Computational Complexity of Matrix Semigroup Properties

Trevor Jack

Joint work with Peter Mayr

둘
Mathematics
UNIVERSITY OF COLORADO BOULDER

Update for BLAST 2018 Presentation

Transformation Semigroups

Update for BLAST 2018 Presentation

Transformation Semigroups

- $[n]:=\{1, \ldots, n\}$
- T_{n} is the semigroup of all unary functions on [n]
- $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq T_{n}$

Update for BLAST 2018 Presentation

Transformation Semigroups

- $[n]:=\{1, \ldots, n\}$
- T_{n} is the semigroup of all unary functions on [n]
- $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq T_{n}$

General Inquiry: Given generators $a_{1}, \ldots, a_{k} \in T_{n}$, what is the complexity of verifying certain properties about $S=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ within:

$$
\mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXPTIME} ?
$$

Update for BLAST 2018 Presentation

Transformation Semigroups

- $[n]:=\{1, \ldots, n\}$
- T_{n} is the semigroup of all unary functions on [n]
- $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq T_{n}$

General Inquiry: Given generators $a_{1}, \ldots, a_{k} \in T_{n}$, what is the complexity of verifying certain properties about $S=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ within:

$$
\mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXPTIME} ?
$$

Theorem (Fleischer, TJ, 2019)
The complexity of determining the following properties of transformation semigroups are in NL:

Update for BLAST 2018 Presentation

Transformation Semigroups

- $[n]:=\{1, \ldots, n\}$
- T_{n} is the semigroup of all unary functions on [n]
- $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq T_{n}$

General Inquiry: Given generators $a_{1}, \ldots, a_{k} \in T_{n}$, what is the complexity of verifying certain properties about $S=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ within:

$$
\mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXPTIME} ?
$$

Theorem (Fleischer, TJ, 2019)
The complexity of determining the following properties of transformation semigroups are in NL: is a band;

Update for BLAST 2018 Presentation

Transformation Semigroups

- $[n]:=\{1, \ldots, n\}$
- T_{n} is the semigroup of all unary functions on [n]
- $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq T_{n}$

General Inquiry: Given generators $a_{1}, \ldots, a_{k} \in T_{n}$, what is the complexity of verifying certain properties about $S=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ within:

$$
\mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXPTIME} ?
$$

Theorem (Fleischer, TJ, 2019)
The complexity of determining the following properties of transformation semigroups are in NL: is a band; all idempotents commute;

Update for BLAST 2018 Presentation

Transformation Semigroups

- $[n]:=\{1, \ldots, n\}$
- T_{n} is the semigroup of all unary functions on [n]
- $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq T_{n}$

General Inquiry: Given generators $a_{1}, \ldots, a_{k} \in T_{n}$, what is the complexity of verifying certain properties about $S=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ within:

$$
\mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXPTIME} ?
$$

Theorem (Fleischer, TJ, 2019)
The complexity of determining the following properties of transformation semigroups are in NL: is a band; all idempotents commute; is Clifford;

Update for BLAST 2018 Presentation

Transformation Semigroups

- $[n]:=\{1, \ldots, n\}$
- T_{n} is the semigroup of all unary functions on [n]
- $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq T_{n}$

General Inquiry: Given generators $a_{1}, \ldots, a_{k} \in T_{n}$, what is the complexity of verifying certain properties about $S=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ within:

$$
\mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXPTIME} ?
$$

Theorem (Fleischer, TJ, 2019)
The complexity of determining the following properties of transformation semigroups are in NL: is a band; all idempotents commute; is Clifford; and, generally, any property that can be defined by a fixed equation.

Update for BLAST 2018 Presentation

Transformation Semigroups

- $[n]:=\{1, \ldots, n\}$
- T_{n} is the semigroup of all unary functions on [n]
- $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq T_{n}$

General Inquiry: Given generators $a_{1}, \ldots, a_{k} \in T_{n}$, what is the complexity of verifying certain properties about $S=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ within:

$$
\mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXPTIME} ?
$$

Theorem (Fleischer, TJ, 2019)
The complexity of determining the following properties of transformation semigroups are in NL: is a band; all idempotents commute; is Clifford; and, generally, any property that can be defined by a fixed equation. The following problems are NL-complete:

Update for BLAST 2018 Presentation

Transformation Semigroups

- $[n]:=\{1, \ldots, n\}$
- T_{n} is the semigroup of all unary functions on [n]
- $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq T_{n}$

General Inquiry: Given generators $a_{1}, \ldots, a_{k} \in T_{n}$, what is the complexity of verifying certain properties about $S=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ within:

$$
\mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXPTIME} ?
$$

Theorem (Fleischer, TJ, 2019)
The complexity of determining the following properties of transformation semigroups are in NL: is a band; all idempotents commute; is Clifford; and, generally, any property that can be defined by a fixed equation. The following problems are NL-complete: existence of left/right zeroes;

Update for BLAST 2018 Presentation

Transformation Semigroups

- $[n]:=\{1, \ldots, n\}$
- T_{n} is the semigroup of all unary functions on [n]
- $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq T_{n}$

General Inquiry: Given generators $a_{1}, \ldots, a_{k} \in T_{n}$, what is the complexity of verifying certain properties about $S=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ within:

$$
\mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXPTIME} ?
$$

Theorem (Fleischer, TJ, 2019)

The complexity of determining the following properties of transformation semigroups are in NL: is a band; all idempotents commute; is Clifford; and, generally, any property that can be defined by a fixed equation. The following problems are NL-complete: existence of left/right zeroes; nilpotence;

Update for BLAST 2018 Presentation

Transformation Semigroups

- $[n]:=\{1, \ldots, n\}$
- T_{n} is the semigroup of all unary functions on [n]
- $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq T_{n}$

General Inquiry: Given generators $a_{1}, \ldots, a_{k} \in T_{n}$, what is the complexity of verifying certain properties about $S=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ within:

$$
\mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXPTIME} ?
$$

Theorem (Fleischer, TJ, 2019)
The complexity of determining the following properties of transformation semigroups are in NL: is a band; all idempotents commute; is Clifford; and, generally, any property that can be defined by a fixed equation. The following problems are NL-complete: existence of left/right zeroes; nilpotence; \mathbb{R}-triviality;

Update for BLAST 2018 Presentation

Transformation Semigroups

- $[n]:=\{1, \ldots, n\}$
- T_{n} is the semigroup of all unary functions on [n]
- $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq T_{n}$

General Inquiry: Given generators $a_{1}, \ldots, a_{k} \in T_{n}$, what is the complexity of verifying certain properties about $S=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ within:

$$
\mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXPTIME} ?
$$

Theorem (Fleischer, TJ, 2019)
The complexity of determining the following properties of transformation semigroups are in NL: is a band; all idempotents commute; is Clifford; and, generally, any property that can be defined by a fixed equation. The following problems are NL-complete: existence of left/right zeroes; nilpotence; \mathbb{R}-triviality; and all idempotents are central.

