ-sequences of finite subsets of A for ω rounds.

$$
\begin{array}{cccc}
\text { I } & \left(p_{i}^{0}\right)_{i<\tau} & & \left(p_{i}^{1}\right)_{i<\tau} \\
\text { I/ } & & \left(B_{i}^{0}\right)_{i<\tau} & \\
& \left(B_{i}^{1}\right)_{i<\tau} & \cdots
\end{array}
$$

$p_{i}^{n} \in B_{i}^{n}$ is required of $I I$.

- II wins iff $\bigcup_{i<\tau} \bigcup_{n<\omega} B_{i}^{n}$ generates a relatively complete subalgebra of A or some $\bigcup_{n<\omega} B_{i}^{n}$ is not a subalgebra of A.
- The closed relative completeness game $\mathrm{RC}_{\tau}^{\text {closed }}(A)$:
- Like $\mathrm{RC}_{\tau}^{\text {fast }}(A)$, but now each B_{i}^{n} must also be a subalgebra.

Stationary independent strategies

The following are equivalent.

- II has an independent winning strategy for $\mathrm{RC}_{\tau}(A)$.
- II has an independent winning strategy for $\mathrm{RC}_{\tau}^{\text {fast }}(A)$.
- II has an independent winning strategy for $\mathrm{RC}_{\tau}^{\text {closed }}(A)$.
- II has a stationary independent winning strategy for $\mathrm{RC}_{\tau}^{\text {fast }}(A)$.

Question: Are the above also equivalent with the following?

- I/ has a stationary independent winning strategy for $\mathrm{RC}_{\tau}^{\text {closed }}(A)$.

Any counterexample (τ, A) is not projective and has size at least $\aleph_{\tau+1}$.

