Congruence 5-permutability is not join prime

G. Gyenizse, M. Maróti and L. Zádori

University of Szeged

Definition

A variety \mathcal{V} is **congruence n-permutable** ($n \geq 2$) if every algebra $A \in \mathcal{V}$ satisfies $\alpha \circ^n \beta = \beta \circ^n \alpha$ for all congruences $\alpha, \beta \in \text{Con}(A)$.

- 5-permutability: $\alpha \circ \beta \circ \alpha \circ \beta \circ \alpha = \beta \circ \alpha \circ \beta \circ \alpha \circ \beta$.
- Congruence 2-permutability: $\alpha \circ \beta = \beta \circ \alpha$

Examples: groups, rings, varieties with a Maltsev-term:

$$m(x, y, y) \approx m(y, y, x) \approx x, \quad m(x, y, z) = xy^{-1}z,$$

$$(x, z) \in \alpha \circ \beta \Rightarrow x \alpha y \beta z \Rightarrow x \beta m(x, y, z) \alpha z \Rightarrow (x, z) \in \beta \circ \alpha$$

- Variety of lattices is not congruence n-permutable for any n:

$$(0, 1) \in \alpha \circ \beta \circ \alpha,$$

$$(0, 1) \notin \beta \circ \alpha \circ \beta.$$
\[\alpha \lor \beta = \bigcup_n \alpha \circ^n \beta \text{ for any } \alpha, \beta \in \text{Con}(A) \]

\[\alpha \lor \beta = \alpha \circ^n \beta \text{ in congruence } n\text{-permutable varieties} \]

- congruence \(n\)-permutability implies \(n+1\)-permutability

Theorem (J. Hagemann, A. Mitschke; 1973)

For a variety \(\mathcal{V} \) and \(n \geq 2 \) the following are equivalent:

- \(\mathcal{V} \) is congruence \(n\)-permutable,
- \(\varrho^{-1} \subseteq \varrho \circ^{n-1} \varrho \) for any \(A \in \mathcal{V} \) and reflexive relation \(\varrho \leq A^2 \),
- \(\mathcal{V} \) has ternary terms \(p_1, \ldots, p_{n-1} \) satisfying

\[
 x \approx p_1(x, y, y), \\
p_i(x, x, y) \approx p_{i+1}(x, y, y) \text{ for } 1 \leq i < n - 1, \\
p_{n-1}(x, x, y) \approx y.
\]

Corollary

\(\mathcal{V} \) is congruence \(n\)-permutable for some \(n \) if and only if every reflexive and transitive relation \(\varrho \leq A^2 \) of \(A \in \mathcal{V} \) is symmetric.
• G is the variety of groups in the language $\cdot, -1, 1$
• D_n is the variety of algebras having Hagemann-Mischke operations p_1, \ldots, p_{n-1} for congruence n-permutability
• BA is the variety of boolean algebras with $\lor, \land, ', 0, 1$
• BR is the variety of boolean rings with $+, \cdot, 0, 1$

Interpretability: $D_2 \preceq G$, $BA \preceq BR \preceq BA$, $D_{n+1} \preceq D_n$

Definition (W.D. Neumann, 1974)

The variety \mathcal{V} is **interpretable** in the variety \mathcal{W} (notation $\mathcal{V} \preceq \mathcal{W}$) if for each f n-ary basic operation of \mathcal{V} there exists an n-ary term $t_f(x_1, \ldots, x_n)$ of \mathcal{W} such that for each algebra $A = (A; F) \in \mathcal{W}$ the associated algebra $A' = (A; \{t_f \mid f \in F\})$ is in \mathcal{V}.

• constants: use unary operations satisfying $c(x) \approx c(y)$
• \preceq is a quasiorder on the class of varieties
• equi-interpretability: $\mathcal{V} \equiv \mathcal{W}$ iff $\mathcal{V} \preceq \mathcal{W} \preceq \mathcal{V}$
Theorem

The class of varieties modulo equi-interpretability forms a bounded lattice (the lattice of interpretability types) with \(\overline{V} \lor \overline{W} = \overline{V \sqcup W} \) and \(\overline{V} \land \overline{W} = \overline{V \otimes W} \).

Definition

The coproduct of the varieties \(V = \text{Mod}(\Sigma) \) and \(W = \text{Mod}(\Delta) \) in disjoint languages is the variety \(V \sqcup W = \text{Mod}(\Sigma \cup \Delta) \).