Update for BLAST 2018 Presentation

Transformation Semigroups

- $[n]:=\{1, \ldots, n\}$
- T_{n} is the semigroup of all unary functions on [n]
- $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq T_{n}$

General Inquiry: Given generators $a_{1}, \ldots, a_{k} \in T_{n}$, what is the complexity of verifying certain properties about $S=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ within:

$$
\mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXPTIME} ?
$$

Theorem (Mayr, TJ, 2019)
The left and right identities of a transformation semigroup can be enumerated in polynomial time.

Notation

Matrix Semigroups

- \mathbb{F}^{n} is the set of row vectors of length n over a field \mathbb{F}

Notation

Matrix Semigroups

- \mathbb{F}^{n} is the set of row vectors of length n over a field \mathbb{F}
- $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq \mathbb{F}^{n \times n}$ under multiplication

Notation

Matrix Semigroups

- \mathbb{F}^{n} is the set of row vectors of length n over a field \mathbb{F}
- $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq \mathbb{F}^{n \times n}$ under multiplication

Note that $\mathbb{F}^{n \times n}$ acts as a transformation semigroup on the set \mathbb{F}^{n} by multiplication on the right.

Notation

Matrix Semigroups

- \mathbb{F}^{n} is the set of row vectors of length n over a field \mathbb{F}
- $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq \mathbb{F}^{n \times n}$ under multiplication

Note that $\mathbb{F}^{n \times n}$ acts as a transformation semigroup on the set \mathbb{F}^{n} by multiplication on the right.
Space to store a_{i} as a matrix $=n^{2} \log (|\mathbb{F}|)$.
Space to store representation of a_{i} as a transformation $=|\mathbb{F}|^{n} \log (n|\mathbb{F}|)$.

Notation

- $\operatorname{Row}\left(a_{i}\right)$ is the rowspace of a_{i}.

Notation

- $\operatorname{Row}\left(a_{i}\right)$ is the rowspace of a_{i}.
- Row (S) is the sum of the rowspaces of the generators of S.

Notation

- $\operatorname{Row}\left(a_{i}\right)$ is the rowspace of a_{i}.
- Row (S) is the sum of the rowspaces of the generators of S.
- $\operatorname{Null}(S):=\bigcap_{i \in[k]} \operatorname{Null}\left(a_{i}\right)$

Notation

- $\operatorname{Row}\left(a_{i}\right)$ is the rowspace of a_{i}.
- Row (S) is the sum of the rowspaces of the generators of S.
- $\operatorname{Null}(S):=\bigcap_{i \in[k]} \operatorname{Null}\left(a_{i}\right)$
- $\llbracket x \rrbracket:=x+\operatorname{Null}(S)$

Notation

- $\operatorname{Row}\left(a_{i}\right)$ is the rowspace of a_{i}.
- $\operatorname{Row}(S)$ is the sum of the rowspaces of the generators of S.
- $\operatorname{Null}(S):=\bigcap_{i \in[k]} \operatorname{Null}\left(a_{i}\right)$
- $\llbracket x \rrbracket:=x+\operatorname{Null}(S)$
- $S \rightarrow \operatorname{End}\left(\mathbb{F}^{n} / \operatorname{Null}(S)\right), s \mapsto \bar{s}$ where $\llbracket x \rrbracket \bar{s}=\llbracket x s \rrbracket$ for $x \in[n]$

Notation

- $\operatorname{Row}\left(a_{i}\right)$ is the rowspace of a_{i}.
- $\operatorname{Row}(S)$ is the sum of the rowspaces of the generators of S.
- $\operatorname{Null}(S):=\bigcap_{i \in[k]} \operatorname{Null}\left(a_{i}\right)$
- $\llbracket x \rrbracket:=x+\operatorname{Null}(S)$
- $S \rightarrow \operatorname{End}\left(\mathbb{F}^{n} / \operatorname{Null}(S)\right), s \mapsto \bar{s}$ where $\llbracket x \rrbracket \bar{s}=\llbracket x s \rrbracket$ for $x \in[n]$
- $\bar{S}:=\{\bar{s}: s \in S\}$

Notation

- $\operatorname{Row}\left(a_{i}\right)$ is the rowspace of a_{i}.
- $\operatorname{Row}(S)$ is the sum of the rowspaces of the generators of S.
- $\operatorname{Null}(S):=\bigcap_{i \in[k]} \operatorname{Null}\left(a_{i}\right)$
- $\llbracket x \rrbracket:=x+\operatorname{Null}(S)$
- $S \rightarrow \operatorname{End}\left(\mathbb{F}^{n} / \operatorname{Null}(S)\right), s \mapsto \bar{s}$ where $\llbracket x \rrbracket \bar{s}=\llbracket x s \rrbracket$ for $x \in[n]$
- $\bar{S}:=\{\bar{s}: s \in S\}$

Note that \bar{s} is well-defined. For any $y \in \llbracket x \rrbracket$, there is a $z \in \operatorname{Null}(S)$ such that $y=x+z$ and thus $\llbracket y \rrbracket \bar{s}=\llbracket y s \rrbracket=\llbracket(x+z) s \rrbracket=\llbracket x s \rrbracket=\llbracket x \rrbracket \bar{s}$.

Notation

- $\operatorname{Row}\left(a_{i}\right)$ is the rowspace of a_{i}.
- $\operatorname{Row}(S)$ is the sum of the rowspaces of the generators of S.
- $\operatorname{Null}(S):=\bigcap_{i \in[k]} \operatorname{Null}\left(a_{i}\right)$
- $\llbracket x \rrbracket:=x+\operatorname{Null}(S)$
- $S \rightarrow \operatorname{End}\left(\mathbb{F}^{n} / \operatorname{Null}(S)\right), s \mapsto \bar{s}$ where $\llbracket x \rrbracket \bar{s}=\llbracket x s \rrbracket$ for $x \in[n]$
- $\bar{S}:=\{\bar{s}: s \in S\}$

Note that \bar{s} is well-defined. For any $y \in \llbracket x \rrbracket$, there is a $z \in \operatorname{Null}(S)$ such that $y=x+z$ and thus $\llbracket y \rrbracket \bar{s}=\llbracket y s \rrbracket=\llbracket(x+z) s \rrbracket=\llbracket x s \rrbracket=\llbracket x \rrbracket \bar{s}$.

