Computational Complexity of Matrix Semigroup Properties

Trevor Jack

Joint work with Peter Mayr

Semigroup Complexity

May 23, 2019 1 / 14

-∢ ∃ ▶

Transformation Semigroups

→ Ξ →

Transformation Semigroups

- $[n] := \{1, ..., n\}$
- T_n is the semigroup of all unary functions on [n]
- $S = \langle a_1, \ldots, a_k \rangle \leq T_n$

.

Transformation Semigroups

- $[n] := \{1, ..., n\}$
- T_n is the semigroup of all unary functions on [n]
- $S = \langle a_1, \ldots, a_k \rangle \leq T_n$

General Inquiry: Given generators $a_1, \ldots, a_k \in T_n$, what is the complexity of verifying certain properties about $S = \langle a_1, \ldots, a_n \rangle$ within:

$$\mathsf{NL} \subseteq \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXPTIME}?$$

Transformation Semigroups

- $[n] := \{1, ..., n\}$
- T_n is the semigroup of all unary functions on [n]
- $S = \langle a_1, \ldots, a_k \rangle \leq T_n$

General Inquiry: Given generators $a_1, \ldots, a_k \in T_n$, what is the complexity of verifying certain properties about $S = \langle a_1, \ldots, a_n \rangle$ within:

$$\mathsf{NL} \subseteq \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXPTIME}$$
?

Theorem (Fleischer, TJ, 2019)

The complexity of determining the following properties of transformation semigroups are in NL:

Transformation Semigroups

- $[n] := \{1, ..., n\}$
- T_n is the semigroup of all unary functions on [n]
- $S = \langle a_1, \ldots, a_k \rangle \leq T_n$

General Inquiry: Given generators $a_1, \ldots, a_k \in T_n$, what is the complexity of verifying certain properties about $S = \langle a_1, \ldots, a_n \rangle$ within:

$$\mathsf{NL} \subseteq \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXPTIME}?$$

Theorem (Fleischer, TJ, 2019)

The complexity of determining the following properties of transformation semigroups are in NL: is a band;

Transformation Semigroups

- $[n] := \{1, ..., n\}$
- T_n is the semigroup of all unary functions on [n]
- $S = \langle a_1, \ldots, a_k \rangle \leq T_n$

General Inquiry: Given generators $a_1, \ldots, a_k \in T_n$, what is the complexity of verifying certain properties about $S = \langle a_1, \ldots, a_n \rangle$ within:

$$\mathsf{NL} \subseteq \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXPTIME}$$
?

Theorem (Fleischer, TJ, 2019)

The complexity of determining the following properties of transformation semigroups are in NL: is a band; all idempotents commute;

Transformation Semigroups

- $[n] := \{1, ..., n\}$
- T_n is the semigroup of all unary functions on [n]
- $S = \langle a_1, \ldots, a_k \rangle \leq T_n$

General Inquiry: Given generators $a_1, \ldots, a_k \in T_n$, what is the complexity of verifying certain properties about $S = \langle a_1, \ldots, a_n \rangle$ within:

$$\mathsf{NL} \subseteq \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXPTIME}$$
?

Theorem (Fleischer, TJ, 2019)

The complexity of determining the following properties of transformation semigroups are in NL: is a band; all idempotents commute; is Clifford;

Transformation Semigroups

- $[n] := \{1, ..., n\}$
- T_n is the semigroup of all unary functions on [n]
- $S = \langle a_1, \ldots, a_k \rangle \leq T_n$

General Inquiry: Given generators $a_1, \ldots, a_k \in T_n$, what is the complexity of verifying certain properties about $S = \langle a_1, \ldots, a_n \rangle$ within:

$$NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME?$$

Theorem (Fleischer, TJ, 2019)

The complexity of determining the following properties of transformation semigroups are in NL: is a band; all idempotents commute; is Clifford; and, generally, any property that can be defined by a fixed equation.

Transformation Semigroups

- $[n] := \{1, ..., n\}$
- T_n is the semigroup of all unary functions on [n]
- $S = \langle a_1, \ldots, a_k \rangle \leq T_n$

General Inquiry: Given generators $a_1, \ldots, a_k \in T_n$, what is the complexity of verifying certain properties about $S = \langle a_1, \ldots, a_n \rangle$ within:

$$NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME?$$

Theorem (Fleischer, TJ, 2019)

The complexity of determining the following properties of transformation semigroups are in NL: is a band; all idempotents commute; is Clifford; and, generally, any property that can be defined by a fixed equation. The following problems are NL-complete:

Transformation Semigroups

- $[n] := \{1, ..., n\}$
- T_n is the semigroup of all unary functions on [n]
- $S = \langle a_1, \ldots, a_k \rangle \leq T_n$

General Inquiry: Given generators $a_1, \ldots, a_k \in T_n$, what is the complexity of verifying certain properties about $S = \langle a_1, \ldots, a_n \rangle$ within:

$$NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME?$$

Theorem (Fleischer, TJ, 2019)

The complexity of determining the following properties of transformation semigroups are in NL: is a band; all idempotents commute; is Clifford; and, generally, any property that can be defined by a fixed equation. The following problems are NL-complete: existence of left/right zeroes;

Transformation Semigroups

- $[n] := \{1, ..., n\}$
- T_n is the semigroup of all unary functions on [n]
- $S = \langle a_1, \ldots, a_k \rangle \leq T_n$

General Inquiry: Given generators $a_1, \ldots, a_k \in T_n$, what is the complexity of verifying certain properties about $S = \langle a_1, \ldots, a_n \rangle$ within:

$$NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME?$$

Theorem (Fleischer, TJ, 2019)

The complexity of determining the following properties of transformation semigroups are in NL: is a band; all idempotents commute; is Clifford; and, generally, any property that can be defined by a fixed equation. The following problems are NL-complete: existence of left/right zeroes; nilpotence;

Transformation Semigroups

- $[n] := \{1, ..., n\}$
- T_n is the semigroup of all unary functions on [n]
- $S = \langle a_1, \ldots, a_k \rangle \leq T_n$

General Inquiry: Given generators $a_1, \ldots, a_k \in T_n$, what is the complexity of verifying certain properties about $S = \langle a_1, \ldots, a_n \rangle$ within:

$$\mathsf{NL} \subseteq \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXPTIME}$$
?

