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Transformation Semigroups New Results

Update for BLAST 2018 Presentation

Transformation Semigroups

[n] := {1, ..., n}
Tn is the semigroup of all unary functions on [n]

S = 〈a1, . . . , ak〉 ≤ Tn

General Inquiry: Given generators a1, . . . , ak ∈ Tn, what is the complexity
of verifying certain properties about S = 〈a1, . . . , an〉 within:

NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME?

Theorem (Fleischer, TJ, 2019)

The complexity of determining the following properties of transformation
semigroups are in NL: is a band; all idempotents commute; is Clifford;
and, generally, any property that can be defined by a fixed equation.
The following problems are NL-complete: existence of left/right zeroes;
nilpotence; R-triviality; and all idempotents are central.
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Matrix Semigroups Preliminaries

Notation

Matrix Semigroups

Fn is the set of row vectors of length n over a field F

S = 〈a1, . . . , ak〉 ≤ Fn×n under multiplication

Note that Fn×n acts as a transformation semigroup on the set Fn by
multiplication on the right.
Space to store ai as a matrix = n2 log(|F|).
Space to store representation of ai as a transformation = |F|n log(n|F|).
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Matrix Semigroups LeftIdentities

Notation

Row(ai ) is the rowspace of ai .

Row(S) is the sum of the rowspaces of the generators of S .

Null(S) :=
⋂

i∈[k]Null(ai )

JxK := x + Null(S)

S → End(Fn/Null(S)), s 7→ s where JxKs = JxsK for x ∈ [n]

S := {s : s ∈ S}

Note that s is well-defined. For any y ∈ JxK, there is a z ∈ Null(S) such
that y = x + z and thus JyKs = JysK = J(x + z)sK = JxsK = JxKs.

LeftIdentities

Input: a1, ..., ak ∈ Fn×n

Problem: Enumerate the left identities of 〈a1, ..., ak〉.
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Matrix Semigroups LeftIdentities

Proof of Left Identities Lemma

Left Identities Lemma

Let k , n ∈ N, a1, . . . , ak ∈ F n×n, and S := 〈a1, . . . , ak〉. Then an element
` ∈ S is a left identity of S iff there is an i ∈ [k] such that ai permutes
Fn/Null(S) and ` equals the idempotent power of ai .

Proof.

⇐:

Let ai permute Fn/Null(S) and let (ami )2 = ami .

Then ai
m = 1, so ∀x ∈ Fn : Jxami K = JxKaim = JxK.

Thus, xami = x + z for some z ∈ Null(S) so that
xami s = (x + z)s = xs for every s ∈ S .
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Matrix Semigroups LeftIdentities

Left Identities Theorem

Left Identities Theorem

LeftIdentities can be solved in polynomial time.

Proof.

Let S = 〈a1, . . . , ak〉 ≤ Fn×n. Recall Null(S) :=
⋂
Null(ai ).

Generate Fn/Null(S) and enumerate each ai that permutes Fn.

By Lemma, the idempotent powers ami
i ’s are left identities.

Note that Null(ai ) = Null(S), so Row(ai ) ∩Null(ai ) = ∅.
A basis B of Row(ai ) and a basis C of Null(ai ) forms a basis for Fn.

Let P be the matrix with rows from B followed by rows from C .

ai = P−1DP for some block diagonal D with zeroes outside of the
top corner block of dimension |B| × |B|.
ami
i = P−1DmiP where Dmi is diagonal with 1’s in the first |B|

diagonal entries and zeroes elsewhere.

Thus, we need only know B and C to build ami .
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Matrix Semigroups MatrixRightIdentities

Right Identities Problem

RightIdentities

Input: a1, ..., ak ∈ Tn

Problem: Enumerate the right identities of 〈a1, ..., ak〉.
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Matrix Semigroups MatrixRightIdentities

Proof of Right Identities Lemma

Right Identity Lemma

Let k , n ∈ N, a1, . . . , ak ∈ Fn×n, and S := 〈a1, . . . , ak〉. Then an element
r ∈ S is a right identity of S iff there is an i ∈ [k] such that
Null(ai ) ∩ Row(S) = {0} and r equals the idempotent power of ai .

Proof.

⇐: Let Null(ai ) ∩ Row(S) = {0} and (ami )2 = ami .
So, ai embeds Row(S) into Fn and ai |Row(S) is bijective.
Then ami fixes Row(S). That is, ∀x ∈ Fn,∀s ∈ S : xsami = xs.

⇒: Let r satisfy xsr = xs for every x ∈ Fn and every s ∈ S . Then r fixes
Row(S) and r = aib for some ai , b ∈ S that permute Row(S).
Since ami fixes Row(S), ∀x ∈ Fn : xaib = xaia

m
i b = xami aib = xami .
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Matrix Semigroups MatrixRightIdentities

Right Identity Theorem

Right Identity Theorem

RightIdentities can be solved in polynomial time.

Proof.

Generate Row(S) and enumerate the ai ’s that permute Row(S).

By Lemma, the idempotent powers ami
i are the right identities.

As with left identities, Null(ai ) = Null(S), so we can build these
idempotents simply from knowing a basis B of Row(ai ) and a basis C
of Null(ai ).
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Matrix Semigroups Nilpotence

Matrix Nilpotence

Notation

A matrix semigroup S ≤ Fn×n is said to be nilpotent if it has a zero
element, 0 ∈ S , satisfying 0S = {0} and there exists d ∈ N such that
Sd = {0}. If Sd = {0}, we say S is d−nilpotent.

Nilpotence

Input: a1, ..., ak ∈ Tn

Output: Whether 〈a1, ..., ak〉 is nilpotent.

Lemma

A matrix semigroup S ≤ Fn×n is nilpotent iff it is n−nilpotent.
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Matrix Semigroups Nilpotence

Proof of Lemma (1)

Lemma

A matrix semigroup S ≤ Fn×n is nilpotent iff it is n−nilpotent.

Let V0 = Fn and Vi+1 = span(ViS).

By linearity, Vi = span(V0S
i ).

Then, if S has nilpotency degree d ,
Vd = span(V0S

d) = span(V00) = Fn0.

Let m be minimal s.t. Vm = Vm+1. We prove Vm = Vj for j ≥ m.

If Vm = Vj . Then Vm = Vm+1 = span(VmS) = span(VjS) = Vj+1.

Certainly m ≤ d , so span(V0S
m) = Vm = Vd = Fn0, so m = d .

Note, FnS i+1 ⊆ FnS i implies V i+1 ≤ V i and Vi+1 6= Vi for i < d .

Then n = dim(V0) > dim(V0S) > · · · > dim(V0S
d) = 0 and n ≥ d .
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Then n = dim(V0) > dim(V0S) > · · · > dim(V0S
d) = 0 and n ≥ d .
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Matrix Semigroups Nilpotence

Nilpotence Theorem

Matrix Nilpotence Theorem

Nilpotence is in P.

Proof

Let V0 = Fn and Vi+1 = span(Viaj |j ∈ [k]).

Let 0 = an1. We claim S is nilpotent iff:
(1) Vn = Fn0 and (2) 0aj = aj0 = 0 for every j ∈ [k].

One direction is clear. For the other, assume (1) and (2) hold.

Pick any x ∈ Fn and any s1, . . . , sn ∈ {a1, . . . , ak}.
By (1), xs1 · · · sn ∈ Fn0.

By (2), xs1 · · · sn = xs1 · · · sn0 = x0.

By Lemma, we need only produce Vn and check (1) and (2). These
can be done in polynomial time by methods like Gaussian elimination.
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