LeftIdentities

Input: $a_{1}, \ldots, a_{k} \in \mathbb{F}^{n \times n}$
Problem: Enumerate the left identities of $\left\langle a_{1}, \ldots, a_{k}\right\rangle$.

Proof of Left Identities Lemma

Left Identities Lemma
Let $k, n \in \mathbb{N}, a_{1}, \ldots, a_{k} \in F^{n \times n}$, and $S:=\left\langle a_{1}, \ldots, a_{k}\right\rangle$. Then an element $\ell \in S$ is a left identity of S iff there is an $i \in[k]$ such that $\overline{a_{i}}$ permutes $\mathbb{F}^{n} / \operatorname{Null}(S)$ and ℓ equals the idempotent power of a_{i}.

Proof.

Proof of Left Identities Lemma

Left Identities Lemma
Let $k, n \in \mathbb{N}, a_{1}, \ldots, a_{k} \in F^{n \times n}$, and $S:=\left\langle a_{1}, \ldots, a_{k}\right\rangle$. Then an element $\ell \in S$ is a left identity of S iff there is an $i \in[k]$ such that $\overline{a_{i}}$ permutes $\mathbb{F}^{n} / \operatorname{Null}(S)$ and ℓ equals the idempotent power of a_{i}.

Proof.
\Leftarrow :

- Let $\overline{a_{i}}$ permute $\mathbb{F}^{n} / \operatorname{Null}(S)$ and let $\left(a_{i}^{m}\right)^{2}=a_{i}^{m}$.

Proof of Left Identities Lemma

Left Identities Lemma
Let $k, n \in \mathbb{N}, a_{1}, \ldots, a_{k} \in F^{n \times n}$, and $S:=\left\langle a_{1}, \ldots, a_{k}\right\rangle$. Then an element $\ell \in S$ is a left identity of S iff there is an $i \in[k]$ such that $\overline{a_{i}}$ permutes $\mathbb{F}^{n} / \operatorname{Null}(S)$ and ℓ equals the idempotent power of a_{i}.

Proof.
\Leftarrow :

- Let $\overline{a_{i}}$ permute $\mathbb{F}^{n} / \operatorname{Null}(S)$ and let $\left(a_{i}^{m}\right)^{2}=a_{i}^{m}$.
- Then ${\overline{a_{i}}}^{m}=\overline{1}$, so $\forall x \in \mathbb{F}^{n}: \llbracket x a_{i}^{m} \rrbracket=\llbracket x \rrbracket{\overline{a_{i}}}^{m}=\llbracket x \rrbracket$.

Proof of Left Identities Lemma

Left Identities Lemma

Let $k, n \in \mathbb{N}, a_{1}, \ldots, a_{k} \in F^{n \times n}$, and $S:=\left\langle a_{1}, \ldots, a_{k}\right\rangle$. Then an element $\ell \in S$ is a left identity of S iff there is an $i \in[k]$ such that $\overline{a_{i}}$ permutes $\mathbb{F}^{n} / \operatorname{Null}(S)$ and ℓ equals the idempotent power of a_{i}.

Proof.
\Leftarrow :

- Let $\overline{a_{i}}$ permute $\mathbb{F}^{n} / \operatorname{Null}(S)$ and let $\left(a_{i}^{m}\right)^{2}=a_{i}^{m}$.
- Then ${\overline{a_{i}}}^{m}=\overline{1}$, so $\forall x \in \mathbb{F}^{n}: \llbracket x a_{i}^{m} \rrbracket=\llbracket x \rrbracket{\overline{a_{i}}}^{m}=\llbracket x \rrbracket$.
- Thus, $x a_{i}^{m}=x+z$ for some $z \in \operatorname{Null}(S)$ so that $x a_{i}^{m} s=(x+z) s=x s$ for every $s \in S$.

Proof of Left Identities Lemma

Left Identities Lemma
Let $k, n \in \mathbb{N}, a_{1}, \ldots, a_{k} \in F^{n \times n}$, and $S:=\left\langle a_{1}, \ldots, a_{k}\right\rangle$. Then an element $\ell \in S$ is a left identity of S iff there is an $i \in[k]$ such that $\overline{a_{i}}$ permutes $\mathbb{F}^{n} / \operatorname{Null}(S)$ and ℓ equals the idempotent power of a_{i}.

Proof.

Proof of Left Identities Lemma

Left Identities Lemma
Let $k, n \in \mathbb{N}, a_{1}, \ldots, a_{k} \in F^{n \times n}$, and $S:=\left\langle a_{1}, \ldots, a_{k}\right\rangle$. Then an element $\ell \in S$ is a left identity of S iff there is an $i \in[k]$ such that $\overline{a_{i}}$ permutes $\mathbb{F}^{n} / \operatorname{Null}(S)$ and ℓ equals the idempotent power of a_{i}.

Proof.
\Rightarrow :

- Let $\ell \in S$ satisfy $x \ell s=x s$ for every $x \in \mathbb{F}^{n}$ and every $s \in S$.

Proof of Left Identities Lemma

Left Identities Lemma
Let $k, n \in \mathbb{N}, a_{1}, \ldots, a_{k} \in F^{n \times n}$, and $S:=\left\langle a_{1}, \ldots, a_{k}\right\rangle$. Then an element $\ell \in S$ is a left identity of S iff there is an $i \in[k]$ such that $\overline{a_{i}}$ permutes $\mathbb{F}^{n} / \operatorname{Null}(S)$ and ℓ equals the idempotent power of a_{i}.

Proof.
\Rightarrow :

- Let $\ell \in S$ satisfy $x \ell s=x s$ for every $x \in \mathbb{F}^{n}$ and every $s \in S$.
- Then $(x \ell-x) s=0, x \ell-x \in \operatorname{Null}(S), \llbracket x \ell \rrbracket=\llbracket x \rrbracket$, and $\bar{\ell}=\overline{1}$.