Theorem (Fleischer, TJ, 2019)

The complexity of determining the following properties of transformation semigroups are in NL: is a band; all idempotents commute; is Clifford; and, generally, any property that can be defined by a fixed equation. The following problems are NL-complete: existence of left/right zeroes; nilpotence; \mathbb{R} -triviality;

Transformation Semigroups

- $[n] := \{1, ..., n\}$
- T_n is the semigroup of all unary functions on [n]
- $S = \langle a_1, \ldots, a_k \rangle \leq T_n$

General Inquiry: Given generators $a_1, \ldots, a_k \in T_n$, what is the complexity of verifying certain properties about $S = \langle a_1, \ldots, a_n \rangle$ within:

$$\mathsf{NL} \subseteq \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXPTIME}$$
?

Theorem (Fleischer, TJ, 2019)

The complexity of determining the following properties of transformation semigroups are in NL: is a band; all idempotents commute; is Clifford; and, generally, any property that can be defined by a fixed equation. The following problems are NL-complete: existence of left/right zeroes; nilpotence; \mathbb{R} -triviality; and all idempotents are central.

Transformation Semigroups

- $[n] := \{1, ..., n\}$
- T_n is the semigroup of all unary functions on [n]
- $S = \langle a_1, \ldots, a_k \rangle \leq T_n$

General Inquiry: Given generators $a_1, \ldots, a_k \in T_n$, what is the complexity of verifying certain properties about $S = \langle a_1, \ldots, a_n \rangle$ within:

$$\mathsf{NL} \subseteq \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXPTIME}$$
?

Theorem (Mayr, TJ, 2019)

The left and right identities of a transformation semigroup can be enumerated in polynomial time.

Matrix Semigroups

• \mathbb{F}^n is the set of row vectors of length n over a field \mathbb{F}

Image: A image: A

Matrix Semigroups

- \mathbb{F}^n is the set of row vectors of length n over a field \mathbb{F}
- $S = \langle a_1, \ldots, a_k \rangle \leq \mathbb{F}^{n \times n}$ under multiplication

Matrix Semigroups

- \mathbb{F}^n is the set of row vectors of length n over a field \mathbb{F}
- $S = \langle a_1, \dots, a_k \rangle \leq \mathbb{F}^{n \times n}$ under multiplication

Note that $\mathbb{F}^{n \times n}$ acts as a transformation semigroup on the set \mathbb{F}^n by multiplication on the right.

- 4 同 6 4 日 6 4 日 6

Matrix Semigroups

• \mathbb{F}^n is the set of row vectors of length n over a field $\mathbb F$

•
$$S = \langle a_1, \dots, a_k \rangle \leq \mathbb{F}^{n imes n}$$
 under multiplication

Note that $\mathbb{F}^{n \times n}$ acts as a transformation semigroup on the set \mathbb{F}^n by multiplication on the right.

Space to store a_i as a matrix $= n^2 \log(|\mathbb{F}|)$.

Space to store representation of a_i as a transformation $= |\mathbb{F}|^n \log(n|\mathbb{F}|)$.

一日、

Notation

• $\operatorname{Row}(a_i)$ is the rowspace of a_i .

・ロン ・四 ・ ・ ヨン ・ ヨン

- $\operatorname{Row}(a_i)$ is the rowspace of a_i .
- $\operatorname{Row}(S)$ is the sum of the rowspaces of the generators of S.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Notation

- $\operatorname{Row}(a_i)$ is the rowspace of a_i .
- $\operatorname{Row}(S)$ is the sum of the rowspaces of the generators of S.
- $\operatorname{Null}(S) := \bigcap_{i \in [k]} \operatorname{Null}(a_i)$

イロト イヨト イヨト イヨト

- $\operatorname{Row}(a_i)$ is the rowspace of a_i .
- $\operatorname{Row}(S)$ is the sum of the rowspaces of the generators of S.
- $\operatorname{Null}(S) := \bigcap_{i \in [k]} \operatorname{Null}(a_i)$
- $\llbracket x \rrbracket := x + \operatorname{Null}(S)$

- $\operatorname{Row}(a_i)$ is the rowspace of a_i .
- $\operatorname{Row}(S)$ is the sum of the rowspaces of the generators of S.
- $\operatorname{Null}(S) := \bigcap_{i \in [k]} \operatorname{Null}(a_i)$
- $\llbracket x \rrbracket := x + \operatorname{Null}(S)$
- $S \to \operatorname{End}(\mathbb{F}^n/\operatorname{Null}(S)), s \mapsto \overline{s}$ where $\llbracket x \rrbracket \overline{s} = \llbracket xs \rrbracket$ for $x \in [n]$

- $\operatorname{Row}(a_i)$ is the rowspace of a_i .
- $\operatorname{Row}(S)$ is the sum of the rowspaces of the generators of S.
- $\operatorname{Null}(S) := \bigcap_{i \in [k]} \operatorname{Null}(a_i)$
- $\llbracket x \rrbracket := x + \operatorname{Null}(S)$
- $S \to \operatorname{End}(\mathbb{F}^n/\operatorname{Null}(S)), s \mapsto \overline{s}$ where $\llbracket x \rrbracket \overline{s} = \llbracket xs \rrbracket$ for $x \in [n]$
- $\overline{S} := \{\overline{s} : s \in S\}$

- $\operatorname{Row}(a_i)$ is the rowspace of a_i .
- $\operatorname{Row}(S)$ is the sum of the rowspaces of the generators of S.
- $\operatorname{Null}(S) := \bigcap_{i \in [k]} \operatorname{Null}(a_i)$
- $\llbracket x \rrbracket := x + \operatorname{Null}(S)$
- $S \to \operatorname{End}(\mathbb{F}^n/\operatorname{Null}(S)), s \mapsto \overline{s}$ where $[x]\overline{s} = [xs]$ for $x \in [n]$ • $\overline{S} := \{\overline{s} : s \in S\}$

Note that \overline{s} is well-defined. For any $y \in [x]$, there is a $z \in \text{Null}(S)$ such that y = x + z and thus $[y]\overline{s} = [ys] = [(x + z)s] = [xs] = [xs]\overline{s}$.