Definition

The varietal product of \(V \) and \(W \) is the variety \(V \otimes W \) of algebras \(A \otimes B \) for \(A \in V \) and \(B \in W \) whose

- universe is \(A \times B \),
- basic operations are \(s \otimes t \) acting coordinate-wise for each pair of \(n \)-ary terms of \(V \) and \(W \).
O. Garcia, W. Taylor (1984): Lattice of interpretability types of varieties
- minimal element: sets (equi-interpretable with semigroups)
- maximal element: trivial algebras
- the class of idempotent varieties form a sublattice
- the class of finitely presented varieties forms a sublattice
- the class of varieties defined by linear equations forms a join sub-semilattice
- not modular
- meet prime elements: boolean algebras, lattices, semilattices
- meet irreducible elements: groups
- join prime elements: commutative groupoids, trivial algebras

J. Mycielski (1977): Lattice of interpretability types of first order theories
- local interpretability
- distributive
Some positive results:

- S. Tschantz (1983): congruence 2-permutability is join prime (unpublished)
- M. Valeriote, R. Willard (2014): congruence n-permutability is join-prime among idempotent varieties
- J. Opršal (2016): congruence n-permutability is join prime among varieties axiomatized by linear equations
- J. Opršal (2016); K. Kearnes, Á. Szendrei (2016): having an n-cube term is join prime among idempotent varieties
- L. Barto, J. Opršal, M. Pinsker (2018): congruence modularity is a prime filter among idempotent varieties

Some negative results:

- P. Marković, R. McKenzie (2008): having an n-ary near unanimity term is not join prime
- ...
Plan:

- Find two varieties \mathcal{V} and \mathcal{W} such that neither is n-permutable for any $n \geq 2$ but their coproduct is n-permutable for some n.
- \mathcal{V} is not n-permutable for any n if and only if it has an algebra $A \in \mathcal{V}$ and a compatible poset $\varrho \leq A^2$ which is not symmetric.
- Let A' be the extension of A with all order preserving operations of ϱ, and let \mathcal{V}' be the variety generated by A'.
- \mathcal{V}' and \mathcal{W}' are still not n-permutable for any $n \geq 2$, but $\mathcal{V} \leq \mathcal{V}'$ and $\mathcal{W} \leq \mathcal{W}'$ so their coproduct is more likely to be n-permutable for some n.
- We need to search for posets.
- Need to understand algebras in the variety defined by a poset.
- We need to understand congruences, compatible quasiorders, reflexive relations in these varieties and in their coproduct.

Gyenisze, Maróti and Zádori

Congruence 5-permutabilityis not join prime

Boulder, May 20–24, 2019. 8 / 15
Definition

Let $\mathbb{P} = (P; \leq)$ be a poset. The clone $\text{Pol} (\mathbb{P})$ of polymorphisms of \mathbb{P} is the ranked set of order preserving maps $f : \mathbb{P}^n \to \mathbb{P}$.

- Let $\mathbb{P} = (\{0, 1\}; \leq), \mathbf{P} = (P; \text{Pol}(\mathbb{P}))$ and $\mathcal{V} = \text{HSP}(\mathbf{P})$
- $\wedge, \vee, 0, 1 \in \text{Pol}(\mathbb{P})$ and these operations generate the clone
- \mathbf{P} is term equivalent with the two-element bounded distributive lattice
- \mathcal{V} is equi-interpretable with the variety of bounded distributive lattices
- \mathcal{V} is locally finite (finitely generated free algebras are finite)
- For each finite algebra $\mathbf{A} \in \mathcal{V}$ there is a finite quasiorder \mathcal{Q} such that $\mathbf{A} = \mathbb{P}^\mathcal{Q}$ with point-wise ops (Priestley-duality)
- What are the congruences, compatible quasiorder, compatible reflexive relations of \mathbf{A}?
Theorem

Let \mathcal{P} be a finite bounded poset with a compatible near-unanimity operation, and \mathcal{P} be the corresponding finitely presented variety. Let \mathcal{M} be any variety defined by a linear Maltsev-condition that is not already satisfied by \mathcal{P}.

1. Then $\mathcal{P} \amalg \mathcal{M}$ is congruence n-permutable for some $n \geq 2$.
2. If \mathcal{P} is the 6-element poset with order $0 \leq a, b \leq c, d \leq 1$, and $\mathcal{M} = \text{Mod}(m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x)$, then $\mathcal{P} \amalg \mathcal{M}$ is congruence 5-permutable.