Proof of Left Identities Lemma

Left Identities Lemma
Let $k, n \in \mathbb{N}, a_{1}, \ldots, a_{k} \in F^{n \times n}$, and $S:=\left\langle a_{1}, \ldots, a_{k}\right\rangle$. Then an element $\ell \in S$ is a left identity of S iff there is an $i \in[k]$ such that $\overline{a_{i}}$ permutes $\mathbb{F}^{n} / \operatorname{Null}(S)$ and ℓ equals the idempotent power of a_{i}.

Proof.
\Rightarrow :

- Let $\ell \in S$ satisfy $x \ell s=x s$ for every $x \in \mathbb{F}^{n}$ and every $s \in S$.
- Then $(x \ell-x) s=0, x \ell-x \in \operatorname{Null}(S), \llbracket x \ell \rrbracket=\llbracket x \rrbracket$, and $\bar{\ell}=\overline{1}$.
- So, $\ell=b a_{i}$ for some permutations $\bar{b}, \overline{a_{i}} \in \bar{S}$.

Proof of Left Identities Lemma

Left Identities Lemma
Let $k, n \in \mathbb{N}, a_{1}, \ldots, a_{k} \in F^{n \times n}$, and $S:=\left\langle a_{1}, \ldots, a_{k}\right\rangle$. Then an element $\ell \in S$ is a left identity of S iff there is an $i \in[k]$ such that $\overline{a_{i}}$ permutes $\mathbb{F}^{n} / \operatorname{Null}(S)$ and ℓ equals the idempotent power of a_{i}.

Proof.
\Rightarrow :

- Let $\ell \in S$ satisfy $x \ell s=x s$ for every $x \in \mathbb{F}^{n}$ and every $s \in S$.
- Then $(x \ell-x) s=0, x \ell-x \in \operatorname{Null}(S), \llbracket x \ell \rrbracket=\llbracket x \rrbracket$, and $\bar{\ell}=\overline{1}$.
- So, $\ell=b a_{i}$ for some permutations $\bar{b}, \overline{a_{i}} \in \bar{S}$.
- Since ${\overline{a_{i}}}^{m}=\overline{1}, \forall x \in \mathbb{F}^{n}: \llbracket x b \rrbracket \overline{a_{i}}=\llbracket x \rrbracket \overline{b a_{i}}=\llbracket x \rrbracket{\overline{a_{i}}}^{m}=\llbracket x a_{i}^{m-1} \rrbracket \overline{a_{i}}$.

Proof of Left Identities Lemma

Left Identities Lemma

Let $k, n \in \mathbb{N}, a_{1}, \ldots, a_{k} \in F^{n \times n}$, and $S:=\left\langle a_{1}, \ldots, a_{k}\right\rangle$. Then an element $\ell \in S$ is a left identity of S iff there is an $i \in[k]$ such that $\overline{a_{i}}$ permutes $\mathbb{F}^{n} / \operatorname{Null}(S)$ and ℓ equals the idempotent power of a_{i}.

Proof.

\Rightarrow :

- Let $\ell \in S$ satisfy $x \ell s=x s$ for every $x \in \mathbb{F}^{n}$ and every $s \in S$.
- Then $(x \ell-x) s=0, x \ell-x \in \operatorname{Null}(S), \llbracket x \ell \rrbracket=\llbracket x \rrbracket$, and $\bar{\ell}=\overline{1}$.
- So, $\ell=b a_{i}$ for some permutations $\bar{b}, \overline{a_{i}} \in \bar{S}$.
- Since ${\overline{a_{i}}}^{m}=\overline{1}, \forall x \in \mathbb{F}^{n}: \llbracket x b \rrbracket \overline{\bar{a}_{i}}=\llbracket x \rrbracket \overline{b a_{i}}=\llbracket x \rrbracket \overline{a_{i}}{ }^{m}=\llbracket x a_{i}^{m-1} \rrbracket \overline{a_{i}}$.
- Since $\overline{a_{i}}$ is a permutation, $\llbracket x b \rrbracket=\llbracket x a_{i}^{m-1} \rrbracket$ so that, for any $s \in S$, $x b s=x a_{i}^{m-1} s$. In particular, $x b a_{i}=x a_{i}^{m}$.

Left Identities Theorem

Left Identities Theorem
Leftldentities can be solved in polynomial time.

Left Identities Theorem

Left Identities Theorem
Leftldentities can be solved in polynomial time.
Proof.

- Let $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq \mathbb{F}^{n \times n}$. Recall $\operatorname{Null}(S):=\bigcap \operatorname{Null}\left(a_{i}\right)$.

Left Identities Theorem

Left Identities Theorem
Leftldentities can be solved in polynomial time.
Proof.

- Let $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq \mathbb{F}^{n \times n}$. Recall $\operatorname{Null}(S):=\bigcap \operatorname{Null}\left(a_{i}\right)$.
- Generate $\mathbb{F}^{n} / \operatorname{Null}(S)$ and enumerate each $\overline{a_{i}}$ that permutes \mathbb{F}^{n}.

Left Identities Theorem

Left Identities Theorem
Leftldentities can be solved in polynomial time.
Proof.

- Let $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq \mathbb{F}^{n \times n}$. Recall $\operatorname{Null}(S):=\bigcap \operatorname{Null}\left(a_{i}\right)$.
- Generate $\mathbb{F}^{n} / \operatorname{Null}(S)$ and enumerate each $\overline{a_{i}}$ that permutes \mathbb{F}^{n}.
- By Lemma, the idempotent powers $a_{i}^{m_{i}}$'s are left identities.

Left Identities Theorem

Left Identities Theorem
Leftldentities can be solved in polynomial time.
Proof.

- Let $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq \mathbb{F}^{n \times n}$. Recall $\operatorname{Null}(S):=\bigcap \operatorname{Null}\left(a_{i}\right)$.
- Generate $\mathbb{F}^{n} / \operatorname{Null}(S)$ and enumerate each $\overline{a_{i}}$ that permutes \mathbb{F}^{n}.
- By Lemma, the idempotent powers $a_{i}^{m_{i}}$'s are left identities.
- Note that $\operatorname{Null}\left(a_{i}\right)=\operatorname{Null}(S)$, so $\operatorname{Row}\left(a_{i}\right) \cap \operatorname{Null}\left(a_{i}\right)=\emptyset$.

Left Identities Theorem

Left Identities Theorem
Leftldentities can be solved in polynomial time.
Proof.