- $\operatorname{Row}(a_i)$ is the rowspace of a_i .
- $\operatorname{Row}(S)$ is the sum of the rowspaces of the generators of S.
- $\operatorname{Null}(S) := \bigcap_{i \in [k]} \operatorname{Null}(a_i)$
- $\llbracket x \rrbracket := x + \operatorname{Null}(S)$
- $S \to \operatorname{End}(\mathbb{F}^n/\operatorname{Null}(S)), s \mapsto \overline{s}$ where $[x]\overline{s} = [xs]$ for $x \in [n]$ • $\overline{S} := \{\overline{s} : s \in S\}$

Note that \overline{s} is well-defined. For any $y \in [\![x]\!]$, there is a $z \in \text{Null}(S)$ such that y = x + z and thus $[\![y]\!]\overline{s} = [\![ys]\!] = [\![(x + z)s]\!] = [\![xs]\!] = [\![x]\!]\overline{s}$.

LeftIdentities

Input: $a_1, ..., a_k \in \mathbb{F}^{n \times n}$ Problem: Enumerate the left identities of $\langle a_1, ..., a_k \rangle$.

Proof of Left Identities Lemma

Left Identities Lemma

Let $k, n \in \mathbb{N}$, $a_1, \ldots, a_k \in F^{n \times n}$, and $S := \langle a_1, \ldots, a_k \rangle$. Then an element $\ell \in S$ is a left identity of S iff there is an $i \in [k]$ such that $\overline{a_i}$ permutes \mathbb{F}^n /Null(S) and ℓ equals the idempotent power of a_i .

Proof.

Proof of Left Identities Lemma

Left Identities Lemma

Let $k, n \in \mathbb{N}$, $a_1, \ldots, a_k \in F^{n \times n}$, and $S := \langle a_1, \ldots, a_k \rangle$. Then an element $\ell \in S$ is a left identity of S iff there is an $i \in [k]$ such that $\overline{a_i}$ permutes $\mathbb{F}^n/\text{Null}(S)$ and ℓ equals the idempotent power of a_i .

Proof.

⇐:

• Let $\overline{a_i}$ permute $\mathbb{F}^n/\mathrm{Null}(S)$ and let $(a_i^m)^2 = a_i^m$.

Proof of Left Identities Lemma

Left Identities Lemma

Let $k, n \in \mathbb{N}$, $a_1, \ldots, a_k \in F^{n \times n}$, and $S := \langle a_1, \ldots, a_k \rangle$. Then an element $\ell \in S$ is a left identity of S iff there is an $i \in [k]$ such that $\overline{a_i}$ permutes $\mathbb{F}^n/\text{Null}(S)$ and ℓ equals the idempotent power of a_i .

Proof.

⇐:

- Let $\overline{a_i}$ permute $\mathbb{F}^n/\mathrm{Null}(S)$ and let $(a_i^m)^2 = a_i^m$.
- Then $\overline{a_i}^m = \overline{1}$, so $\forall x \in \mathbb{F}^n : [\![xa_i^m]\!] = [\![x]\!]\overline{a_i}^m = [\![x]\!]$.

Proof of Left Identities Lemma

Left Identities Lemma

Let $k, n \in \mathbb{N}$, $a_1, \ldots, a_k \in F^{n \times n}$, and $S := \langle a_1, \ldots, a_k \rangle$. Then an element $\ell \in S$ is a left identity of S iff there is an $i \in [k]$ such that $\overline{a_i}$ permutes $\mathbb{F}^n/\text{Null}(S)$ and ℓ equals the idempotent power of a_i .

Proof.

⇐:

- Let $\overline{a_i}$ permute $\mathbb{F}^n/\mathrm{Null}(S)$ and let $(a_i^m)^2 = a_i^m$.
- Then $\overline{a_i}^m = \overline{1}$, so $\forall x \in \mathbb{F}^n : [\![xa_i^m]\!] = [\![x]\!]\overline{a_i}^m = [\![x]\!]$.
- Thus, $xa_i^m = x + z$ for some $z \in \text{Null}(S)$ so that $xa_i^m s = (x + z)s = xs$ for every $s \in S$.

Proof of Left Identities Lemma

Left Identities Lemma

Let $k, n \in \mathbb{N}$, $a_1, \ldots, a_k \in F^{n \times n}$, and $S := \langle a_1, \ldots, a_k \rangle$. Then an element $\ell \in S$ is a left identity of S iff there is an $i \in [k]$ such that $\overline{a_i}$ permutes $\mathbb{F}^n/\mathrm{Null}(S)$ and ℓ equals the idempotent power of a_i .

Proof.

Proof of Left Identities Lemma

Left Identities Lemma

Let $k, n \in \mathbb{N}$, $a_1, \ldots, a_k \in F^{n \times n}$, and $S := \langle a_1, \ldots, a_k \rangle$. Then an element $\ell \in S$ is a left identity of S iff there is an $i \in [k]$ such that $\overline{a_i}$ permutes $\mathbb{F}^n/\mathrm{Null}(S)$ and ℓ equals the idempotent power of a_i .

Proof.

 \Rightarrow :

• Let $\ell \in S$ satisfy $x \ell s = xs$ for every $x \in \mathbb{F}^n$ and every $s \in S$.