Corollary

In the lattice of interpretability types

1. congruence n-permutability for some $n \geq 2$ is not a prime filter,
2. congruence 5-permutability is not a join prime element.
Proof sketch of first result:

- Let $\mathcal{P} = (P; \leq)$ be the 6-element poset

 $\begin{array}{c}
 1 \\
 c \\
 a \\
 0 \\
 0 \\
 c \\
 b \\
 1
 \end{array}$

- \mathcal{P} has a compatible 5-ary near-unanimity operation
- Baker-Pixley: $\text{Pol}(\mathcal{P})$ is finitely generated by p_1, \ldots, p_k
- Let \mathcal{P} be the variety generated by $\mathcal{P} = (P; p_1, \ldots, p_k)$
- \mathcal{P} is congruence distributive, does not have a majority term m
- \mathcal{P} is simple, has no non-trivial subalgebras, no other SI’s in \mathcal{P}
- Let \mathcal{M} be the variety of algebras with majority operation

 $m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x$

- Take $A \in \mathcal{P} \sqcup \mathcal{M}$ and $\varrho \in A^2$ that is reflexive and transitive, need to show that ϱ is symmetric
Take a failure of n-permutability, e.g. $(f, g) \in \varrho \setminus \varrho^{-1}$

Let $B_0 = Sg_P(\{f, g\})$, $B_1 = Sg_P(\{m(x, y, z) \mid x, y, z \in B_1\})$

B_0 and B_1 are finite algebras in \mathcal{P}

$B_1 \leq_{sd} P^R$ for some finite set R

B_1 is in the relational clone generated by P, so it is defined by a primitive positive formula with free variable set R.

There exists a poset $Q_1 = (Q; q_1)$ such that $Q \supseteq R$ and $B_1 = \left.P^Q_{\mid R} \right.$ is the set of order preserving functions from Q_1 to P

There is a quasi-order $Q_0 = (Q; q_0)$ such that $B_1 = \left. P^Q_{\mid R} \right.$

Since $B_0 \leq B_1$ we have $q_0 \supseteq q_1$

Projection congruences: $\eta_r = \{ (u, v) \mid u(r) = v(r) \}$ for $r \in R$

Every congruence of B_0 and B_1 are product congruences, i.e., the intersection of a set of projection congruences

$\varrho_0 = \varrho\mid_{B_0}$, $\varrho_1 = \varrho\mid_{B_1}$ are compatible quasiorders of B_0 and B_1

We argue, that ϱ_0 and ϱ_1 are product quasiorders
Definition

The set of compatible quasiorders of an algebra A is

$$\text{Quo}(A) = \{ \alpha \leq A^2 \mid \alpha \text{ is reflexive and transitive} \}.$$

- $\text{Quo}(A)$ forms an (involution) lattice with $\alpha \wedge \beta = \alpha \cap \beta$ and $\alpha \vee \beta = \overline{\alpha \cup \beta}$, where $\overline{\alpha \cup \beta}$ is the transitive closure of $\alpha \cup \beta$.
- The set $\text{Con}(A)$ of congruences forms a sublattice of $\text{Quo}(A)$.

Theorem (G. Gyenizse, M. M; 2018)

1. A locally finite variety V is congruence distributive if and only if it is quasiorder distributive.
2. A locally finite variety is congruence modular if and only if it is quasiorder modular.
3. The variety of semilattices is not quasiorder meet semi-distributive (but it is congruence meet semi-distributive).
4. For a finite algebra A in a congruence meet semi-distributive variety $\text{Quo}(A)$ has no sublattice isomorphic to M_3.
Projection quasiorders: for each \(r \in R \)

\[
\sigma_r = \{ (u, v) \mid u(r) \leq v(r) \}
\]

\[
\tau_r = \{ (u, v) \mid u(r) \geq v(r) \}
\]

\(\eta_r = \sigma_r \land \tau_r \)

There are \(S, T \subseteq R \) such that \(\varrho_1 = (\land_{s \in S} \sigma_s) \land (\land_{t \in T} \tau_t) \)

\((g, f) \not\in \varrho_1 \), so we can choose \(s \in S \setminus T \) such that \(g(s) \not\leq f(s) \)

The elements \(a, b, c, d \) exhibit the failure of not having a majority term: \(a, b \leq m(a, b, c) \leq c, d \) must hold, but there is no such element \(m(a, b, c) \)

Find elements \(u_a, u_b, u_c, u_d \) that exhibit this behavior in \(B_0 \) at \(s \): in the \(q_0 \)-block of \(s \), \(u_x \) takes value \(x \), above it it takes 1 and everywhere else it takes 0

\(u_a, u_b \sigma_s u_c, u_d \) holds in \(B_0 \)

Thus \(u_a, u_b \sigma_s m(u_a, u_b, u_c) \sigma_s u_c, u_d \) must hold in \(B_1 \)

There is no such element because of coordinate \(s \), a contradiction.
Thank You!