- Let $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq \mathbb{F}^{n \times n}$. Recall $\operatorname{Null}(S):=\bigcap \operatorname{Null}\left(a_{i}\right)$.
- Generate $\mathbb{F}^{n} / \operatorname{Null}(S)$ and enumerate each $\overline{a_{i}}$ that permutes \mathbb{F}^{n}.
- By Lemma, the idempotent powers $a_{i}^{m_{i}}$'s are left identities.
- Note that $\operatorname{Null}\left(a_{i}\right)=\operatorname{Null}(S)$, so $\operatorname{Row}\left(a_{i}\right) \cap \operatorname{Null}\left(a_{i}\right)=\emptyset$.
- A basis B of $\operatorname{Row}\left(a_{i}\right)$ and a basis C of $\operatorname{Null}\left(a_{i}\right)$ forms a basis for \mathbb{F}^{n}.

Left Identities Theorem

Left Identities Theorem
Leftldentities can be solved in polynomial time.
Proof.

- Let $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq \mathbb{F}^{n \times n}$. Recall $\operatorname{Null}(S):=\bigcap \operatorname{Null}\left(a_{i}\right)$.
- Generate $\mathbb{F}^{n} / \operatorname{Null}(S)$ and enumerate each $\overline{a_{i}}$ that permutes \mathbb{F}^{n}.
- By Lemma, the idempotent powers $a_{i}^{m_{i}}$'s are left identities.
- Note that $\operatorname{Null}\left(a_{i}\right)=\operatorname{Null}(S)$, so $\operatorname{Row}\left(a_{i}\right) \cap \operatorname{Null}\left(a_{i}\right)=\emptyset$.
- A basis B of $\operatorname{Row}\left(a_{i}\right)$ and a basis C of $\operatorname{Null}\left(a_{i}\right)$ forms a basis for \mathbb{F}^{n}.
- Let P be the matrix with rows from B followed by rows from C.

Left Identities Theorem

Left Identities Theorem
Leftldentities can be solved in polynomial time.
Proof.

- Let $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq \mathbb{F}^{n \times n}$. Recall $\operatorname{Null}(S):=\bigcap \operatorname{Null}\left(a_{i}\right)$.
- Generate $\mathbb{F}^{n} / \operatorname{Null}(S)$ and enumerate each $\overline{a_{i}}$ that permutes \mathbb{F}^{n}.
- By Lemma, the idempotent powers $a_{i}^{m_{i}}$'s are left identities.
- Note that $\operatorname{Null}\left(a_{i}\right)=\operatorname{Null}(S)$, so $\operatorname{Row}\left(a_{i}\right) \cap \operatorname{Null}\left(a_{i}\right)=\emptyset$.
- A basis B of $\operatorname{Row}\left(a_{i}\right)$ and a basis C of $\operatorname{Null}\left(a_{i}\right)$ forms a basis for \mathbb{F}^{n}.
- Let P be the matrix with rows from B followed by rows from C.
- $a_{i}=P^{-1} D P$ for some block diagonal D with zeroes outside of the top corner block of dimension $|B| \times|B|$.

Left Identities Theorem

Left Identities Theorem

LeftIdentities can be solved in polynomial time.
Proof.

- Let $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle \leq \mathbb{F}^{n \times n}$. Recall $\operatorname{Null}(S):=\bigcap \operatorname{Null}\left(a_{i}\right)$.
- Generate $\mathbb{F}^{n} / \operatorname{Null}(S)$ and enumerate each $\overline{a_{i}}$ that permutes \mathbb{F}^{n}.
- By Lemma, the idempotent powers $a_{i}^{m_{i}}$'s are left identities.
- Note that $\operatorname{Null}\left(a_{i}\right)=\operatorname{Null}(S)$, so $\operatorname{Row}\left(a_{i}\right) \cap \operatorname{Null}\left(a_{i}\right)=\emptyset$.
- A basis B of $\operatorname{Row}\left(a_{i}\right)$ and a basis C of $\operatorname{Null}\left(a_{i}\right)$ forms a basis for \mathbb{F}^{n}.
- Let P be the matrix with rows from B followed by rows from C.
- $a_{i}=P^{-1} D P$ for some block diagonal D with zeroes outside of the top corner block of dimension $|B| \times|B|$.
- $a_{i}^{m_{i}}=P^{-1} D^{m_{i}} P$ where $D^{m_{i}}$ is diagonal with 1 's in the first $|B|$ diagonal entries and zeroes elsewhere.

Right Identities Problem

Rightldentities
Input: $a_{1}, \ldots, a_{k} \in T_{n}$
Problem: Enumerate the right identities of $\left\langle a_{1}, \ldots, a_{k}\right\rangle$.

Proof of Right Identities Lemma

Right Identity Lemma
Let $k, n \in \mathbb{N}, a_{1}, \ldots, a_{k} \in \mathbb{F}^{n \times n}$, and $S:=\left\langle a_{1}, \ldots, a_{k}\right\rangle$. Then an element $r \in S$ is a right identity of S iff there is an $i \in[k]$ such that $\operatorname{Null}\left(a_{i}\right) \cap \operatorname{Row}(S)=\{0\}$ and r equals the idempotent power of a_{i}.

Proof of Right Identities Lemma

Right Identity Lemma
Let $k, n \in \mathbb{N}, a_{1}, \ldots, a_{k} \in \mathbb{F}^{n \times n}$, and $S:=\left\langle a_{1}, \ldots, a_{k}\right\rangle$. Then an element $r \in S$ is a right identity of S iff there is an $i \in[k]$ such that $\operatorname{Null}\left(a_{i}\right) \cap \operatorname{Row}(S)=\{0\}$ and r equals the idempotent power of a_{i}.

Proof.
$\Leftarrow:$ Let $\operatorname{Null}\left(a_{i}\right) \cap \operatorname{Row}(S)=\{0\}$ and $\left(a_{i}^{m}\right)^{2}=a_{i}^{m}$.

Proof of Right Identities Lemma

Right Identity Lemma
Let $k, n \in \mathbb{N}, a_{1}, \ldots, a_{k} \in \mathbb{F}^{n \times n}$, and $S:=\left\langle a_{1}, \ldots, a_{k}\right\rangle$. Then an element $r \in S$ is a right identity of S iff there is an $i \in[k]$ such that $\operatorname{Null}\left(a_{i}\right) \cap \operatorname{Row}(S)=\{0\}$ and r equals the idempotent power of a_{i}.