Proof of Left Identities Lemma

Left Identities Lemma

Let $k, n \in \mathbb{N}$, $a_1, \ldots, a_k \in F^{n \times n}$, and $S := \langle a_1, \ldots, a_k \rangle$. Then an element $\ell \in S$ is a left identity of S iff there is an $i \in [k]$ such that $\overline{a_i}$ permutes $\mathbb{F}^n/\mathrm{Null}(S)$ and ℓ equals the idempotent power of a_i .

Proof.

 \Rightarrow :

- Let $\ell \in S$ satisfy $x \ell s = xs$ for every $x \in \mathbb{F}^n$ and every $s \in S$.
- Then $(x\ell x)s = 0$, $x\ell x \in \text{Null}(S)$, $[x\ell] = [x]$, and $\overline{\ell} = \overline{1}$.

Proof of Left Identities Lemma

Left Identities Lemma

Let $k, n \in \mathbb{N}$, $a_1, \ldots, a_k \in F^{n \times n}$, and $S := \langle a_1, \ldots, a_k \rangle$. Then an element $\ell \in S$ is a left identity of S iff there is an $i \in [k]$ such that $\overline{a_i}$ permutes $\mathbb{F}^n/\mathrm{Null}(S)$ and ℓ equals the idempotent power of a_i .

Proof.

 \Rightarrow :

- Let $\ell \in S$ satisfy $x \ell s = xs$ for every $x \in \mathbb{F}^n$ and every $s \in S$.
- Then $(x\ell x)s = 0$, $x\ell x \in \text{Null}(S)$, $[x\ell] = [x]$, and $\overline{\ell} = \overline{1}$.
- So, $\ell = ba_i$ for some permutations $\overline{b}, \overline{a_i} \in \overline{S}$.

Proof of Left Identities Lemma

Left Identities Lemma

Let $k, n \in \mathbb{N}$, $a_1, \ldots, a_k \in F^{n \times n}$, and $S := \langle a_1, \ldots, a_k \rangle$. Then an element $\ell \in S$ is a left identity of S iff there is an $i \in [k]$ such that $\overline{a_i}$ permutes $\mathbb{F}^n/\mathrm{Null}(S)$ and ℓ equals the idempotent power of a_i .

Proof.

 \Rightarrow :

• Let $\ell \in S$ satisfy $x \ell s = xs$ for every $x \in \mathbb{F}^n$ and every $s \in S$.

• Then
$$(x\ell - x)s = 0$$
, $x\ell - x \in Null(S)$, $\llbracket x\ell \rrbracket = \llbracket x \rrbracket$, and $\overline{\ell} = \overline{1}$.

- So, $\ell = ba_i$ for some permutations $\overline{b}, \overline{a_i} \in \overline{S}$.
- Since $\overline{a_i}^m = \overline{1}$, $\forall x \in \mathbb{F}^n : [xb]] \overline{a_i} = [x]] \overline{ba_i} = [x] \overline{a_i}^m = [xa_i^{m-1}]] \overline{a_i}$.
Proof of Left Identities Lemma

Left Identities Lemma

Let $k, n \in \mathbb{N}$, $a_1, \ldots, a_k \in F^{n \times n}$, and $S := \langle a_1, \ldots, a_k \rangle$. Then an element $\ell \in S$ is a left identity of S iff there is an $i \in [k]$ such that $\overline{a_i}$ permutes $\mathbb{F}^n/\mathrm{Null}(S)$ and ℓ equals the idempotent power of a_i .

Proof.

 \Rightarrow :

- Let $\ell \in S$ satisfy $x \ell s = xs$ for every $x \in \mathbb{F}^n$ and every $s \in S$.
- Then $(x\ell x)s = 0$, $x\ell x \in \text{Null}(S)$, $[x\ell] = [x]$, and $\overline{\ell} = \overline{1}$.
- So, $\ell = ba_i$ for some permutations $\overline{b}, \overline{a_i} \in \overline{S}$.
- Since $\overline{a_i}^m = \overline{1}$, $\forall x \in \mathbb{F}^n : [[xb]]] \overline{a_i} = [[x]] \overline{ba_i} = [[x]] \overline{a_i}^m = [[xa_i^{m-1}]] \overline{a_i}$.
- Since $\overline{a_i}$ is a permutation, $[xb] = [xa_i^{m-1}]$ so that, for any $s \in S$, $xbs = xa_i^{m-1}s$. In particular, $xba_i = xa_i^m$.

Left Identities Theorem

LeftIdentities can be solved in polynomial time.

-

► < ∃ ►</p>

Left Identities Theorem

LeftIdentities can be solved in polynomial time.

• Let
$$S = \langle a_1, \ldots, a_k \rangle \leq \mathbb{F}^{n \times n}$$
. Recall $\text{Null}(S) := \bigcap \text{Null}(a_i)$.

Left Identities Theorem

LeftIdentities can be solved in polynomial time.

- Let $S = \langle a_1, \ldots, a_k \rangle \leq \mathbb{F}^{n \times n}$. Recall $\text{Null}(S) := \bigcap \text{Null}(a_i)$.
- Generate $\mathbb{F}^n/\text{Null}(S)$ and enumerate each $\overline{a_i}$ that permutes \mathbb{F}^n .

Left Identities Theorem

LeftIdentities can be solved in polynomial time.

- Let $S = \langle a_1, \ldots, a_k \rangle \leq \mathbb{F}^{n \times n}$. Recall $\text{Null}(S) := \bigcap \text{Null}(a_i)$.
- Generate $\mathbb{F}^n/\operatorname{Null}(S)$ and enumerate each $\overline{a_i}$ that permutes \mathbb{F}^n .
- By Lemma, the idempotent powers $a_i^{m_i}$'s are left identities.

Left Identities Theorem

Left Identities Theorem

LeftIdentities can be solved in polynomial time.