Proof.
$\Leftarrow:$ Let $\operatorname{Null}\left(a_{i}\right) \cap \operatorname{Row}(S)=\{0\}$ and $\left(a_{i}^{m}\right)^{2}=a_{i}^{m}$.
So, a_{i} embeds $\operatorname{Row}(S)$ into \mathbb{F}^{n} and $\left.a_{i}\right|_{\operatorname{Row}(S)}$ is bijective.

Proof of Right Identities Lemma

Right Identity Lemma
Let $k, n \in \mathbb{N}, a_{1}, \ldots, a_{k} \in \mathbb{F}^{n \times n}$, and $S:=\left\langle a_{1}, \ldots, a_{k}\right\rangle$. Then an element $r \in S$ is a right identity of S iff there is an $i \in[k]$ such that $\operatorname{Null}\left(a_{i}\right) \cap \operatorname{Row}(S)=\{0\}$ and r equals the idempotent power of a_{i}.

Proof.

$\Leftarrow:$ Let $\operatorname{Null}\left(a_{i}\right) \cap \operatorname{Row}(S)=\{0\}$ and $\left(a_{i}^{m}\right)^{2}=a_{i}^{m}$.
So, a_{i} embeds Row (S) into \mathbb{F}^{n} and $\left.a_{i}\right|_{\operatorname{Row}(S)}$ is bijective.
Then a_{i}^{m} fixes $\operatorname{Row}(S)$. That is, $\forall x \in \mathbb{F}^{n}, \forall s \in S: x s a_{i}^{m}=x s$.

Proof of Right Identities Lemma

Right Identity Lemma
Let $k, n \in \mathbb{N}, a_{1}, \ldots, a_{k} \in \mathbb{F}^{n \times n}$, and $S:=\left\langle a_{1}, \ldots, a_{k}\right\rangle$. Then an element $r \in S$ is a right identity of S iff there is an $i \in[k]$ such that $\operatorname{Null}\left(a_{i}\right) \cap \operatorname{Row}(S)=\{0\}$ and r equals the idempotent power of a_{i}.

Proof.

$\Leftarrow:$ Let $\operatorname{Null}\left(a_{i}\right) \cap \operatorname{Row}(S)=\{0\}$ and $\left(a_{i}^{m}\right)^{2}=a_{i}^{m}$.
So, a_{i} embeds $\operatorname{Row}(S)$ into \mathbb{F}^{n} and $\left.a_{i}\right|_{\operatorname{Row}(S)}$ is bijective.
Then a_{i}^{m} fixes $\operatorname{Row}(S)$. That is, $\forall x \in \mathbb{F}^{n}, \forall s \in S: x s a_{i}^{m}=x s$.
\Rightarrow : Let r satisfy xsr $=x s$ for every $x \in \mathbb{F}^{n}$ and every $s \in S$. Then r fixes $\operatorname{Row}(S)$ and $r=a_{i} b$ for some $a_{i}, b \in S$ that permute $\operatorname{Row}(S)$.

Proof of Right Identities Lemma

Right Identity Lemma
Let $k, n \in \mathbb{N}, a_{1}, \ldots, a_{k} \in \mathbb{F}^{n \times n}$, and $S:=\left\langle a_{1}, \ldots, a_{k}\right\rangle$. Then an element $r \in S$ is a right identity of S iff there is an $i \in[k]$ such that $\operatorname{Null}\left(a_{i}\right) \cap \operatorname{Row}(S)=\{0\}$ and r equals the idempotent power of a_{i}.

Proof.

$\Leftarrow:$ Let $\operatorname{Null}\left(a_{i}\right) \cap \operatorname{Row}(S)=\{0\}$ and $\left(a_{i}^{m}\right)^{2}=a_{i}^{m}$.
So, a_{i} embeds Row (S) into \mathbb{F}^{n} and $\left.a_{i}\right|_{\operatorname{Row}(S)}$ is bijective.
Then a_{i}^{m} fixes $\operatorname{Row}(S)$. That is, $\forall x \in \mathbb{F}^{n}, \forall s \in S: x s a_{i}^{m}=x s$.
\Rightarrow : Let r satisfy $x s r=x s$ for every $x \in \mathbb{F}^{n}$ and every $s \in S$. Then r fixes $\operatorname{Row}(S)$ and $r=a_{i} b$ for some $a_{i}, b \in S$ that permute $\operatorname{Row}(S)$. Since a_{i}^{m} fixes $\operatorname{Row}(S), \forall x \in \mathbb{F}^{n}: x a_{i} b=x a_{i} a_{i}^{m} b=x a_{i}^{m} a_{i} b=x a_{i}^{m}$.

Right Identity Theorem

Right Identity Theorem
Rightldentities can be solved in polynomial time.

Right Identity Theorem

Right Identity Theorem
Rightldentities can be solved in polynomial time.

Proof.

- Generate $\operatorname{Row}(S)$ and enumerate the a_{i} 's that permute $\operatorname{Row}(S)$.

Right Identity Theorem

Right Identity Theorem
RightIdentities can be solved in polynomial time.

Proof.

- Generate $\operatorname{Row}(S)$ and enumerate the a_{i} 's that permute $\operatorname{Row}(S)$.
- By Lemma, the idempotent powers $a_{i}^{m_{i}}$ are the right identities.

Right Identity Theorem

Right Identity Theorem
Rightldentities can be solved in polynomial time.

Proof.

- Generate $\operatorname{Row}(S)$ and enumerate the a_{i} 's that permute $\operatorname{Row}(S)$.
- By Lemma, the idempotent powers $a_{i}^{m_{i}}$ are the right identities.
- As with left identities, $\operatorname{Null}\left(a_{i}\right)=\operatorname{Null}(S)$, so we can build these idempotents simply from knowing a basis B of $\operatorname{Row}\left(a_{i}\right)$ and a basis C of $\operatorname{Null}\left(a_{i}\right)$.

Matrix Nilpotence

Notation
A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is said to be nilpotent if it has a zero element, $0 \in S$, satisfying $0 S=\{0\}$ and there exists $d \in \mathbb{N}$ such that $S^{d}=\{0\}$. If $S^{d}=\{0\}$, we say S is d-nilpotent.

Matrix Nilpotence

Notation
A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is said to be nilpotent if it has a zero element, $0 \in S$, satisfying $0 S=\{0\}$ and there exists $d \in \mathbb{N}$ such that $S^{d}=\{0\}$. If $S^{d}=\{0\}$, we say S is d-nilpotent.