- Let $S = \langle a_1, \ldots, a_k \rangle \leq \mathbb{F}^{n \times n}$. Recall $\text{Null}(S) := \bigcap \text{Null}(a_i)$.
- Generate $\mathbb{F}^n/\operatorname{Null}(S)$ and enumerate each $\overline{a_i}$ that permutes \mathbb{F}^n .
- By Lemma, the idempotent powers $a_i^{m_i}$'s are left identities.
- Note that $\operatorname{Null}(a_i) = \operatorname{Null}(S)$, so $\operatorname{Row}(a_i) \cap \operatorname{Null}(a_i) = \emptyset$.

Left Identities Theorem

Left Identities Theorem

LeftIdentities can be solved in polynomial time.

- Let $S = \langle a_1, \ldots, a_k \rangle \leq \mathbb{F}^{n \times n}$. Recall $\text{Null}(S) := \bigcap \text{Null}(a_i)$.
- Generate $\mathbb{F}^n/\mathrm{Null}(S)$ and enumerate each $\overline{a_i}$ that permutes \mathbb{F}^n .
- By Lemma, the idempotent powers $a_i^{m_i}$'s are left identities.
- Note that $\operatorname{Null}(a_i) = \operatorname{Null}(S)$, so $\operatorname{Row}(a_i) \cap \operatorname{Null}(a_i) = \emptyset$.
- A basis B of $Row(a_i)$ and a basis C of $Null(a_i)$ forms a basis for \mathbb{F}^n .

Left Identities Theorem

Left Identities Theorem

LeftIdentities can be solved in polynomial time.

- Let $S = \langle a_1, \ldots, a_k \rangle \leq \mathbb{F}^{n \times n}$. Recall $\text{Null}(S) := \bigcap \text{Null}(a_i)$.
- Generate $\mathbb{F}^n/\mathrm{Null}(S)$ and enumerate each $\overline{a_i}$ that permutes \mathbb{F}^n .
- By Lemma, the idempotent powers $a_i^{m_i}$'s are left identities.
- Note that $\operatorname{Null}(a_i) = \operatorname{Null}(S)$, so $\operatorname{Row}(a_i) \cap \operatorname{Null}(a_i) = \emptyset$.
- A basis B of $Row(a_i)$ and a basis C of $Null(a_i)$ forms a basis for \mathbb{F}^n .
- Let P be the matrix with rows from B followed by rows from C.

Left Identities Theorem

Left Identities Theorem

LeftIdentities can be solved in polynomial time.

- Let $S = \langle a_1, \ldots, a_k \rangle \leq \mathbb{F}^{n \times n}$. Recall $\text{Null}(S) := \bigcap \text{Null}(a_i)$.
- Generate $\mathbb{F}^n/\operatorname{Null}(S)$ and enumerate each $\overline{a_i}$ that permutes \mathbb{F}^n .
- By Lemma, the idempotent powers $a_i^{m_i}$'s are left identities.
- Note that $\operatorname{Null}(a_i) = \operatorname{Null}(S)$, so $\operatorname{Row}(a_i) \cap \operatorname{Null}(a_i) = \emptyset$.
- A basis B of $Row(a_i)$ and a basis C of $Null(a_i)$ forms a basis for \mathbb{F}^n .
- Let P be the matrix with rows from B followed by rows from C.
- a_i = P⁻¹DP for some block diagonal D with zeroes outside of the top corner block of dimension |B| × |B|.

Left Identities Theorem

Left Identities Theorem

LeftIdentities can be solved in polynomial time.

- Let $S = \langle a_1, \ldots, a_k \rangle \leq \mathbb{F}^{n \times n}$. Recall $\text{Null}(S) := \bigcap \text{Null}(a_i)$.
- Generate $\mathbb{F}^n/\mathrm{Null}(S)$ and enumerate each $\overline{a_i}$ that permutes \mathbb{F}^n .
- By Lemma, the idempotent powers $a_i^{m_i}$'s are left identities.
- Note that $\operatorname{Null}(a_i) = \operatorname{Null}(S)$, so $\operatorname{Row}(a_i) \cap \operatorname{Null}(a_i) = \emptyset$.
- A basis B of $Row(a_i)$ and a basis C of $Null(a_i)$ forms a basis for \mathbb{F}^n .
- Let P be the matrix with rows from B followed by rows from C.
- a_i = P⁻¹DP for some block diagonal D with zeroes outside of the top corner block of dimension |B| × |B|.
- $a_i^{m_i} = P^{-1}D^{m_i}P$ where D^{m_i} is diagonal with 1's in the first |B| diagonal entries and zeroes elsewhere.

Right Identities Problem

RightIdentities

Input: $a_1, ..., a_k \in T_n$ Problem: Enumerate the right identities of $\langle a_1, ..., a_k \rangle$.

Image: A Image: A

Right Identity Lemma

Let $k, n \in \mathbb{N}$, $a_1, \ldots, a_k \in \mathbb{F}^{n \times n}$, and $S := \langle a_1, \ldots, a_k \rangle$. Then an element $r \in S$ is a right identity of S iff there is an $i \in [k]$ such that $\operatorname{Null}(a_i) \cap \operatorname{Row}(S) = \{0\}$ and r equals the idempotent power of a_i .

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Right Identity Lemma

Let $k, n \in \mathbb{N}$, $a_1, \ldots, a_k \in \mathbb{F}^{n \times n}$, and $S := \langle a_1, \ldots, a_k \rangle$. Then an element $r \in S$ is a right identity of S iff there is an $i \in [k]$ such that $\operatorname{Null}(a_i) \cap \operatorname{Row}(S) = \{0\}$ and r equals the idempotent power of a_i .

Proof.

$$\Leftarrow: \text{ Let } \text{Null}(a_i) \cap \text{Row}(S) = \{0\} \text{ and } (a_i^m)^2 = a_i^m.$$

Right Identity Lemma

Let $k, n \in \mathbb{N}$, $a_1, \ldots, a_k \in \mathbb{F}^{n \times n}$, and $S := \langle a_1, \ldots, a_k \rangle$. Then an element $r \in S$ is a right identity of S iff there is an $i \in [k]$ such that $\operatorname{Null}(a_i) \cap \operatorname{Row}(S) = \{0\}$ and r equals the idempotent power of a_i .

Proof.

$$\leftarrow: \text{ Let } \operatorname{Null}(a_i) \cap \operatorname{Row}(S) = \{0\} \text{ and } (a_i^m)^2 = a_i^m. \\ \text{So, } a_i \text{ embeds } \operatorname{Row}(S) \text{ into } \mathbb{F}^n \text{ and } a_i|_{\operatorname{Row}(S)} \text{ is bijective}$$

イロト イヨト イヨト イヨト

Right Identity Lemma

Let $k, n \in \mathbb{N}$, $a_1, \ldots, a_k \in \mathbb{F}^{n \times n}$, and $S := \langle a_1, \ldots, a_k \rangle$. Then an element $r \in S$ is a right identity of S iff there is an $i \in [k]$ such that $\operatorname{Null}(a_i) \cap \operatorname{Row}(S) = \{0\}$ and r equals the idempotent power of a_i .

Proof.

$$\begin{array}{l} \Leftarrow: \mbox{ Let } \mbox{Null}(a_i) \cap \mbox{Row}(S) = \{0\} \mbox{ and } (a_i^m)^2 = a_i^m. \\ \mbox{So, } a_i \mbox{ embeds } \mbox{Row}(S) \mbox{ into } \mathbb{F}^n \mbox{ and } a_i|_{\mbox{Row}(S)} \mbox{ is bijective.} \\ \mbox{Then } a_i^m \mbox{ fixes } \mbox{Row}(S). \mbox{ That is, } \forall x \in \mathbb{F}^n, \forall s \in S : xsa_i^m = xsa_i^m. \end{array}$$

Right Identity Lemma

Let $k, n \in \mathbb{N}$, $a_1, \ldots, a_k \in \mathbb{F}^{n \times n}$, and $S := \langle a_1, \ldots, a_k \rangle$. Then an element $r \in S$ is a right identity of S iff there is an $i \in [k]$ such that $\operatorname{Null}(a_i) \cap \operatorname{Row}(S) = \{0\}$ and r equals the idempotent power of a_i .

Proof.

$$\begin{array}{l} \leftarrow: \mbox{ Let } \mbox{Null}(a_i) \cap \mbox{Row}(S) = \{0\} \mbox{ and } (a_i^m)^2 = a_i^m. \\ \mbox{So, } a_i \mbox{ embeds } \mbox{Row}(S) \mbox{ into } \mathbb{F}^n \mbox{ and } a_i|_{\mbox{Row}(S)} \mbox{ is bijective.} \\ \mbox{Then } a_i^m \mbox{ fixes } \mbox{Row}(S). \mbox{ That is, } \forall x \in \mathbb{F}^n, \forall s \in S : xsa_i^m = xs. \end{array}$$

⇒: Let *r* satisfy xsr = xs for every $x \in \mathbb{F}^n$ and every $s \in S$. Then *r* fixes Row(*S*) and $r = a_i b$ for some $a_i, b \in S$ that permute Row(*S*).

Right Identity Lemma

Let $k, n \in \mathbb{N}$, $a_1, \ldots, a_k \in \mathbb{F}^{n \times n}$, and $S := \langle a_1, \ldots, a_k \rangle$. Then an element $r \in S$ is a right identity of S iff there is an $i \in [k]$ such that $\operatorname{Null}(a_i) \cap \operatorname{Row}(S) = \{0\}$ and r equals the idempotent power of a_i .

Proof.

$$\begin{array}{l} \Leftarrow: \mbox{ Let } \mbox{Null}(a_i) \cap \mbox{Row}(S) = \{0\} \mbox{ and } (a_i^m)^2 = a_i^m. \\ \mbox{So, } a_i \mbox{ embeds } \mbox{Row}(S) \mbox{ into } \mathbb{F}^n \mbox{ and } a_i|_{\mbox{Row}(S)} \mbox{ is bijective.} \\ \mbox{Then } a_i^m \mbox{ fixes } \mbox{Row}(S). \mbox{ That is, } \forall x \in \mathbb{F}^n, \forall s \in S : xsa_i^m = xs. \end{array}$$

⇒: Let *r* satisfy xsr = xs for every $x \in \mathbb{F}^n$ and every $s \in S$. Then *r* fixes Row(*S*) and $r = a_i b$ for some $a_i, b \in S$ that permute Row(*S*). Since a_i^m fixes Row(*S*), $\forall x \in \mathbb{F}^n : xa_i b = xa_i a_i^m b = xa_i^m a_i b = xa_i^m$.

3

Right Identity Theorem

Rightldentities can be solved in polynomial time.

→ 3 → 4 3

Right Identity Theorem

Rightldentities can be solved in polynomial time.

Proof.

• Generate $\operatorname{Row}(S)$ and enumerate the a_i 's that permute $\operatorname{Row}(S)$.

→ ∃ →

Right Identity Theorem

Rightldentities can be solved in polynomial time.

- Generate $\operatorname{Row}(S)$ and enumerate the a_i 's that permute $\operatorname{Row}(S)$.
- By Lemma, the idempotent powers $a_i^{m_i}$ are the right identities.

Right Identity Theorem

Rightldentities can be solved in polynomial time.

Proof.

- Generate $\operatorname{Row}(S)$ and enumerate the a_i 's that permute $\operatorname{Row}(S)$.
- By Lemma, the idempotent powers $a_i^{m_i}$ are the right identities.
- As with left identities, Null(a_i) = Null(S), so we can build these idempotents simply from knowing a basis B of Row(a_i) and a basis C of Null(a_i).