Nilpotence
Input: $a_{1}, \ldots, a_{k} \in T_{n}$
Output: Whether $\left\langle a_{1}, \ldots, a_{k}\right\rangle$ is nilpotent.

Matrix Nilpotence

Notation

A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is said to be nilpotent if it has a zero element, $0 \in S$, satisfying $0 S=\{0\}$ and there exists $d \in \mathbb{N}$ such that $S^{d}=\{0\}$. If $S^{d}=\{0\}$, we say S is d-nilpotent.

Nilpotence

Input: $a_{1}, \ldots, a_{k} \in T_{n}$
Output: Whether $\left\langle a_{1}, \ldots, a_{k}\right\rangle$ is nilpotent.

Lemma
A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is nilpotent iff it is n-nilpotent.

Proof of Lemma (1)

Lemma
A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is nilpotent iff it is n-nilpotent.

Proof of Lemma (1)

Lemma
A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is nilpotent iff it is n-nilpotent.

- Let $V_{0}=\mathbb{F}^{n}$ and $V_{i+1}=\operatorname{span}\left(V_{i} S\right)$.

Proof of Lemma (1)

Lemma
A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is nilpotent iff it is n-nilpotent.

- Let $V_{0}=\mathbb{F}^{n}$ and $V_{i+1}=\operatorname{span}\left(V_{i} S\right)$.
- By linearity, $V_{i}=\operatorname{span}\left(V_{0} S^{i}\right)$.

Proof of Lemma (1)

Lemma
A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is nilpotent iff it is n-nilpotent.

- Let $V_{0}=\mathbb{F}^{n}$ and $V_{i+1}=\operatorname{span}\left(V_{i} S\right)$.
- By linearity, $V_{i}=\operatorname{span}\left(V_{0} S^{i}\right)$.
- Then, if S has nilpotency degree d,

$$
V_{d}=\operatorname{span}\left(V_{0} S^{d}\right)=\operatorname{span}\left(V_{0} 0\right)=\mathbb{F}^{n} 0 .
$$

Proof of Lemma (1)

Lemma
A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is nilpotent iff it is n-nilpotent.

- Let $V_{0}=\mathbb{F}^{n}$ and $V_{i+1}=\operatorname{span}\left(V_{i} S\right)$.
- By linearity, $V_{i}=\operatorname{span}\left(V_{0} S^{i}\right)$.
- Then, if S has nilpotency degree d,

$$
V_{d}=\operatorname{span}\left(V_{0} S^{d}\right)=\operatorname{span}\left(V_{0} 0\right)=\mathbb{F}^{n} 0 .
$$

- Let m be minimal s.t. $V_{m}=V_{m+1}$. We prove $V_{m}=V_{j}$ for $j \geq m$.

Proof of Lemma (1)

Lemma

A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is nilpotent iff it is n-nilpotent.

- Let $V_{0}=\mathbb{F}^{n}$ and $V_{i+1}=\operatorname{span}\left(V_{i} S\right)$.
- By linearity, $V_{i}=\operatorname{span}\left(V_{0} S^{i}\right)$.
- Then, if S has nilpotency degree d,

$$
V_{d}=\operatorname{span}\left(V_{0} S^{d}\right)=\operatorname{span}\left(V_{0} 0\right)=\mathbb{F}^{n} 0 .
$$

- Let m be minimal s.t. $V_{m}=V_{m+1}$. We prove $V_{m}=V_{j}$ for $j \geq m$.
- If $V_{m}=V_{j}$. Then $V_{m}=V_{m+1}=\operatorname{span}\left(V_{m} S\right)=\operatorname{span}\left(V_{j} S\right)=V_{j+1}$.

Proof of Lemma (1)

Lemma

A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is nilpotent iff it is n-nilpotent.

- Let $V_{0}=\mathbb{F}^{n}$ and $V_{i+1}=\operatorname{span}\left(V_{i} S\right)$.
- By linearity, $V_{i}=\operatorname{span}\left(V_{0} S^{i}\right)$.
- Then, if S has nilpotency degree d,

$$
V_{d}=\operatorname{span}\left(V_{0} S^{d}\right)=\operatorname{span}\left(V_{0} 0\right)=\mathbb{F}^{n} 0 .
$$

- Let m be minimal s.t. $V_{m}=V_{m+1}$. We prove $V_{m}=V_{j}$ for $j \geq m$.
- If $V_{m}=V_{j}$. Then $V_{m}=V_{m+1}=\operatorname{span}\left(V_{m} S\right)=\operatorname{span}\left(V_{j} S\right)=V_{j+1}$.
- Certainly $m \leq d$, so $\operatorname{span}\left(V_{0} S^{m}\right)=V_{m}=V_{d}=\mathbb{F}^{n} 0$, so $m=d$.

Proof of Lemma (1)

Lemma

A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is nilpotent iff it is n-nilpotent.

- Let $V_{0}=\mathbb{F}^{n}$ and $V_{i+1}=\operatorname{span}\left(V_{i} S\right)$.
- By linearity, $V_{i}=\operatorname{span}\left(V_{0} S^{i}\right)$.
- Then, if S has nilpotency degree d,

$$
V_{d}=\operatorname{span}\left(V_{0} S^{d}\right)=\operatorname{span}\left(V_{0} 0\right)=\mathbb{F}^{n} 0 .
$$

- Let m be minimal s.t. $V_{m}=V_{m+1}$. We prove $V_{m}=V_{j}$ for $j \geq m$.
- If $V_{m}=V_{j}$. Then $V_{m}=V_{m+1}=\operatorname{span}\left(V_{m} S\right)=\operatorname{span}\left(V_{j} S\right)=V_{j+1}$.
- Certainly $m \leq d$, so $\operatorname{span}\left(V_{0} S^{m}\right)=V_{m}=V_{d}=\mathbb{F}^{n} 0$, so $m=d$.
- Note, $\mathbb{F}^{n} S^{i+1} \subseteq \mathbb{F}^{n} S^{i}$ implies $V^{i+1} \leq V^{i}$ and $V_{i+1} \neq V_{i}$ for $i<d$.

Proof of Lemma (1)

Lemma

A matrix semigroup $S \leq \mathbb{F}^{n \times n}$ is nilpotent iff it is n-nilpotent.