→ 3 → 4 3

Matrix Nilpotence

Notation

A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is said to be **nilpotent** if it has a zero element, $0 \in S$, satisfying $0S = \{0\}$ and there exists $d \in \mathbb{N}$ such that $S^d = \{0\}$. If $S^d = \{0\}$, we say S is d-nilpotent.

.

Matrix Nilpotence

Notation

A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is said to be **nilpotent** if it has a zero element, $0 \in S$, satisfying $0S = \{0\}$ and there exists $d \in \mathbb{N}$ such that $S^d = \{0\}$. If $S^d = \{0\}$, we say S is d-nilpotent.

Nilpotence

Input: $a_1, ..., a_k \in T_n$ Output: Whether $\langle a_1, ..., a_k \rangle$ is nilpotent.

.

Matrix Nilpotence

Notation

A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is said to be **nilpotent** if it has a zero element, $0 \in S$, satisfying $0S = \{0\}$ and there exists $d \in \mathbb{N}$ such that $S^d = \{0\}$. If $S^d = \{0\}$, we say S is d-nilpotent.

Nilpotence

Input: $a_1, ..., a_k \in T_n$ Output: Whether $\langle a_1, ..., a_k \rangle$ is nilpotent.

Lemma

A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is nilpotent iff it is *n*-nilpotent.

Proof of Lemma (1)

Lemma

A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is nilpotent iff it is *n*-nilpotent.

Proof of Lemma (1)

Lemma

A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is nilpotent iff it is *n*-nilpotent.

• Let
$$V_0 = \mathbb{F}^n$$
 and $V_{i+1} = \operatorname{span}(V_i S)$.

Proof of Lemma (1)

Lemma

A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is nilpotent iff it is *n*-nilpotent.

- Let $V_0 = \mathbb{F}^n$ and $V_{i+1} = \operatorname{span}(V_i S)$.
- By linearity, $V_i = \operatorname{span}(V_0 S^i)$.

Proof of Lemma (1)

Lemma

A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is nilpotent iff it is *n*-nilpotent.

- Let $V_0 = \mathbb{F}^n$ and $V_{i+1} = \operatorname{span}(V_i S)$.
- By linearity, $V_i = \operatorname{span}(V_0 S^i)$.
- Then, if S has nilpotency degree d, $V_d = \operatorname{span}(V_0 S^d) = \operatorname{span}(V_0 0) = \mathbb{F}^n 0.$

Proof of Lemma (1)

Lemma

A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is nilpotent iff it is *n*-nilpotent.

- Let $V_0 = \mathbb{F}^n$ and $V_{i+1} = \operatorname{span}(V_i S)$.
- By linearity, $V_i = \operatorname{span}(V_0 S^i)$.
- Then, if S has nilpotency degree d, $V_d = \operatorname{span}(V_0 S^d) = \operatorname{span}(V_0 0) = \mathbb{F}^n 0.$
- Let *m* be minimal s.t. $V_m = V_{m+1}$. We prove $V_m = V_j$ for $j \ge m$.

- 4 同 6 4 日 6 4 日 6

Proof of Lemma (1)

Lemma

A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is nilpotent iff it is *n*-nilpotent.

- Let $V_0 = \mathbb{F}^n$ and $V_{i+1} = \operatorname{span}(V_i S)$.
- By linearity, $V_i = \operatorname{span}(V_0 S^i)$.
- Then, if S has nilpotency degree d, $V_d = \operatorname{span}(V_0 S^d) = \operatorname{span}(V_0 0) = \mathbb{F}^n 0.$
- Let *m* be minimal s.t. $V_m = V_{m+1}$. We prove $V_m = V_j$ for $j \ge m$.
- If $V_m = V_j$. Then $V_m = V_{m+1} = \operatorname{span}(V_m S) = \operatorname{span}(V_j S) = V_{j+1}$.

イロト イポト イヨト イヨト 二日

Proof of Lemma (1)

Lemma

A matrix semigroup $S < \mathbb{F}^{n \times n}$ is nilpotent iff it is *n*-nilpotent.

- Let $V_0 = \mathbb{F}^n$ and $V_{i+1} = \operatorname{span}(V_i S)$.
- By linearity, $V_i = \operatorname{span}(V_0 S^i)$.
- Then, if S has nilpotency degree d, $V_d = \operatorname{span}(V_0 S^d) = \operatorname{span}(V_0 0) = \mathbb{F}^n 0.$
- Let *m* be minimal s.t. $V_m = V_{m+1}$. We prove $V_m = V_i$ for $i \ge m$.
- If $V_m = V_i$. Then $V_m = V_{m+1} = \text{span}(V_m S) = \text{span}(V_i S) = V_{i+1}$.
- Certainly $m \leq d$, so $\operatorname{span}(V_0 S^m) = V_m = V_d = \mathbb{F}^n 0$, so m = d.

Proof of Lemma (1)

Lemma

A matrix semigroup $S < \mathbb{F}^{n \times n}$ is nilpotent iff it is *n*-nilpotent.

- Let $V_0 = \mathbb{F}^n$ and $V_{i+1} = \operatorname{span}(V_i S)$.
- By linearity, $V_i = \operatorname{span}(V_0 S^i)$.
- Then, if S has nilpotency degree d, $V_d = \operatorname{span}(V_0 S^d) = \operatorname{span}(V_0 0) = \mathbb{F}^n 0.$
- Let *m* be minimal s.t. $V_m = V_{m+1}$. We prove $V_m = V_i$ for $i \ge m$.
- If $V_m = V_i$. Then $V_m = V_{m+1} = \text{span}(V_m S) = \text{span}(V_i S) = V_{i+1}$.
- Certainly m < d, so span $(V_0 S^m) = V_m = V_d = \mathbb{F}^n 0$, so m = d.
- Note, $\mathbb{F}^n S^{i+1} \subset \mathbb{F}^n S^i$ implies $V^{i+1} < V^i$ and $V_{i+1} \neq V_i$ for i < d.