- Let $V_{0}=\mathbb{F}^{n}$ and $V_{i+1}=\operatorname{span}\left(V_{i} S\right)$.
- By linearity, $V_{i}=\operatorname{span}\left(V_{0} S^{i}\right)$.
- Then, if S has nilpotency degree d,

$$
V_{d}=\operatorname{span}\left(V_{0} S^{d}\right)=\operatorname{span}\left(V_{0} 0\right)=\mathbb{F}^{n} 0 .
$$

- Let m be minimal s.t. $V_{m}=V_{m+1}$. We prove $V_{m}=V_{j}$ for $j \geq m$.
- If $V_{m}=V_{j}$. Then $V_{m}=V_{m+1}=\operatorname{span}\left(V_{m} S\right)=\operatorname{span}\left(V_{j} S\right)=V_{j+1}$.
- Certainly $m \leq d$, so $\operatorname{span}\left(V_{0} S^{m}\right)=V_{m}=V_{d}=\mathbb{F}^{n} 0$, so $m=d$.
- Note, $\mathbb{F}^{n} S^{i+1} \subseteq \mathbb{F}^{n} S^{i}$ implies $V^{i+1} \leq V^{i}$ and $V_{i+1} \neq V_{i}$ for $i<d$.
- Then $n=\operatorname{dim}\left(V_{0}\right)>\operatorname{dim}\left(V_{0} S\right)>\cdots>\operatorname{dim}\left(V_{0} S^{d}\right)=0$ and $n \geq d$.

Nilpotence Theorem

Matrix Nilpotence Theorem
Nilpotence is in P .

Proof

- Let $V_{0}=\mathbb{F}^{n}$ and $V_{i+1}=\operatorname{span}\left(V_{i} a_{j} \mid j \in[k]\right)$.

Nilpotence Theorem

Matrix Nilpotence Theorem
Nilpotence is in P .

Proof

- Let $V_{0}=\mathbb{F}^{n}$ and $V_{i+1}=\operatorname{span}\left(V_{i} a_{j} \mid j \in[k]\right)$.
- Let $0=a_{1}^{n}$. We claim S is nilpotent iff:
(1) $V_{n}=\mathbb{F}^{n} 0$ and (2) $0 a_{j}=a_{j} 0=0$ for every $j \in[k]$.

Nilpotence Theorem

Matrix Nilpotence Theorem
Nilpotence is in P .

Proof

- Let $V_{0}=\mathbb{F}^{n}$ and $V_{i+1}=\operatorname{span}\left(V_{i} a_{j} \mid j \in[k]\right)$.
- Let $0=a_{1}^{n}$. We claim S is nilpotent iff:
(1) $V_{n}=\mathbb{F}^{n} 0$ and (2) $0 a_{j}=a_{j} 0=0$ for every $j \in[k]$.
- One direction is clear. For the other, assume (1) and (2) hold.

Nilpotence Theorem

Matrix Nilpotence Theorem
Nilpotence is in P .

Proof

- Let $V_{0}=\mathbb{F}^{n}$ and $V_{i+1}=\operatorname{span}\left(V_{i} a_{j} \mid j \in[k]\right)$.
- Let $0=a_{1}^{n}$. We claim S is nilpotent iff:
(1) $V_{n}=\mathbb{F}^{n} 0$ and (2) $0 a_{j}=a_{j} 0=0$ for every $j \in[k]$.
- One direction is clear. For the other, assume (1) and (2) hold.
- Pick any $x \in \mathbb{F}^{n}$ and any $s_{1}, \ldots, s_{n} \in\left\{a_{1}, \ldots, a_{k}\right\}$.

Nilpotence Theorem

Matrix Nilpotence Theorem
Nilpotence is in P .

Proof

- Let $V_{0}=\mathbb{F}^{n}$ and $V_{i+1}=\operatorname{span}\left(V_{i} a_{j} \mid j \in[k]\right)$.
- Let $0=a_{1}^{n}$. We claim S is nilpotent iff:
(1) $V_{n}=\mathbb{F}^{n} 0$ and (2) $0 a_{j}=a_{j} 0=0$ for every $j \in[k]$.
- One direction is clear. For the other, assume (1) and (2) hold.
- Pick any $x \in \mathbb{F}^{n}$ and any $s_{1}, \ldots, s_{n} \in\left\{a_{1}, \ldots, a_{k}\right\}$.
- By (1), $x s_{1} \cdots s_{n} \in \mathbb{F}^{n} 0$.

Nilpotence Theorem

Matrix Nilpotence Theorem
Nilpotence is in P .

Proof

- Let $V_{0}=\mathbb{F}^{n}$ and $V_{i+1}=\operatorname{span}\left(V_{i} a_{j} \mid j \in[k]\right)$.
- Let $0=a_{1}^{n}$. We claim S is nilpotent iff:
(1) $V_{n}=\mathbb{F}^{n} 0$ and (2) $0 a_{j}=a_{j} 0=0$ for every $j \in[k]$.
- One direction is clear. For the other, assume (1) and (2) hold.
- Pick any $x \in \mathbb{F}^{n}$ and any $s_{1}, \ldots, s_{n} \in\left\{a_{1}, \ldots, a_{k}\right\}$.
- By (1), $x s_{1} \cdots s_{n} \in \mathbb{F}^{n} 0$.
- $\operatorname{By}(2), x s_{1} \cdots s_{n}=x s_{1} \cdots s_{n} 0=x 0$.

Nilpotence Theorem

Matrix Nilpotence Theorem
Nilpotence is in P .

Proof

- Let $V_{0}=\mathbb{F}^{n}$ and $V_{i+1}=\operatorname{span}\left(V_{i} a_{j} \mid j \in[k]\right)$.
- Let $0=a_{1}^{n}$. We claim S is nilpotent iff:
(1) $V_{n}=\mathbb{F}^{n} 0$ and (2) $0 a_{j}=a_{j} 0=0$ for every $j \in[k]$.
- One direction is clear. For the other, assume (1) and (2) hold.
- Pick any $x \in \mathbb{F}^{n}$ and any $s_{1}, \ldots, s_{n} \in\left\{a_{1}, \ldots, a_{k}\right\}$.
- By (1), $x s_{1} \cdots s_{n} \in \mathbb{F}^{n} 0$.
- By (2), xs $\cdots s_{n}=x s_{1} \cdots s_{n} 0=x 0$.
- By Lemma, we need only produce V_{n} and check (1) and (2). These can be done in polynomial time by methods like Gaussian elimination.