Proof of Lemma (1)

Lemma

A matrix semigroup $S < \mathbb{F}^{n \times n}$ is nilpotent iff it is *n*-nilpotent.

- Let $V_0 = \mathbb{F}^n$ and $V_{i+1} = \operatorname{span}(V_i S)$.
- By linearity, $V_i = \operatorname{span}(V_0 S^i)$.
- Then, if S has nilpotency degree d, $V_d = \operatorname{span}(V_0 S^d) = \operatorname{span}(V_0 0) = \mathbb{F}^n 0.$
- Let *m* be minimal s.t. $V_m = V_{m+1}$. We prove $V_m = V_i$ for $j \ge m$.
- If $V_m = V_i$. Then $V_m = V_{m+1} = \text{span}(V_m S) = \text{span}(V_i S) = V_{i+1}$.
- Certainly m < d, so span $(V_0 S^m) = V_m = V_d = \mathbb{F}^n 0$, so m = d.
- Note, $\mathbb{F}^n S^{i+1} \subset \mathbb{F}^n S^i$ implies $V^{i+1} < V^i$ and $V_{i+1} \neq V_i$ for i < d.
- Then $n = \dim(V_0) > \dim(V_0S) > \cdots > \dim(V_0S^d) = 0$ and n > d.

Nilpotence Theorem

Matrix Nilpotence Theorem Nilpotence is in P.

Proof

• Let $V_0 = \mathbb{F}^n$ and $V_{i+1} = \operatorname{span}(V_i a_i | j \in [k])$.

Nilpotence Theorem

Matrix Nilpotence Theorem Nilpotence is in P.

• Let
$$V_0 = \mathbb{F}^n$$
 and $V_{i+1} = \operatorname{span}(V_i a_j | j \in [k])$.

• Let
$$0 = a_1^n$$
. We claim S is nilpotent iff:
(1) $V_n = \mathbb{F}^n 0$ and (2) $0a_j = a_j 0 = 0$ for every $j \in [k]$.

Nilpotence Theorem

Matrix Nilpotence Theorem Nilpotence is in P.

Proof

• Let
$$V_0 = \mathbb{F}^n$$
 and $V_{i+1} = \operatorname{span}(V_i a_j | j \in [k])$.

• Let
$$0 = a_1^n$$
. We claim S is nilpotent iff:
(1) $V_n = \mathbb{F}^n 0$ and (2) $0a_j = a_j 0 = 0$ for every $j \in [k]$.

• One direction is clear. For the other, assume (1) and (2) hold.
Nilpotence Theorem

Matrix Nilpotence Theorem Nilpotence is in P.

Proof

• Let
$$V_0 = \mathbb{F}^n$$
 and $V_{i+1} = \operatorname{span}(V_i a_j | j \in [k])$.

- Let $0 = a_1^n$. We claim S is nilpotent iff: (1) $V_n = \mathbb{F}^n 0$ and (2) $0a_i = a_i 0 = 0$ for every $i \in [k]$.
- One direction is clear. For the other, assume (1) and (2) hold.
- Pick any $x \in \mathbb{F}^n$ and any $s_1, \ldots, s_n \in \{a_1, \ldots, a_k\}$.

Nilpotence Theorem

Matrix Nilpotence Theorem Nilpotence is in P.

Proof

• Let
$$V_0 = \mathbb{F}^n$$
 and $V_{i+1} = \operatorname{span}(V_i a_j | j \in [k])$.

- Let $0 = a_1^n$. We claim S is nilpotent iff: (1) $V_n = \mathbb{F}^n 0$ and (2) $0a_i = a_i 0 = 0$ for every $i \in [k]$.
- One direction is clear. For the other, assume (1) and (2) hold.
- Pick any $x \in \mathbb{F}^n$ and any $s_1, \ldots, s_n \in \{a_1, \ldots, a_k\}$.

• By (1),
$$xs_1 \cdots s_n \in \mathbb{F}^n 0$$
.

Nilpotence Theorem

Matrix Nilpotence Theorem Nilpotence is in P.

Proof

• Let
$$V_0 = \mathbb{F}^n$$
 and $V_{i+1} = \operatorname{span}(V_i a_j | j \in [k])$.

• Let
$$0 = a_1^n$$
. We claim S is nilpotent iff:
(1) $V_n = \mathbb{F}^n 0$ and (2) $0a_j = a_j 0 = 0$ for every $j \in [k]$.

- One direction is clear. For the other, assume (1) and (2) hold.
- Pick any $x \in \mathbb{F}^n$ and any $s_1, \ldots, s_n \in \{a_1, \ldots, a_k\}$.

• By (1),
$$xs_1 \cdots s_n \in \mathbb{F}^n 0.$$

• By (2),
$$xs_1 \cdots s_n = xs_1 \cdots s_n 0 = x0$$
.

Nilpotence Theorem

Matrix Nilpotence Theorem Nilpotence is in P.

Proof

• Let
$$V_0 = \mathbb{F}^n$$
 and $V_{i+1} = \operatorname{span}(V_i a_j | j \in [k])$.

- Let $0 = a_1^n$. We claim S is nilpotent iff: (1) $V_n = \mathbb{F}^n 0$ and (2) $0a_i = a_i 0 = 0$ for every $i \in [k]$.
- One direction is clear. For the other, assume (1) and (2) hold.
- Pick any $x \in \mathbb{F}^n$ and any $s_1, \ldots, s_n \in \{a_1, \ldots, a_{\nu}\}$.

• By (1),
$$xs_1 \cdots s_n \in \mathbb{F}^n 0$$
.

• By (2),
$$xs_1 \cdots s_n = xs_1 \cdots s_n 0 = x0$$
.

• By Lemma, we need only produce V_n and check (1) and (2). These can be done in polynomial time by methods like Gaussian elimination.